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Abstract—A new intelligent agent based control scheme, using 

Bayesian networks (BNs), to design automatic generation control 

(AGC) system in a multi-area power system is addressed. Model 

independency and flexibility in specifying the control objectives, 

make the proposed approach as an attractive solution for AGC 

design in a real-world power system. 

The proposed control scheme is tested in simulation on a three 

areas power system and shows desirable performance. The 

results are also compared with the multi-agent reinforcement 

learning based AGC design technique.  

 
Index Terms—AGC, Bayesian networks, Frequency deviation, 

Multi-agent system. 

I. INTRODUCTION 

HE conventional automatic generation control (AGC) 

designs are usually suitable for  specific operating points, 

it seems that these AGC synthesis methodologies are not more 

efficient for modern power systems, considering increasing 

size, changing structure, emerging renewable energy sources, 

microgrids, and new uncertainties.  Most of conventional 

AGC design strategies provide model based controllers that 

are highly dependent to the considered specific models, and 

are not usable for large-scale power systems with 

nonlinearities, undefined and uncertain parameters [1]. In new 

environment, design of intelligent AGC schemes that are more 

adaptive and flexible than conventional ones is become an 

appealing approach.  

Several intelligent techniques are used for the AGC design in 

the power systems; however there are just few reports on the 

AGC synthesis in a modern environment using of intelligent 

multi-agent systems [2-5]. 

Bayesian Network (BN) [6] within a multi-agent system can 

be considered as a powerful adaptive control technique for the 

purpose of AGC design. The BNs provide suitable tools for 

knowledge representation and inference under conditions of 

uncertainty, and they have been successfully applied in a 

variety of real-world engineering issues. It has been 

effectively used to incorporate expert knowledge and 

historical data for revising the prior belief in the light of new 

evidence in many fields. The main feature of the BN is that it 

is possible to include local conditional dependencies into the 
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model, by directly specifying the causes that influence a given 

effect.   

Since, the BNs are based on learning methods they are 

independent of environment conditions and can consider all 

kind of environment disturbances. Therefore, they are not 

model based and can be easily scalable for large scale systems, 

such as power systems. The BNs can also work well in 

nonlinear conditions and nonlinear systems. A major 

advantage of the BN over many other types of predictive and 

learning models, such as neural networks, is that its structure 

represents the inter-relationships among the data set attributes.  

This paper addresses the AGC design using an agent based 

solution for a large interconnected power system concerning 

the integration of wind power units. Here, a BNs multi-agent 

control structure is proposed. It has one agent in each control 

area that provides an appropriate control signal according to 

load disturbances and tie-line power changes received from 

other areas. The results are compared with the authors’ 

previous work on application of multi-agent reinforcement 

learning based AGC design method [3, 5]. 

The above technique has been applied to the AGC problem 

in three control areas power system. The organization of the 

rest of the paper is as follows. In Section 2, a brief 

introduction to BNs is given. In Section 3, the power system 

test example is introduced. In Section 4, the proposed 

intelligent AGC technique using BN and the structure of a 

network which the above architecture is implemented for are 

discussed. Simulation results are provided in Section 5 and the 

paper is concluded in Section 6. 

II. PRELIMINARIES 

A. Graphical Models 

Graphical models provide a natural tool for dealing with 

two problems that occur throughout applied mathematics and 

engineering - uncertainty and complexity - and in particular 

they are playing a significant role in the design and analysis of 

machine learning algorithms. Fundamental idea of a graphical 

model is the notion of modularity - a complex system is built 

by combining simpler parts. Graphical models are a marriage 

between probability theory and graph theory. Probability 

theory provides the glue whereby the parts are combined, 

ensuring that the system as a whole is consistent, and 

providing ways to interface models to data. The graph 

theoretic side of graphical models provides both an intuitively 

appealing interface by which humans can model highly-

interacting sets of variables as well as a data structure that 
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lends itself naturally to the design of efficient general-purpose 

algorithms [7].  

The graphical model provides a suitable tool to view real-

world systems as instances of a common underlying 

formalism. This view has many advantages - in particular, 

specialized techniques that have been developed in one field 

can be transferred between research communities and 

exploited more widely. Moreover, the graphical model 

formalism provides a natural structure for the design of new 

systems [7]. 

Probabilistic graphical models are graphs in which nodes 

represent random variables, and arcs represent conditional 

independence assumptions between variables [7]. If there is 

not any arc between two nodes, they are independent variables 

otherwise they are dependent variables. The arcs pattern 

presents the graph structure.  Hence, it provides a compact 

representation of joint probability distributions. For example, 

for N binary random variables, an atomic representation of the 

joint p(x1,…,xn), needs O(2n) parameters, whereas a graphical 

model may need exponentially fewer, depending on which 

conditional assumptions we make.  

There are two main kinds of graphical models: undirected 

and directed [7]. Undirected graphical models, also known as 

Markov networks or Markov random fields (MRFs), are more 

popular with the physics and vision communities. Directed 

graphical models, also known as BNs, belief networks, 

generative models, causal models, etc. are more popular with 

the artificial intelligence (AI) and machine learning 

communities. In a directed graphical model (i.e., a BN), an arc 

from A to B can be informally interpreted as indicating that A 

“causes” B (or B is dependent to A), in this structure A is the 

parent node of B and B is the child node of A. Hence directed 

cycles are disallowed. A node in a BN is independent of all the 

other nodes in the graph given its Markov blanket. However, 

in the case of a BN, the Markov blanket of a node is the 

node’s parents, children and children’s parents [7]. 

B. Bayesian networks 

In real learning problems, there is large number of variables 

with relationships. The BN is a representation suited to this 

task. It is a graphical model that efficiently encodes the joint 

probability distribution for a large set of variables. 

They are a widely used formalism for representing 

uncertain knowledge in  AI [6, 8]. They have become the 

standard methodology for the construction of systems relying 

on probabilistic knowledge and have been applied in a variety 

of real-worlds tasks.  

A BN consists of (i) an acyclic graph S, (ii) a set of random 

variables x={x1,…,xn} (the graph nodes) and a set of arcs that 

determines the nodes (random variables) dependencies, and 

(iii) a conditional probability table (CPT) associated with each 

variable (p(xi|pai)). 

Together these components define the joint probability 

distribution for x. The nodes in S are in one-to-one 

correspondence with the variables x. In this structure, xi 

denotes both the variables and its corresponding node, and pai 

to denote the parents of node xi in S as well as the variables 

corresponding to those parents. The lack of possible arcs in S 

encodes conditional indecencies. In particular given structure 

S, the joint probability distribution for x is given by 
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The probability encoded by a BN may be Bayesian or 

physical. When building BNs from prior knowledge alone, the 

probabilities will be Bayesian. When learning these networks 

from data, the probabilities will be physical.  

The basic tasks related to the BNs are (i) structure learning 

phase: finding the graphical model structure, (ii) parameter 

learning phase: finding nodes probability distribution, and (iii) 

Bayesian network inference. The structure and parameter 

learning are based on the prior knowledge and prior data 

(training data) of the model.  

The basic inference task of a BN consists of computing the 

posterior probability distribution on a set of query variables q, 

given the observation of another set of variables e called the 

evidence (i.e. p(q|e)). Different classes of algorithms have 

been developed that compute the marginal posterior 

probability p(x|e) for each variable x, given the evidence e. 

One of the important points in the BNs is that it doesn’t 

need to learn the inference data. Inference is a probabilistic 

action that obtains the probability of the query using prior 

probability distribution. 

III. 3-CONTROL AREA POWER SYSTEM EXAMPLE 

To illustrate the effectiveness of the proposed control 

strategy described in Section 4, and to compare the results 

with multi-agent reinforcement learning (MARL) based 

controllers [3], a 3-control area power system, which is 

actually an updated version of the IEEE 10 generators, 39-bus 

system is considered as a test case study. 

A single-line diagram of the system is given in Fig. 1. This 

system has 10 generators, 19 loads, 34 transmission lines, and 

12 transformers. Here, the test system is updated by two wind 

farms in areas 1 and 3, as shown in Fig. 1. The 39 buses 

system is organized into 3 areas. Total system installed 

capacity are 841.2 MW of conventional generation and 45.34 

MW of wind power generation. There are 198.96 MW of 

conventional generation, 22.67 MW of wind power generation 

and 265.25 MW load in Area 1. In Area 2, there are 232.83 

MW of conventional generation, and 232.83 MW load. In 

Area 3, there are 160.05 MW of conventional generation, 

22.67 MW of wind power generation and 124.78 MW of load. 

The simulation parameters for the generators, loads, lines, 

and transformers of the test system are given in [3, 4]. All 

power plants in the power system are equipped with speed 

governor and power system stabilizer (PSS). However, only 

one generator in each area is responsible for the AGC task; G1 

in Area 1, G9 in Area 2, and G4 in Area 3.  

Fig. 1 shows the test system with three controllers. An 

intelligent controller is used in each area, which is responsible 

to provide an appropriate supplementary control action. 
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Fig.1.  Single-line diagram of 39-bus test system 

 

Following a load disturbance within the control area, the 

frequency of the area experiences a transient change and the 

feedback mechanism generates appropriate rise or lower signal 

to the participating generator units according to their 

participation factors to make generation follow the load. In the 

steady state, the generation is matched with the load, driving 

the tie-line power and frequency deviations to zero. As there 

are many conventional generators in each area, the control 

signal has to be distributed among them in proportion to their 

participation [10]. 

Because of range of use and specific dynamic 

characteristics such as a considerable amount of kinetic 

energy, the wind units are more important than the other 

renewable energy resources [1]. 
 

IV. PROPOSED CONTROL STRATEGY 

The main advantages of the proposed BN model for the 

AGC problem can be summarized as: i) Simple and intuitive 

model building that is closely based on the physical power 

network topology, ii) Easy incorporation of uncertainty and 

dependency in the frequency response model, iii) Capability to 

monitor the probability of any variable in the whole system, 

iv) Propagation of probabilistic information that allows a wide 

range of what-if analysis, and v) Independent of power system 

parameter values (e.g. frequency bias factor (B), etc). 

The main purpose at this step, is to clearly show the various 

steps in implementation and illustrate the method. The 

performance results presented here correspond to the 

performance of the controllers after the learning phase are 

completed. All the essential parameters for learning phase of 

the test system are ∆Ptie, ∆PL, ∆f, ACE, and ∆Pc.  

To find related suitable set of training data, a 100 seconds 

simulation is provided for the described model with well-

tuned PI controllers. After running simulation for each 

instance of 100 seconds simulation, one row of the training 

data matrix can be provided. Then the training data related to 

the variables of each area, are given to that area’s agent. As 

the BNT does not work with continuous values, agent must 

digitize the input data and provides them for the BNT. The 

BNT is responsible to find the conditional probability 
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distribution values related to the graphical model variables of 

each area.  

After completing the learning phase, the inference phase is 

done as follows: At each simulation time step, corresponding 

controller agents of each area, get the input parameters (∆Ptie, 

∆PL) of the model, and computing the posterior probability 

distribution p(∆Pc|∆Ptie, ∆PL) using the BNT [9], then the 

controller agents given the observation of the evidence ∆Pc. 

Using this change to the governors setting and the current 

values of the load disturbances, the tie-line power deviation is 

integrated for the next time. 

A. Controller Structure  

In practice, the AGC system is traditionally using a 

proportional-integral (PI)-type controller. In this section, an 

intelligent control design algorithm using BNs technique for 

such a controller integrated with wind turbine is presented. 

The objective of the proposed design is to regulate the 

frequency in power system concerning the integration of wind 

power units with various load disturbances and achieve a 

desirable control performance. The results are compared with 

the results from applying the proposed multi-agent 

reinforcement learning (MARL) control design given in [3, 5]. 

Fig. 2 shows the proposed model for area i. An intelligent 

controller is used in this area, which is responsible to provide 

an appropriate supplementary control action. 

B. BN Construction 

To illustrate the process of a BN construction, it is better to 

start by determining of the necessary variables for modeling. 

This initial task is not always straightforward. As part of this 

task we must (i) correctly identify the goal of modeling, (ii) 

identify many possible observations that may be relevant to 

the problem, (iii) determine what subset of those observations 

is worthwhile to model, and (iv) organize the observations into 

variables having mutually exclusive and collectively 

exhaustive states. 

In this algorithm, the aim is to achieve the conventional 

LFC objective and keep the ACE signal within a small band 

around zero using the supplementary control action signal 

(Fig. 1). Then, the query variable in the posterior probability 

distribution is ∆Pc signal and the posterior probabilities 

according to possible observations relevant to the problem are 

as follows, 

 

 
 

Fig. 2. The proposed model for area i 

 

),,,( fPPACEPp Ltiec   

),,( fPACEPp Lc   

),,( fPPPp Ltiec   

),,( Ltiec PPACEPp   

),( fACEPp c                        (2) 

),( Ltiec PPPp                                                          

  

)( tiec PPp   

)( Lc PPp   

 

According to (2), there are so many observations that are 

related to this problem, however the best one that has the least 

dependency to the model parameters (e.g. frequency bias 

factor, etc) and causes the maximum effect on the frequency 

deviation and consequently ACE signal changes, are load 

disturbance and tie-line power deviation signals.  Then the 

appropriate posterior probability that should be found is 

p(∆Pc|∆Ptie, ∆PL). 

The ∆Ptie can be practically obtained. However, the ∆PL is 

one of the input parameters that is not measurable directly, but 

it can be easily estimated using a numerical/analytical method. 

A simple method to estimate the amount of load change 

immediately following a serious fault (load disturbance) is 

discussed in [1]. This estimation method is initially based on 

the measured frequency gradient and the specified system 

characteristics. On the other hand, regarding the AGC duty 

cycle, the total consumed time needed for the estimation 

process is not important. 

C. Learning 

After determining the most worthwhile subset of the 

observations (∆Ptie, ∆PL), in the next phase of the BN 

construction, a directed acyclic graph that encodes assertion of 

conditional independence is built. It includes the problem 

random variables, nodes conditional probability distribution 

and nodes dependencies. 

The basic structure of the graphical model is built based on 

the prior knowledge of the problem (see Fig. 3.). According to 

(3), ACE signal is dependent to the frequency and tie-line 

power deviations, then they will be the parent nodes of the 

ACE signal in the BN graphical model, and since frequency 

deviation is dependent to the load disturbance and tie-line 

power deviation [1], then they will be parent nodes of ∆f,  
 

itieiii PfACE                                                       (3) 

 

Since, the ∆Pc is considered to be dependent to ACE signal 

only (Fig. 3), ACE node will be the parent node for the control 

action signal. Another approach for construction the graphical 

model of the BN can be considered based on the following 

observations:  
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Fig. 3. The graphical model for an area  

 

From the chain rule of probability, we have 
 

),,()( 11

1



 ii

n

i

xxxpxp                    (4) 

 

Now, for every xi, there will be some subset πi {x1,…, xi-1} 

such that xi and {x1,…, xi-1}\πi are conditionally independent 

given πi. That is for any x,  
 

)(),,( 11 iiii xpxxxp                 (5) 

 

Combining (4) and (5), 
 





n

i

iixpxp
1

)()(                   (6) 

 

Comparing (4) and (6), shows that the variables sets 

(π1,…,πn) correspond to the BN parents (pa1,..,pan), which in 

turn fully specify the arcs in the network structure S. 

Consequently, to determine the structure of a BN, (i) The 

variables should be ordered somehow, and (ii) The variables 

sets which satisfy (5) should be determined for i = 1,…,n. 

Here, using the ordering (∆Ptie, ∆PL, ∆f, ACE, ∆Pc) and 

according to (5), the conditional dependencies are as follows, 
 

)()( LtieL PpPPp   

)()( tieLtie PpPPp   

),(),( tieLtieL PPfpPPfp              (7) 

),(),,( fPACEpfPPACEp tieLtie   

)(),,,( ACEPpfPPACEPp cLtiec                         

 

The graphical model of the problem (Fig. 3.) is based on the 

right side of the above relationships. In the next step of BN 

construction (parameter learning), the local conditional 

probability distribution(s) p(xi|pai) are computed from the 

training data. Probability distributions and conditional 

probability distribution related to this problem, according to 

Fig. 3, are p(∆PL), p(∆Ptie), p(∆f|∆PL,∆Ptie),  p(ACE|∆Ptie,∆f), 

and p(∆Pc|ACE).  

Here, Bayesian networks toolbox (BNT) [9] is used to 

probabilistic inference of the model. The BNT toolbox uses 

the training data matrix and finds the conditional probabilities 

related to the graphical model variables (This is the parameter 

learning phase). 

D. Bayesian Network Inference 

Once, a BN has been constructed (from prior knowledge, 

data or a combination), various probabilities of interest from 

the model are determined. For the problem at hand, it is 

desired to compute the posterior probability distribution on a 

set of query variables, given the observation of another set of 

variables called the evidence. The posterior probability that 

should be found is p(∆Pc|∆Ptie,∆PL). This probability is not 

stored directly in the model, and hence needs to be computed. 

In general, the computation of a probability of interest given a 

model is known as probabilistic inference. 

V. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed control 

design, some simulations are carried out. In these simulations, 

the proposed controllers are applied to the model described in 

Section III. Similar to a real-world power system, in the 

performed application the important inherent requirement 

and basic constrains such as governor dead band and 

generation rate constrain imposed by physical system 

dynamics are considered. Here, the performance of the 

closed-loop system using the MARL based controllers [3, 5] 

compared to the designed BNs based controllers is tested for 

the various possible load disturbances. 

As a severe test scenario, the following load disturbances 

(step increase in demand) are applied to three areas: In Area 1, 

3.8% of total area load at bus 8, 4.3% of total area load at bus 

3 in Area 2, and 6.4% of total area load at bus 16 in Area 3 

have been simultaneously increased in a step form. The 

frequency deviation (∆f), and area control error (ACE) signals 

of the closed-loop system are shown in Figs. 4, 5 and 6.  

In the proposed simulations, to clearly show the wind 

turbine impacts on the overall system frequency behavior, the 

wind farms are directly connected to the 39-bus power system, 

without using washout/low-pass filters. Therefore, fast 

movements in wind power output are combined with 

movements in load and other resources. That is why, the 

power system response is affected by the wind power 

fluctuation, and the recorded signals which are shown in 

figures 4-6 begin with a transient. In fact, when wind power is 

a part of the power system, additional imbalance is created 

when the actual wind output deviates from its forecast.  

It is shown that using the proposed method, the area control 

error and frequency deviations in all areas are properly driven 

close to zero in the presence of wind turbines and load 

disturbance. Furthermore, the intelligent controllers provide 

smoother control action signals, and the areas frequency 

deviation is less than the frequency deviation in the system 

with MARL based controllers. 
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Fig. 4. Area-1 responses; proposed multi-agent BNs method (solid 

line), and MARL method (dashed line)  
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Fig. 5. Area-2 responses; proposed multi-agent BNs method (solid 

line), and MARL method (dashed line)  
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Fig. 6. Area-3 responses; proposed multi-agent BNs method (solid 

line), and MARL method (dashed line)  

 

In summary, flexibility, higher degree of intelligence, 

model independency, and handling of incomplete measured 

data (uncertainty consideration) can be considered as some 

important advantages of the proposed methodology.  

 

VI. CONCLUSION 

A new method for AGC design using a Bayesian networks 

multi-agent is proposed for a large-scale power system. The 

proposed method is applied to a 3-control area power system. 

The results show that in comparison of RL based intelligent 

controllers, the new algorithm presents a desirable 

performance.   
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