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A New Intelligent Agent-Based AGC Design
With Real-Time Application

Hassan Bevrani, Senior Member, IEEE, Fatemeh Daneshfar, and Takashi Hiyama, Senior Member, IEEE

Abstract—Automatic generation control (AGC) is one of the
important control problems in electric power system design and
operation, and is becoming more significant today because of in-
creasing renewable energy sources such as wind farms. The power
fluctuation caused by a high penetration of wind farms negatively
contributes to the power imbalance and frequency deviation. In
this paper, a new intelligent agent-based control scheme, using
Bayesian networks (BNs), is addressed to design AGC system in
a multiarea power system. Model independence and flexibility in
specifying the control objectives identify the proposed approach as
an attractive solution for AGC design in a real-world power system.
The BN also provides a robust probabilistic method of reasoning
under uncertainty, and moreover, using multiagent structure in
the proposed control framework realizes parallel computation and
a high degree of scalability. The proposed control scheme is ex-
amined on the 10-machine New England test power system. An
experimental real-time implementation is also performed on the
aggregated model of West Japan power system.

Index Terms—Agent systems, automatic generation control
(AGC), Bayesian networks (BNs), intelligent control, wind power
generation.

I. INTRODUCTION

CURRENTLY, wind is the fastest growing and most widely
utilized renewable energy technology in power systems.

The wind turbine generators have attracted an accelerated at-
tention in recent years. Nowadays, due to the interconnection of
more distributed generators, especially wind turbines, the elec-
tric power industry has become more complicated than ever.
Since the primary energy source (wind) cannot be stored and is
uncontrollable, the controllability and availability of wind power
significantly differ from conventional power generation [1]. In
most power systems, the output power of wind turbine gener-
ators varies with wind speed fluctuation, and this fluctuation
results into frequency variation [2]. Some reports have recently
addressed the power system frequency control issue, in the pres-
ence of wind turbines [3]–[9].
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The conventional automatic generation control (AGC) de-
signs are usually suitable for working at specific operating
points, and they are not more efficient for modern power sys-
tems, considering increasing size, changing structure, emerg-
ing renewable energy sources, and new uncertainties. Most of
the conventional AGC synthesis methodologies provide model-
based controllers that are difficult to use for large-scale power
systems with nonlinearities and uncertain parameters. On the
other hand, most of the applied linear modern/robust control
techniques to the AGC problem suggest complex control struc-
ture with high-order dynamic controllers, which are not practical
for industry practices [10]. Therefore, it is expected that using
intelligent AGC schemes in new environment to be more adap-
tive/flexible than conventional ones, and is going to become an
appealing approach. Over the years, several intelligent control
techniques are used for the frequency regulation/AGC issue in
the power systems; however, there are just few reports on the in-
telligent frequency control design in the presence of wind power
units [8], [9]. This paper addresses a new intelligent method-
ology using Bayesian network (BN)-based multiagent control
scheme to satisfy AGC objectives concerning the integration of
wind power units.

The BN is known as a powerful tool for knowledge represen-
tation and inference in control systems with uncertainties and
undefined dynamics [11]. They have been successfully applied
in a variety of real-world engineering tasks, but they have re-
ceived little attention in the area of power system control issues.
The main feature of the BN is in the possibility of including local
conditional dependences into the model, by directly specifying
the causes that influence a given effect [12].

In this paper, the proposed BN-based multiagent AGC frame-
work includes two agents in each control area to estimate the
amount of power imbalance and provide an appropriate con-
trol action signal according to the load disturbances and tie-
line power changes. In comparison of multiagent reinforcement
learning (MARL)-based AGC design which has been already
proposed by the authors in [8] and [13], the present control
framework provides more simplicity in AGC design and more
flexibility in AGC operation. A major merit of the BNs over
many other types of predictive and learning models, such as
reinforcement method, is in the possibility of representing the
interrelationships among the dataset attributes.

To demonstrate the efficiency of the proposed control method,
some nonlinear simulations on the New England 10-machine 39-
bus test system, concerning the integration of wind power units,
are carried out. A real-time laboratory experience on the aggre-
gated model of West Japan power system (WJPS) is performed
using the analog power system simulator (APSS) in the Re-

1094-6977/$26.00 © 2011 IEEE

Aut
ho

r P
er

so
na

l C
op

y



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS

search Laboratory, Kyushu Electric Power Company, Japan.
The results show that the proposed AGC scheme guarantees the
optimal performance for a wide range of operating conditions.

This paper is organized as follows: A brief introduction on
the BNs is given in Section II. The AGC system with wind farms
(WFs) is discussed in Section III. In Section IV, the proposed
intelligent BN-based multiagent AGC scheme is presented.
The BNs construction and parameter learning are explained in
Section V. Simulation results and laboratory experiment are
provided in Section VI; discussion is given in Section VII, and,
finally, the paper is concluded in Section VIII.

II. BAYESIAN NETWORKS

The BNs show a way to find the probability of future out-
comes as a function of available data and current inputs. The
BNs are able to handle incomplete datasets, allow one to learn
about the causal relationships between different variables, and
to make predictions in the presence of interventions. Since the
BNs are based on learning methods, they are independent of
environment conditions and can consider all kind of environ-
ment disturbances. Therefore, the BN approaches are not model
based and are easily scalable for large-scale systems, such as
real-world power systems.

A BN is a graphical model that efficiently encodes the joint
probability distribution for a large set of variables. In the proba-
bilistic graphical models, the nodes represent random variables,
and the arcs represent conditional independence assumptions
between variables. For independent variables, there is no arc be-
tween two nodes. The arcs’ pattern presents the graph structure.
Hence, it provides a compact representation of joint probability
distributions. For example, for N binary random variables, an
atomic representation of the joint p(x1 , . . . , xn ) needs O(2n )
parameters, whereas a graphical model may need exponentially
fewer, depending on which conditional assumptions are consid-
ered [12].

In a BN, an arc from A to B can be informally interpreted as
indicating that A “causes” B (or B is dependent to A); in this
structure, A is the parent node of B and B is the child node of A.
A BN consists of 1) an acyclic graph S; 2) a set of random vari-
ables x = {x1 , . . . , xn} (the graph nodes) and a set of arcs that
determines the nodes (random variables) dependences; and 3) a
conditional probability table (CPT) associated with each vari-
able (p(xi |pai)). Together, these components define the joint
probability distribution for x. The nodes in S are in one-to-one
correspondence with the variables x. In this structure, xi de-
notes a variable and its corresponding node, and pai represents
the parents of node xi in S, as well as the variables correspond-
ing to those parents. The lack of possible arcs in S encodes
conditional independences. In particular, given a structure S,
the joint probability distribution for x is defined by

p(x1 , . . . , xn ) =
n∏

i=1

p(xi |pai ) (1)

For technical review, see [11] and [12].

III. AUTOMATIC GENERATION CONTROL WITH WIND FARMS

The impact of WFs on the dynamic behavior of power system
may cause a different system frequency response to a distur-
bance event. Since the system inertia determines the sensitivity
of overall system frequency, it plays an important role in this
consideration. A lower system inertia leads to faster changes
in the system frequency following a load-generation imbalance.
The addition of synchronous wind generation to a power system
intrinsically increases the system inertial response [8], [10].

The impact of WFs on power system inertia is a key factor in
investigating the power system AGC behavior in the presence
of high penetration of wind power generation. To analyze the
additional variation caused by wind turbines, the total effect is
important, and every change in wind power output does not need
to be matched one for one by a change in another generating
unit moving in the opposite direction. However, the slow wind
power fluctuation dynamics and total average power variation
negatively contribute to the power imbalance and frequency
deviation, which should be taken into account in the well-known
AGC control scheme.

The conventional AGC model is well discussed in [10] and
[14]. To generalize the conventional model, the updated area
control error (ACE) signal should represent the impacts of wind
power on the scheduled flow over the tie lines. The ACE signal
is traditionally defined as a linear combination of frequency and
tie-line power changes as follows [14]:

ACE = βΔf + ΔPtie (2)

where Δf is the frequency deviation, β is the frequency bias, and
ΔPtie is the difference between the actual (act) and scheduled
(sched) power flows for a given area with m tie lines

ΔPtie =
m∑

j=1

(Ptie,actj
− Ptie,schedj

). (3)

For a considerable amount of wind (W ) power, its impact
must be also considered with conventional (C) power flow in
the overall area tie-line power. Therefore, the updated ΔPtie can
be expressed as follows:

ΔPtie = ΔPtie-C + ΔPtie-W

=
m∑

j=1

(Ptie-C,actj
− Ptie-C,schedj

)

+
m∑

j=1

(Ptie-W,actj
− Ptie-W,estim j

). (4)

Using (2) and (4), an updated ACE signal can be completed
as

ACE = βΔf +
m∑

j=1

(Ptie-C,actj
− Ptie-C,schedj

)

+
m∑

j=1

(Ptie-W,actj
− Ptie-W,estim j

) (5)
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Fig. 1. Proposed BN-based multiagent control for area i.

where Ptie-C,act , Ptie-C,sched , Ptie-W,act , and Ptie-W,estim are
actual conventional tie-line power, scheduled conventional tie-
line power, actual wind tie-line power, and scheduled wind tie-
line power, respectively.

IV. PROPOSED INTELLIGENT CONTROL SCHEME

A. Control Framework

The overall view of the proposed control framework for typ-
ical area i is conceptually shown in Fig. 1. The control unit in
each area presents two agents: 1) An estimator agent to esti-
mate amount of load change; and 2) an intelligent BN-based
controller agent to provide an appropriate supplementary con-
trol action signal. The objective of the proposed design is to
regulate the frequency and tie-line power concerning the inte-
gration of wind power units with various load disturbances and
achieve a desirable control performance.

The two-agent scheme entailed a minimum number of mea-
surement/monitoring and control activities in a control area to
track the AGC tasks. The controller agent uses ΔPtie and load
demand change ΔPL signals to provide the control action signal
ΔPC . The estimator agent is responsible to estimate amount of
load change.

B. Bayesian Network Structure

To find a clear view of the BN structure in the AGC synthe-
sis, it is better to start by determining of the necessary variables
for modeling. This initial task is not always straightforward. As
a part of this task, one should: 1) correctly identify the mod-
eling objective; 2) investigate important relevant observations;
3) determine what subset of those observations is worthwhile to
model; and, finally, 4) organize the observations into variables
having mutually exclusive and collectively exhaustive states.

In the process of a BN construction for AGC issue, the aim is
to achieve the AGC objective and keep the ACE signal within a
small band around zero using the supplementary control action
signal. Then, the query variable in the posterior probability dis-
tribution is ΔPC signal, and the posterior probabilities accord-
ing to possible observations are relevant to the AGC problem.

There are many observations that are related to the AGC
problem; however, the best one that has the least dependence
to the model parameters and causes the maximum impact on
the frequency deviation and, consequently, ACE signal changes
are load disturbance and tie-line power deviation signals. Then,
the appropriate posterior probability that should be found is
p(ΔPC |ΔPtie , ΔPL ).

The ΔPtie can be practically obtained using measurement
instruments. However, the ΔPL is one of the input parameters
that is not directly measurable, but it can be easily estimated
using a numerical/analytical method [10]. A simple method to
estimate the amount of load change following a load distur-
bance is discussed in the next section. This estimation method
is initially based on the measured frequency gradient and the
specified system characteristics. Considering the AGC duty cy-
cle (timescale), the total consumed time that is needed for the
estimation process is not significant.

C. Estimation of Amount of Load Change

As mentioned, the estimator agent estimates the total power
imbalance (amount of load change sensed in control area, ΔPL )
by an assigned algorithm based on the following analytical
method. Consider the ith generator swing equation for a control
area with N generators (i = 1, . . . , N )

2Hi
dΔfi(t)

dt
+ DiΔfi(t) = ΔPmi(t) − ΔPLi(t) = ΔPdi

(6)
where ΔPmi is the mechanical power, ΔPLi is the load demand
(electrical power), Hi is the inertia constant, Di is the load
damping, and ΔPdi represents the load-generation imbalance.
By adding N generators within the control area, one obtains the
following expression for the total load-generation imbalance:

ΔPD (t) =
N∑

i=1

ΔPdi(t) = 2H
dΔf(t)

dt
+ DΔf(t). (7)

Equation (7) shows the multimachine dynamic behavior by
an equivalent single machine. Using the concept of an equiv-
alent single machine, a control area can be represented by a
lumped load generation model using an equivalent frequency
Δf , system inertia H , and system load damping D [10]

Δf = Δfsys =
N∑

i=1

(HiΔfi)
/ N∑

i=1

Hi (8)

H = Hsys =
N∑

i=1

Hi, D = Dsys =
N∑

i=1

Di. (9)

The magnitude of total load-generation imbalance ΔPD , after
a while, can be obtained from (7)

ΔPD = DΔf (10)

where

ΔPD = ΔPm − ΔPL − ΔPtie (11)

ΔPm =
N∑

i=1

Pmi, ΔPL =
N∑

i=1

PLi. (12)

and ΔPtie is defined in (4). The total mechanical power change
indicates the total power generation change due to governor
action, which is in proportion to the system frequency deviation
[14]

ΔPm
∼= ΔPg = − 1

Rsys
Δf. (13)
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Fig. 2. Graphical model for an area.

Equations (10), (11), and (13) give

ΔPL = −
(

1
Rsys

+ D

)
Δf − ΔPtie . (14)

Thus, the total load change in a control area is proportional to
the system frequency deviation. Neglecting the network power
losses, ΔPD (t) shows the load-generation imbalance propor-
tional to the total load change. Using (7), the magnitude of total
load-generation imbalance immediately after the occurrence of
disturbance at t = 0+ s can be expressed as follows:

ΔPD = 2HSys
dΔf

dt
. (15)

Equations (11) and (15) give

ΔPL = ΔPm − 2HSys
dΔf

dt
− ΔPtie (16)

where Δf is the frequency of the equivalent system. To express
the result into a suitable form for sampled data, (16) can be
represented in the following difference equation:

ΔPL (TS ) = ΔPm (TS ) − 2HSys

TS
[Δf1 − Δf0 ] − ΔPtie(TS )

(17)
where TS is the sampling period. Δf1 and Δf0 are the system
equivalent frequencies at t0 and t1 (the boundary samples within
the assumed interval), respectively. To find more detail on the
load change estimation, see [10].

V. IMPLEMENTATION METHODOLOGY

A. Bayesian Network Construction

After determining the most worthwhile subset of the obser-
vations (ΔPtie , ΔPL ), in the next phase of the BN construction,
a directed acyclic graph that encodes assertion of conditional
independence is built. It includes the problem random vari-
ables, nodes’ conditional probability distribution, and nodes’
dependences.

The basic structure of the needed graphical model for the
AGC issue, which is shown in Fig. 2, is built based on the
prior knowledge of the problem. According to (2), since the
ACE signal is dependent on the frequency and tie-line power
deviations, they will be the parent nodes of the ACE signal
(control input) in the BN graphical model, and since frequency
deviation is dependent on the load disturbance and tie-line power
deviation, they will be parent nodes of Δf . Since ΔPC as the
controller output is considered to be dependent on the ACE
signal only, ACE node is the parent node for the control action
signal.

Using the ordering (ΔPtie , ΔPL , Δf , ACE, and ΔPC ) and
according to Fig. 2, the conditional dependences are described
as follows:

p(ΔPL |ΔPtie ) = p(ΔPL )

p(ΔPtie |ΔPL ) = p(ΔPtie)

p(Δf |ΔPL,ΔPtie ) = p(Δf |ΔPL,ΔPtie )

p(ACE |ΔPtie ,ΔPL,Δf ) = p(ACE |ΔPtie ,Δf )

p(ΔPC |ACE,ΔPtie ,ΔPL,Δf ) = p(ΔPC |ACE). (18)

In a BN, the aim is to find the probability distribution of the
graphical model nodes from training data (parameter learning)
and, then, do inference task according to the observation. In the
graphical model, each node has a probability table and nodes
with parents have CPTs (because they are dependent to their
parents). The graphical model of the AGC problem (see Fig. 2)
is based on the right side of the described relationships in (18).

In the next step of the BN construction (parameter learn-
ing), the local conditional probability distributions p(xi |pai)
must be computed from the training data. Probability and con-
ditional probability distributions related to the AGC issue, ac-
cording to Fig. 2, are p(ΔPL ), p(ΔPtie), p(Δf |ΔPL , ΔPtie),
p(ACE|ΔPtie , Δf ), and p(ΔPC |ACE). To find these probabil-
ities, the training data matrix should be provided.

Here, BNs toolbox (BNT) [15] is used for probabilistic infer-
ence of the model. The BNT uses the training data matrix and
finds the conditional probabilities that are related to the graphical
model variables (as the parameter learning phase). Once a BN is
constructed (from prior knowledge, data, or a combination), var-
ious probabilities of interest from the model can be determined
[16]. For the problem at hand, it is desired to compute the poste-
rior probability distribution on a set of query variables, given the
observation of another set of variables called evidence. The pos-
terior probability that should be found is p(ΔPC |ΔPtie , ΔPL ).
This probability is not stored directly in the model, and, hence,
needs to be computed. In general, the computation of a probabil-
ity of interest, given a model, is known as probabilistic inference.

B. Parameter Learning

As shown in the graphical model of a control area (see Fig. 2),
the essential parameters that are used for the learning phase
among each control area of a power system can be considered
as ΔPtie , ΔPL , Δf , ACE, and ΔPC . In order to find a related
set of training data (ΔPtie , ΔPL , Δf , ACE, ΔPC ) for the
sake of parameter learning phase, one can provide a long-term
simulation for the considered power system case study in the
presence of various disturbance scenarios. This large learning set
is partly complete and it can be used for parameter learning issue
in the power system with a wide range of disturbances. Since the
BNs are based on inference and new cases (that may not include
in the training set) can be inferred from the training table data,
it is not necessary to repeat the learning phase of the system for
different amounts of disturbances occurred in the system.

After providing the training set, the training data related
to control areas are given to the BNT separately. The BNT
uses the input data and do the parameter learning phase for
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each control area’s parameters. It finds prior and conditional
probability distribution related to that area’s parameters, i.e.,
p(ΔPL ), p(ΔPtie), p(Δf |ΔPL , ΔPtie), p(ACE|ΔPtie , Δf ),
and p(ΔPC |ACE). Following completing the learning phase,
the power system simulation will be ready to run and the pro-
posed model uses inference phase to find an appropriate control
action signal ΔPC for each control area.

During simulation stage, the inference phase is done as fol-
lows: At each time step, corresponding controller agent of each
area gets the input parameters (ΔPtie , ΔPL ) of the model, and
digitizes them for the BNT (the BNT does not work with contin-
uous values). The BNT finds the posterior probability distribu-
tion values p(ΔPC |ΔPtie , ΔPL ) related to each area. Then, the
controller agent finds the maximum posterior probability distri-
bution from the return set, and gives the most probable evidence
ΔPC in the control area.

VI. APPLICATION RESULTS

In order to illustrate the effectiveness of the proposed intel-
ligent control strategy, it is first examined on the well-known
New England 10 generators, 39-bus system as a test case study.
Then, an experimental real-time application on the aggregated
model of WJPS is explained. The results in both test systems are
compared with the application of MARL AGC approach which
is presented by authors in [8] and [13].

A. New England Test System

The New England test system is widely used as a standard
system for testing of new power system analysis and control syn-
thesis methodologies. This system has 10 generators, 19 loads,
34 transmission lines, and 12 transformers. The test system is
updated by adding two WFs in buses 5 and 21. A single-line
diagram of the updated system with simulation parameters is
given in [8]. The system is divided into three areas. There are
198.96 MW of conventional generation, 22.67 MW of wind
power generation, and 265.25-MW load in Area 1. In Area 2,
there are 232.83 MW of conventional generation and 232.83-
MW load. In Area 3, there are 160.05 MW of conventional gen-
eration, 22.67 MW of wind power generation, and 124.78 MW
of load.

In this study, similar to the real-world power systems, it is
assumed that conventional generation units are responsible to
provide spinning reserve for the sake of load tracking and the
AGC task. However, it is assumed that only one generator in
each area is responsible for the AGC task: G1 in Area 1, G9 in
Area 2, and G4 in Area 3. For the sake of simulation, random
variations of wind velocity have been considered. Dynamics of
wind turbines, including the pitch angle control of the blades,
are also considered [1]. The startup and rated wind velocity for
the WFs are specified as about 8.16 and 14 m/s, respectively.
Furthermore, the pitch angle controls for the wind blades are
activated only beyond the rated wind velocity. The pitch angles
are fixed to 0◦ at a lower wind velocity below the rated one.

In the performed application, the important inherent require-
ment and basic constrains, such as governor dead band and
generation rate constraint, that are imposed by physical system

TABLE I
TRAINING DATA MATRIX FOR AREA i

Fig. 3. (a) Load step disturbances in three areas. (b) Total Wind power.
(c) Wind velocity pattern in Area 1.

TABLE II
RETURNED POSTERIOR PROBABILITY DISTRIBUTION VALUES

FROM BNT FOR AREA i

dynamics are considered. For the sake of simulation, three step
load disturbances are simultaneously applied to the three areas:
3.8% of total area load at bus 8 in Area 1, 4.3% of total area load
at bus 3 in Area 2, and 6.4% of total area load at bus 16 in Area
3. Using the simulation, the training table rows can be built in
a format that is shown in Table I. The applied step load distur-
bances ΔPLi(p.u.), the output power of WFs PWT (megawatt),
and the wind velocity VW (meter/second) are shown in Fig. 3.
The impact of wind power fluctuation on the system frequency
for the same test system is, comprehensively, discussed in [8]
and [18].

A simple presentation of probability tables using the proposed
graphical model (see Fig. 2), according to the training data,
after parameter learning phase for the test system is shown in
Table IV (see Appendix). Some samples of returned posterior
probability distribution values p(ΔPC |ΔPtie , ΔPL ) from BNT
environment are also shown in Table II. The frequency deviation
Δf and ACE signals of the closed-loop system are shown in
Figs. 4 and 5, respectively. According to the returned posterior
probabilities distribution values, the control action signals for
three control areas are shown in Fig. 6. The fast movements in
wind power output are combined with movements in load and
other resources, and it is seen that the power system response is
affected by the wind power fluctuation.
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Fig. 4. Frequency deviation. Proposed multiagent BNs method (solid line)
and MARL method (dashed line).

Fig. 5. ACE signal. Proposed multiagent BNs method (solid line) and MARL
method (dashed line).

Fig. 6. Control action curves for the AGC participating units using the pro-
posed multiagent BNs design.

It is shown that using the proposed method, the ACE and
frequency deviations in all areas are properly driven close to
zero in the presence of wind turbines and load disturbance.

TABLE III
PERFORMANCE EVALUATION

The average of |ACEi | over 5 min is used as a performance
index, and the results for the proposed adaptive control scheme
and MARL design are listed in Table III. It is shown in [8] that
the MARL design presents greater performance than the conven-
tional proportional-integral (PI)-based AGC systems. Therefore,
in comparison with the existing conventional AGC system, the
closed-loop performance of the present BN-based multiagent
scheme is, significantly, improved.

B. Real-Time Laboratory Experiment

Since the AGC as a supplementary control is known as a long-
term control problem (few seconds to several minutes [10]), it is
expected that the proposed AGC methodology to be successfully
applicable to the real-world power systems.

To illustrate the capability of the proposed control strategy
in real-time AGC applications, an experimental study has been
performed on the large-scale APSS in the Research Laboratory,
Kyushu Electric Power Company. For the purpose of this study,
a longitudinal four-machine infinite bus system representing the
WJPS network is considered to be the test system. A single line
diagram of the study system is shown in Fig. 7(a). All generator
units are thermal type, with separately conventional excitation
control systems. The set of four generators represents a control
area (Area I), and the infinite bus is considered to be other con-
nected systems (Area II). The detailed information of the system
and the parameters of each generator unit and its associated tur-
bine system (including the high-pressure, intermediate-pressure,
and low-pressure parts) are given in [17]. Although in the given
model the number of generators is reduced to four, it closely
represents the dynamic behavior of the WJPS.

The whole power system [shown in Fig. 7(a)] has been im-
plemented using the APSS. Fig. 7(b) shows an overview of the
applied laboratory experiment devices including the generator
panels, monitoring displays, and control desk. The proposed
control scheme, including estimator and controller agents, has
been built in a personal computer connected to the power system
using a DSP board equipped with A/D and D/A converters. The
converters act as the physical interfaces between the personal
computer and the analog power system hardware.

The performance of the closed-loop system is tested in the
presence of load disturbances. The nominal area load demands
are also fixed at the same values given in [17]. Almost 10% of
total demand power is supplied by the installed WF in bus 9. For
the first scenario, the power system is tested following a step
load increase of 0.06 p.u. The participation factors for Gen 1,
Gen 2, Gen 3, and Gen 4 are fixed at 0.4, 0.25, 0.20, and 0.15,
respectively. The applied step disturbance and the closed-loop
system response including frequency deviation Δf and tie-line
power change ΔPtie are shown in Fig. 8. This figure shows that
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Fig. 7. Performed laboratory experiment. (a) Block diagram representation.
(b) Physical configuration.

Fig. 8. System response following a 0.06 p.u. step load change. Proposed
multiagent BNs method (solid line) and MARL method (dashed line).

the frequency deviation and tie-line power change are properly
maintained within a narrow band.

As a severe test scenario, the power system is examined in the
presence of a sequence of step load changes. The load change
pattern and the system response are shown in Fig. 9. The ob-
tained results show that the designed controllers can ensure
good performance despite load disturbances. It is shown that the

Fig. 9. System response following a sequence of step load changes. Proposed
multiagent BNs method (solid line) and MARL method (dashed line).

proposed intelligent AGC system acts to maintain area fre-
quency and total exchange power closed to the scheduled values
by sending corrective smooth signal to the generators in propor-
tion to their participation in the AGC task. Better transient and
regulation performance for BN method in experimental study is
due to the capability of BN-based AGC scheme against uncer-
tain and incomplete model information. Since the infinite bus
cannot behave similar to an actual control area, the present test
system can be considered to be a suitable example to evaluate
AGC control schemes.

Under conditions of uncertainty, the BN-based control agent
(using a more flexible software and protocol structure [19]),
which provides a more robust learning method with a less de-
pendence to environment conditions, is capable to represent a
better performance than the MARL method. For the sake of com-
parison, the closed-loop system is examined in the presence of
conventional PI-based AGC system (which is well tuned by the
expert operators of the APSS) for the aforementioned two distur-
bance scenarios. The real-time simulation results are shown in
Fig. 10. The experimental results illustrate that the system per-
formance using the proposed BN-based multiagent controller is
quite better than the MARL technique and conventional-based
AGC schemes.

VII. DISCUSSION

The AGC in multiarea power systems is known as one of
the important power system control problems concerning the
integration of renewable power energy sources such as wind
power turbines. For the AGC systems of tomorrow, the struc-
tural flexibility and having a degree of intelligence are highly
important. The core of such intelligent AGC system in the form
of multiagent system (MAS) should be based on flexible in-
telligent algorithms, advanced information technology, and fast
communication devices. In such systems, agents require real-
time responses and must eliminate the possibility of massive
communication among agents.

Dealing with complex dynamic systems, such as large-scale
power systems, that can be described with the terms uncertainty,
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Fig. 10. System response with conventional controller following (a) 0.06 p.u.
step load change. (b) Sequence of step load changes.

nonlinearity, information structure constraints, and dimension-
ality, it is very difficult to satisfy all requirements of an intelli-
gent control system, such as adaption and learning, autonomy
and intelligence, as well as structures and hierarchies by using
fuzzy controllers, neural networks, neurofuzzy, and evolution-
ary optimization methods like genetic algorithm as single ap-
plications. It is difficult to incorporate all these methods in one
common framework that combines the advantages of the single
method. However, the application of MASs could be consid-
ered to be an approach to design an intelligent control system
to autonomously achieve a high level of control objectives.

Therefore, in response to the existing challenge of integrat-
ing computation, communication, and control into appropriate
levels of AGC system, this paper introduces an intelligent BN-
based multiagent control scheme to satisfy AGC objectives in
the presence of wind power units. The main intelligent core of
the controller agent is utilized based on the BN which is known
as a powerful tool for knowledge representation and inference
in control systems with uncertainties and undefined dynamics.
The BN can be effectively used to incorporate expert knowledge
and historical data for revising the prior belief in the light of new
evidence in many fields. The main feature of the BN is in the
possibility of including local conditional dependences into the
model, by directly specifying the causes that influence a given
effect.

To cover a minimum number of required processing/activities
to the AGC system, the operating center for each area includes
only two agents: The estimator and controller agents. In the
first agent, special care was taken regarding the provision of
appropriate signals following a filtering and signal conditioning
process on the measured signals and received data from the input
channels, and, finally, estimation of amount of load change. The
controller agent uses the received data from the estimator agent
to provide appropriate control action signals for the participating
generating units.

For the sake of learning process for the neural-network-based
AGC system [20], one can provide a long-term simulation for

the considered power system in the presence of various test sce-
narios. Since the BN is inference-based logic and new cases can
be inferred from the training table data, it is not necessary to
apply huge amount of data for the learning process. The pos-
sibility of representing the interrelationships among the dataset
attributes is also a major advantage of the BNs over many other
types of learning and predictive models, such as reinforcement
method. Furthermore, the model independence and flexibility in
specifying the control objectives identify the proposed approach
as an attractive solution for AGC design in a real-world power
system. The BN also provides a robust probabilistic method
of reasoning under uncertainty, and moreover, using multiagent
structure in the proposed control framework realizes parallel
computation and a high degree of scalability.

The main advantages of the proposed BN-based MAS scheme
for the AGC application can be summarized as follows: 1) Sim-
plicity and intuitive model building that is closely based on
the physical power system topology; 2) easy incorporation of
uncertainty and dependence in the frequency response model;
3) capability to monitor the probability of any variable in the
whole system; 4) propagation of probabilistic information that
allows a large range of what-if analysis which is useful in wide
area monitoring and control; and 5) independent to the power
system parameter values such as frequency bias factor.

VIII. CONCLUSION

The MAS concepts and its great potential value to the AGC
systems have been discussed, and it is shown that the BNs can
provide a useful adaptive control technique that can be easily
applicable in the AGC design in multiarea power system. In this
paper, BN-based multiagent control methodology is proposed
for AGC synthesis concerning the integration of wind power
units in a large-scale power system.

The proposed method was applied to the New England power
test system. An experimental examination is also performed in
APSS laboratory, Kyushu Electric Power Company. The results
show that in comparison of designed agent-based reinforcement
learning control and conventional AGC design, the new intelli-
gent AGC scheme presents a desirable performance.

In addition to the regulating area frequency, the AGC system
should control the net interchange power with neighboring areas
at scheduled values. Therefore, a desirable AGC performance is
achieved by effective adjusting of generation to minimize fre-
quency deviation and regulate tie-line power flows. The AGC
system realizes generation changes by sending signals to the
under control generating units. Since the BNs are based on in-
ference, it is not necessary to use a large amount of simulation
data for numerous test scenarios during the learning process.
Furthermore, the model independence, scalability, and flexibil-
ity in specifying the control objectives are important features of
the new intelligent AGC approach.

As a future work, the authors are working on the AGC design
for a modern power system in an open market environment us-
ing accuracy-based learning classifier system with continuous-
valued inputs (known as XCSR) method.
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APPENDIX

TABLE IV
SIMPLE PRESENTATION OF PROBABILITIES ACCORDING TO THE GRAPHICAL MODEL
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