
 

Copyright © Smart/Micro Grid Research Center, 2016 

 

 

University of Kurdistan 

Dept. of Electrical and Computer Engineering 

Smart/Micro Grid Research Center 
 

smgrc.uok.ac.ir 
 

 

 

 

 

Adaptive Energy Consumption Scheduling for Connected Microgrids Under 
Demand Uncertainty 

 

Fathi M, and Bevrani H 
 
 

Published (to be published) in: IEEE Transactions on Power Delivery 
 

(Expected) publication date: 2013 
 
 
 
 
 
 

Citation format for published version: 
 

Fathi M, and Bevrani H (2013) Adaptive Energy Consumption Scheduling for Connected Microgrids 

Under Demand Uncertainty. IEEE Transactions on Power Delivery, Vol. 28, NO. 3, July 2013. DOI: 

10.1109/TPWRD.2013.2257877 

 
 
 
 
 

Copyright policies: 
 

 Download and print one copy of this material for the purpose of private study or research is permitted. 

 Permission to further distributing the material for advertising or promotional purposes or use it for any profit-

making activity or commercial gain, must be obtained from the main publisher. 

 If you believe that this document breaches copyright please contact us at smgrc@uok.ac.ir providing 

details, and we will remove access to the work immediately and investigate your claim. 

 

http://smgrc.uok.ac.ir/
mailto:smgrc@uok.ac.ir












FATHI AND BEVRANI: ADAPTIVE ENERGY CONSUMPTION SCHEDULING FOR CONNECTED MICROGRIDS 1581

Fig. 3. Adaptive system-wide demand and Lagrange multipliers.

Fig. 4. Generation cost per kilowatt-hour in cost formulation.

in accordance with the convergence of Lagrange multipliers of
(12) in Fig. 3.
Performance measures of the ACA-ECS and the optimal ECS

schemes, such as generation cost per kilowatt-hour and PAR,
versus the randomness of the NAs demand could be interesting
as follows. As another scheduling scheme, the results of uniform
ECS scheme are also included. In this scheme, the demand of
each in LA is uniformly distributed over the whole time
horizon, independent of the NAs demand (i.e.,
, ). This can also be considered as a deterministic solu-

tion. Cost and PAR performances versus the standard deviation
of (i.e., ) are shown in Figs. 4 and 5, respectively. For each
instance of , similar to the time-domain performance, we first
generate a data set with 360 samples of the distribution

, as partially shown in Table I. This set is used to ob-
tain the optimal ECS solution once in the beginning of the time
horizon as well as to provide the ACA-ECS scheme with in-
stantaneous realized NAs demand. As shown in the first part of
Fig. 2, there is a typical generated data set with 20 kWh.
As a common observation in Figs. 4 and 5, performance mea-

sures are getting worse as increases. In the case of cost mea-
sure, this is due to the fact that the considered squared cost func-
tion results in higher cost per kilowatt-hour for high demand
values in comparison with low demand values. The results in
PAR are based on the fact that the averages of both LA and
NAs demands are made constant when increases. Considering
PAR as a fractional term of the peak demand over the average
demand, it is reasonable to conclude that PAR increases as

Fig. 5. PAR in cost formulation.

increases. Moreover, in Fig. 4, with an increase in , the perfor-
mance gap between the compared ECS schemes and the optimal
one increases. In case of ACA-ECS, this is due to the fact that
the stochastic estimator (12) would be far from optimality with
the increase in the randomness of . In case of uniform ECS,
the degradation effect of high randomness would be more se-
vere since this scheme does not take care of NAs demand in the
scheduling decisions.
Furthermore, in Fig. 4 and Fig. 5, the generation cost and PAR

performances of the ACA-ECS scheme outperform those of uni-
form ECS. This is reasonably expected as ACA-ECS takes ad-
vantage of the diversity in NAs demand to smooth the total de-
mand and therefore achieves a better performance. In the com-
parison between ACA–ECS and the optimal solution, it is ob-
served that the optimal solution achieves lower cost. This is due
to the fact that this solution fully takes into account the knowl-
edge of NAs demand at the beginning of the time horizon for
the scheduling of LA demand. However, ACA-ECS makes a
scheduling decision adaptively per a time unit, when the de-
mand of NAs is available in that unit. Remarkably, the PAR of
ACA–ECS is comparable to that of the optimal solution. This
implies that the optimality of generation cost does not neces-
sarily imply the optimality of PAR too. This observation mo-
tivates the performance evaluation of PAR formulation in the
following.

B. PAR Formulation

In order to evaluate the efficiency of PAR formulation, the
generation cost per kWh and PAR performances of this for-
mulation are illustrated in Figs. 6 and 7, respectively. Similar
to the cost formulation in Section V-A, the results of the op-
timal solution in PAR formulation (optimal PAR) and uniform
scheduling (uniform PAR) scheme are also included. Since the
scheduling of the uniform strategy is independent of the objec-
tive function, the achieved results are the same in both cost and
PAR formulations. We take advantage of this equality and take
uniform strategy curves as references for comparison between
these formulations.
Comparing Figs. 4 and 6, it is observed that uniform sched-

uling was the worst in the former, whereas it is the best in the
latter. Considering the results of uniform scheduling as refer-
ence in both figures, we conclude that cost minimization formu-
lation is more cost efficient in comparison with PAR formula-
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TABLE I
NAS DEMAND FOR SIMULATION

Fig. 6. Generation cost per kilowatt-hour in the PAR formulation.

Fig. 7. PAR in PAR formulation.

tion. In terms of PAR, the optimal solution in the PAR formula-
tion achieves the lowest PAR. This is reasonably expected since
this solution takes NAs demand into account a priori. In com-
parison with the uniform strategy, the PAR of PAR-ECS scheme
is high. This is due to oscillations between min and max power
levels in PAR-ECS scheme in Algorithm 2. More important,
this implies that PAR performance of our proposed adaptive ap-
proach in cost minimization formulation even outperforms its
equivalent one in the PAR minimization formulation. This ob-
servation along with the lower generation cost in cost formula-
tion demonstrates that our proposed adaptive approach achieves
more efficient results with this formulation compared with PAR
one. Also the proposed adaptive approach is a trade off between
the optimal (full NAs demand) and uniform (no NAs demand)
schemes in terms of generation cost and PAR minimization.

C. Comparison With Game Theory

One interesting proposed approach for power scheduling in
the literature is game theory [14], [15]. Customized to our work,
in this approach, each MG in LA autonomously updates its own
strategy (demand), given strategies (demands) by other MGs.
In this section, the performance of our proposed adaptive ap-
proach is investigated in comparison with the game-theoretic
approach. Without loss of generality, the cost minimization for-
mulation (i.e. ACA–ECS algorithm) is considered even though
the comparison is also valid for PAR minimization formulation.
To apply the game-theoretic approach to solve (1) and (2), we

first need to make it clear if this approach assumes either known
or unknown NAs demand. Either case results in a different solu-
tion. In the case of known demand a priori, the game-theoretic
approach takes this knowledge into account to obtain the solu-
tion immediately in the beginning of the time horizon . As
shown in [14] and [15], the performance in this case is that of
the optimal solution, due to the convexity of problem (1) and
(2). In other words, the game-theoretic performance translates
to the optimal solution, shown in the appeared figures.
Under the assumption that NAs demand is unknown in ad-

vance, the game-theoretic approach has to make scheduling de-
cisions per time instant, once NAs demand value is realized. In
other words, this approach decouples problem (1) and (2) over
time. Suppose that wishes to determine at time instant
in the presence of NAs demand and given demands by
otherMGs in LA (i.e., ). Revising problem (1) and
(2) with this setup, it is equivalent to

(25)

(26a)

(26b)

where takes a constant value. The
trivial solution of this problem, assuming , is always

. In other words, the performance of the game-theo-
retic approach in this case is that of the uniform scheduling in
the appearing figures. Numerically from Fig. 4, the generation
cost of game theory in the case of known NAs demand is 86%
of that in the case of unknown NAs demand. Similarly, the PAR
of knownNAs demand is 87% of that in unknown NAs demand,
derived from Fig. 7.
In summary, the game-theoretic approach outperforms the

proposed adaptive one if the knowledge of NAs demand is fully
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taken into account in the beginning of the time horizon. On the
other hand, our adaptive approach achieves better performance.

VI. CONCLUSION

The unpredictable demand throughout a distribution network
avoids global and optimal energy consumption scheduling.
Alternatively, we resort to local and suboptimal scheduling
schemes that adaptively perform energy scheduling. In this
paper, a stochastic model of scheduling in a local area of a
network with the objective of cost minimization and peak-to-av-
erage ratio minimization has been presented. In both cases, it
is shown that optimal scheduling can be followed by an online
iteration that captures the randomness of neighbor grids de-
mand adaptively. This approach makes decisions progressively
over time. Indeed, the proposed adaptive schemes can provide
an estimation of the optimal solution. Through simulations, we
concluded that the general performance of cost minimization
formulation outperforms the peak-to-average ratio minimiza-
tion formulation with an underlying adaptive approach.
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