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Fuzzy Logic-Based Load-Frequency Control
Concerning High Penetration of Wind Turbines
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Abstract—Load-frequency control (LFC) in interconnected
power systems is undergoing fundamental changes due to rapidly
growing amount of wind turbines, and emerging of new types of
power generation/consumption technologies. The infrastructure
of modern LFC systems should be able to handle complex
multiobjective regulation optimization problems characterized by
a high degree of diversification in policies, and widely distribution
in demand and supply sources to ensure that the LFC systems are
capable to maintain generation-load balance, following serious
disturbances. Wind power fluctuations impose additional power
imbalance to the power system and cause frequency deviation
from the nominal value. This paper addresses a new decentralized
fuzzy logic-based LFC schemes for simultaneous minimization of
system frequency deviation and tie-line power changes, which is
required for successful operation of interconnected power systems
in the presence of high-penetration wind power. In order to
obtain an optimal performance, the particle swarm optimization
technique is used to determine membership functions parameters.
The physical and engineering aspects have been fully considered,
and to demonstrate effectiveness of the proposed control scheme,
a time domain simulation is performed on the standard 39-bus
test system. The results are compared with conventional LFC
design for serious load disturbance and various rates of wind
power penetrations.

Index Terms—Fuzzy control, load-frequency control, particle
swarm optimization, wind power generation.

I. Introduction

C
URRENTLY, wind is the fastest growing and most

widely utilized renewable energy technology in power

systems. The wind turbine generators have attracted an ac-

celerated attention in recent years. In the end of 2008, wind

power installed capacity was reached more than 120.2 GW

worldwide and by the end of 2009, this value has grown

up to 158.5 GW, which represents a growth of 31.7% in

a year [1]. Nowadays, due to the interconnection of more

distributed generators, especially wind turbines, the electric

power industry has become more complicated than ever. Since,

the primary energy source (wind) cannot be stored and is
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uncontrollable, the controllability and availability of wind

power significantly differs from conventional power generation

[2]. In most power systems, the output power of wind turbine

generators varies with wind speed fluctuation, this fluctuation

results into frequency variation [3]. Some reports have recently

addressed the power system frequency control issue, in the

presence of wind turbines [2], [4]–[9].

Load-frequency control (LFC) synthesis in power systems

has a long history and its literature is voluminous. The prelim-

inary LFC schemes have evolved over the past decades, and

interest continues in proposing new intelligent LFC approaches

with an improved ability to maintain tie-line power flow

and system frequency close to specified values. In case of

a high penetration wind power, the power system frequency

regulation can be affected due to wind power fluctuation.

This leads to imbalance between power generation and power

demand, and as a result, frequency will deviate from its

nominal value. Significant frequency deviations may cause

under/over frequency relay operations and finally disconnect

some parts of system loads and generations. The impact of

wind power generation on system frequency response and LFC

mechanism is discussed in [2] and [10].

The conventional LFC designs are usually suitable for

working at specific operating points, and they are not more

efficient for modern power systems, considering increasing

size, changing structure, emerging renewable energy sources,

and new uncertainties. Most of conventional LFC synthesis

methodologies provide model-based controllers that are diffi-

cult to use for large-scale power systems with nonlinearities,

and uncertain parameters. On the other hand, most of applied

linear modern/robust control techniques to the LFC problem

suggest complex control structure with high-order dynamic

controllers, which are not practical for industry practices [11].

Therefore, it is expected that using intelligent LFC schemes

in new environment to be more adaptive/flexible than conven-

tional ones, and is going to become an appealing approach.

Over the years, several intelligent control techniques are used

for the frequency regulation/LFC issue in the power systems;

however, there are just few reports on the intelligent frequency

control design in the presence of wind power units.

Recently, following the advent of modern intelligent meth-

ods, such as artificial neural networks, fuzzy logic, multia-

gent systems, genetic algorithms, expert systems, simulated

annealing, tabu search, ant colony optimization, and hybrid

intelligent techniques, some new potentials and powerful so-

lutions for LFC synthesis have arisen [12]. The human and
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nature ability to control complex organisms has encouraged

researchers to pattern controls on human/nature responses,

fuzzy behaviors, and neural network systems. Since all of

developed artificial intelligent techniques are usually depen-

dent on knowledge extracted from environment and available

data, the knowledge management plays pivotal role in the LFC

synthesis procedures.

Nowadays, fuzzy logic because of simplicity, robustness,

and reliability is used in almost all fields of science and

technology, including solving a wide range of control problems

in power system control and operation. Unlike the traditional

control theorems, which are essentially based on the linearized

mathematical models of the controlled systems, the fuzzy

control methodology tries to establish the controller directly

based on the measurements, long-term experiences, and the

knowledge of domain experts/operators.

Several studies have been already reported for the fuzzy

logic-based LFC design schemes in the literature [13]–[19],

some differing significantly from each other by the number

and type of inputs and outputs, or less significantly by the

number and type of input and output fuzzy sets and their mem-

bership functions, or by the type of control rules, inference

engine, and the defuzzification method. However, all reported

LFC designs have used conventional simplified linear models,

without considering the integration of wind turbines or other

types of renewable energy sources (RESs).

This paper addresses a new intelligent methodology using a

combination of fuzzy logic and particle swarm optimization

(PSO) techniques to satisfy LFC objectives concerning the

integration of wind power units. The PSO technique is used

to find optimal values for membership functions parameters of

the fuzzy logic controllers. The proposed LFC scheme offers

many benefits for the large-scale and complex power system

due to emerging numerous distributed generators and RESs,

which the classical and nonflexible LFC structures may not

be applicable to provide a desirable performance over a wide

range of operating conditions. In order to investigate the effi-

ciency of the proposed control strategy, a computer simulation

has been conducted for the standard 39-bus 10-generator test

system, including three wind farms, in MATLAB SimPower

environment. The obtained results are compared with the

conventional LFC design.

II. LFC with Wind Farms

The impact of wind farms on the dynamic behavior of

power system may cause a different system frequency response

to a disturbance event. Since, the system inertia determines

the sensitivity of overall system frequency, it plays an im-

portant role in this consideration. The lower system inertia

leads to faster changes in the system frequency following a

load-generation imbalance. The addition of synchronous wind

generation to a power system intrinsically increases the system

inertial response [2], [11].

The impact of wind farms on power system inertia is a

key factor in investigating the power system LFC behavior in

the presence of high penetration of wind power generation.

To analyze the additional variation caused by wind turbines,

the total effect is important, and every change in wind power

output does not need to be matched one for one by a change

in another generating unit moving in the opposite direction.

However, the slow wind power fluctuation dynamics and total

average power variation negatively contribute to the power

imbalance and frequency deviation, which should be taken into

account in the well-known LFC control scheme.

The conventional LFC model is well discussed in [11] and

[20]. To generalize the conventional model, the updated area

control error (ACE) signal should represent the impacts of

wind power on the scheduled flow over the tie-lines. The

ACE signal is traditionally defined as a linear combination

of frequency and tie-line power changes [20] as follows:

ACE = β�f + �Ptie (1)

where the �f is frequency deviation, the β is frequency bias,

and the �Ptie is the difference between the actual (act) and

scheduled (sched) power flows for a given area with m tie-lines

as follows:

�Ptie =

m
∑

j=1

(Ptie,act j − Ptie,sched j). (2)

For a considerable amount of wind (W ) power, its impact

must be also considered with conventional (C) power flow in

the overall area tie-line power. Therefore, the updated �Ptie

can be expressed as follows:

�Ptie = �Ptie− C + �Ptie− W

=

m
∑

j=1

(Ptie−C,act j − Ptie−C,sched j)

+

m
∑

j=1

(Ptie−W,act j − Ptie−W,estim j).

(3)

Using (1) and (3), an updated ACE signal can be completed

as follows:

ACE = β�f +

m
∑

j=1

(Ptie−C,act j − Ptie−C,sched j)

+

m
∑

j=1

(Ptie−W,act j − Ptie−W,estim j)

(4)

where Ptie−C,act, Ptie−C,sched, Ptie−W,act, and Ptie−W,estim are

actual conventional tie-line power, scheduled conventional tie-

line power, actual wind tie-line power, and scheduled wind

tie-line power, respectively.

III. Fuzzy Logic-Based LFC Scheme

A general scheme for fuzzy logic-based LFC system is given

in Fig. 1. As shown, the fuzzy controller has four blocks.

Crisp input information (usually measured ACE or frequency

deviation) from the control area is converted into fuzzy values

for each input fuzzy set with the fuzzification block. The

universe of discourse of the input variables determines the

required scaling/normalizing for correct per-unit operation.

The inference mechanism determines how the fuzzy logic

operations are performed, and together with the knowledge
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Fig. 1. General scheme for fuzzy logic-based LFC.

base determine the outputs of each fuzzy IF-THEN rules.

Those are combined and converted to crispy values with the

defuzzification block. The output crisp value can be calculated

by the center of gravity or the weighted average; then, the

scaled output as control signal is applied to the generating

units.

Generally, a controller design based on fuzzy logic for a

dynamical system involves the following four main steps.

Step 1) Understanding of the system dynamic behavior and

characteristics. Define the states and input/output con-

trol variables and their variation ranges.

Step 2) Identify appropriate fuzzy sets and membership func-

tions. Create the degree of fuzzy membership function

for each input/output variable and complete fuzzifica-

tion.

Step 3) Define a suitable inference engine. Construct the

fuzzy rule base, using the control rules that the system

will operate under. Decide how the action will be

executed by assigning strengths to the rules.

Step 4) Determine defuzzification method. Combine the rules

and defuzzify the output.

Consistent with the LFC design, the first step of fuzzy

controller design is to choose the correct input signals to the

LFC. The ACE and its derivative are usually chosen as inputs

of the fuzzy controller. These two signals are then used as

rule-antecedent (IF-part) in the formation of rule base, and

the control output is used to represent the contents of the rule-

consequent (THEN-part) in performing of rule base.

Normalization or scale transformation which maps the phys-

ical values of the current system state variables into a normal-

ized universe of discourse should be properly considered. This

action is also needed to map the normalized value of control

output variables into its physical domain (denormalization

output). The normalization can be obtained by dividing each

crisp input on the upper boundary value for the associated

universe.

In real world, many phenomena and measures are not crisp

and deterministic. Fuzzification plays an important role in

dealing with uncertain information, which might be objective

or subjective in nature. The fuzzification block in the fuzzy

controller represents the process of making crisp quantity into

fuzzy. In fact, the fuzzifier converts the crisp input to a linguis-

tic variable using the membership functions stored in the fuzzy

knowledge base. Fuzzines in a fuzzy set is characterized by the

membership functions. Using suitable membership functions,

the ranges of input and output variables are assigned with

Fig. 2. Proposed scheme for adaptive fuzzy logic LFC.

linguistic variables. These variables transform the numerical

values of the input of the fuzzy controller to fuzzy quantities.

These linguistic variables specify the quality of the control.

Triangular, trapezoid, and Gaussian are more common mem-

bership functions to use in fuzzy control systems.

Knowledge rule base consists of information storage for

linguistic variables definitions (database), and fuzzy rules

(control base). The concepts associated with a database are

used to characterize fuzzy control rules and a fuzzy data

manipulation in fuzzy logic controller. A lookup table is

made based on discrete universes that defines the output of a

controller for all possible combinations of the input signals. A

fuzzy system is characterized by a set of linguistic statements

in the form of “IF-THEN” rules. Fuzzy conditional statements

make the rules or the rule set of the fuzzy controller. Finally,

the inference engine uses the IF-THEN rules to convert the

fuzzy input to the fuzzy output.

On the other hand, defuzzifier converts the fuzzy output

of the inference engine to crisp using membership functions

analogous to the ones used by the fuzzifier. For the defuzzifica-

tion process, commonly center of sums, mean-max, weighted

average, and centroid methods are employed to defuzzify the

fuzzy incremental control law.

IV. Proposed Intelligent LFC Scheme

To provide an adaptive and self-tuning fuzzy logic-based

LFC system, the parameters of fuzzy logic controller (mem-

bership functions) can be adjusted using an external tuning

mechanism. In this case, the adaptive fuzzy controller has a

distinct architecture consisting of two loops: an inner control

loop, which is the basic feedback loop, and an outer loop,

which adjusts the parameters of the controller. The proposed

control framework is shown in Fig. 2. Here, the PSO technique

is used to perform the mentioned tuning mechanism.

In each control area, the PSO technique is used for tuning

of fuzzy system’s membership function parameters in the

supplementary frequency control loop to improve the overall

control performance.

A. PSO Mechanism

The PSO is a population-based stochastic optimization

technique. It belongs to the class of direct search methods that
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can be used to find a solution to an optimization problem in a

search space. The PSO originally has been presented based on

social behavior of bird flocking, fish schooling, and swarming

theory [21], [22]. In the PSO method, a swarm consists of a

set of individuals, with each individual specified by position

and velocity vectors (xi(t), vi(t)) at each time or iteration.

Each individual is named as a “particle” and the position

of every particle represents a potential solution to the under

study optimization problem. In an n-dimensional solution

space, each particle is treated as a n-dimensional space vector

and the position of the ith particle is presented by vi =

(xi1, xi2, . . . , xin); then it flies to a new position by velocity

represented by vi = (vi1, vi2, . . . , vin). The best position for ith

particle represented by pbest,i = (pbest,i1, pbest,i2, . . . , pbest,in)

is determined according to the best value for the specified

objective function.

Furthermore, the best position found by all particles in

the population (global best position), can be represented as

gbest = (gbest,1, gbest,2, . . . , gbest,n). In each step, the best particle

position, global position, and the corresponding objective func-

tion values should be saved. For the next iteration, the position

xik and velocity vik corresponding to the kth dimension of ith

particle can be updated using equations as follows:

vik(t + 1) = w.vik + c1.rand1,ik(pbest,ik(t) − xik(t))

+ c2.rand2,ik(gbest,k(t) − xik(t))
(5)

xik(t + 1) = xik(t) + vik(t + 1) (6)

where i = 1, 2, . . . , n is the index of particles, w is the

inertia weight [22], rand1,ik and rand2,ik are random numbers

in interval [0 1], c1 and c2 are learning factors, and t represents

the iterations.

Usually, a standard PSO algorithm contains the following

steps.

Step 1) All particles are initialized via a random solution. In

this step, each particle position and associated velocity

are set by randomly generated vectors. Dimension

of position should be generated within a specified

interval, and the dimension of velocity vector should

be also generated from a bounded domain using

uniform distributions.

Step 2) Compute the objective function for the particles.

Step 3) Compare the value of the objective function for the

present position of each particle with the value of

objective function corresponding to prespecified best

position, and replace prespecified best position by the

present position, if it provides a better result.

Step 4) Compare the value of the objective function for the

present best position with the value of the objective

function corresponding to global best position, and re-

place present best position by the global best position,

if it provides a better result.

Step 5) Update the position and velocity of each particle

according to (5) and (6).

Step 6) Stop algorithm if the stop criterion is satisfied.

Otherwise, go to step 2.

Fig. 3. Proposed control framework. (a) Area components. (b) Controller
structure.

Fig. 4. Symmetric fuzzy membership functions. (a) Inputs pattern.
(b) Output pattern.

In this paper, the PSO algorithm is used to find the optimal

value for membership function parameters of fuzzy logic-

based LFC system.

B. Synthesis Realization

Inherent nonlinearity, increasing in size and complexity of

power systems as well as emerging wind turbines and their

effects on dynamic behavior of power system, caused con-

ventional LFC systems [proportional-integral (PI) controllers]

be incapable of providing good dynamical performance over a

wide range of operating condition [11]. In this section, to track

a desirable LFC performance in the presence of high penetra-

tion wind power in a multiarea power system, a decentralized

PSO-based fuzzy logic control design is proposed. Decreasing

the frequency deviations due to fast changes in output power of

wind turbines, and limiting tie-lines power inter changes in an

acceptable range, following disturbances, are the main goals

of this effort. The overall control structure is shown in Fig. 3.

The inputs and output are brought into an acceptable range

by multiplying in proper gains. In each control area, ACE

and its derivative are considered as input signals, and the
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provided control signal is used to change the set points of

LFC participant generating units. The Mamdani-type infer-

ence system is applied, and as shown in Fig. 4, symmetric

7-segments triangular membership functions are used for input

[Fig. 4(a)] and output [Fig. 4(b)] variables. The membership

functions are defined as zero (ZO), large negative (LN),

medium negative (MN), small negative (SN), small positive

(SP), medium positive (MP), and large positive (LP).

In this paper, in order to reach fast response from the

controller system, all membership functions considered as

triangular with the mathematical definition as follows:

μX(xi) = max

(

0, 1 −

∣

∣

∣

∣

x − xi

c

∣

∣

∣

∣

)

(7)

where x and c are the mean and spread of the fuzzy set X,

respectively, and xi is a crisp variable.

Fuzzy rule base is the basis of fuzzy logic operation to map

input space to the output space. Here, a rule base including

49 fuzzy rules is considered (Table I). The rule base works on

vectors composed of ACE and its gradient dACE.

Using Table I, fuzzy rules can be expressed in the form of

IF-THEN statements such as

IF ACE is SN AND dACE is MP, THEN output is SN.

As can be seen in the above IF-THEN statement, the an-

tecedent part of the rules is composed of two parts, combined

with fuzzy “AND” operators; in this paper, the combination is

done based on interpreting the “AND” operator by algebraic

Product operation. Considering (7), the antecedent part of

above statement may be defined as follows:

μ(ACE AND dACE)(x, y) = μACE(x).μdACE(y) (8)

where μ(ACE AND dACE) is the membership value of the an-

tecedent part, and μACE and μdACE are the membership values

of ACE and dACE, respectively.

Similarly, for computing the consequent of each rule,

the membership function of “Mamdani Product” implication

method can be represented by

μMP = μ(ACE AND dACE).μ�Pc
(9)

where μMP denotes the membership function resulted by

“Mamdani Product” implication, and μ(ACE AND dACE) is the

membership value of the related antecedent part.

Since fuzzy rules are stated in terms of linguistic variables,

crisp inputs should be also mapped to linguistic values using

fuzzification. In order to combine rules and make a decision

based on all the rules, the sum method is used. Finally, for

converting output fuzzy set of the fuzzy system to a crisp

value, the centroid method is used for defuzzication [23].

As the performance of a fuzzy system is influenced by the

membership functions, in order to achieve good performance

by the controller, a PSO algorithm is established to find the

optimal value for membership functions parameters and exact

tuning of them. As it can be seen in Fig. 4, each set of input

membership functions can be specified by parameters a and

b, where min < a < b < max. Also, for control output, one

parameter is needed to be specified. Therefore, five parameters

TABLE I

Fuzzy Rule Base

dACE

LN MN SN ZO SP MP LP

LN LP LP LP MP MP SP ZO

ACE NM LP MP MP MP SP ZO SN

SN LP MP SP SP ZO SN MN

ZO MP MP SP ZO SN MN MN

S P MP SP ZO SN SN MN LN

MP SP ZO SN MN MN MN LN

LP ZO SN MN MN LN LN LN

TABLE II

Optimal Values for Membership Function Parameters

ain,ACE bin,ACE ain,dACE bin,dACE bout

0.267747 0.947038 0.013716 0.059880 0.986659

Fig. 5. Single-line diagram of 39-bus test system.

should be optimized for inputs membership functions using

PSO algorithm: ain,ACE, bin,ACE, ain,dACE, bin,dACE, and bout.

For the sake of PSO algorithm in the present LFC design,

the objective function (f ) is considered as given in (10). The

number of particles, particles size, vmin, vmax, c1, and c2 are

chosen as 10, 6, −0.5, 0.5, 2.8, and 1.3, respectively. Follow-

ing use of PSO algorithm, the optimal values for membership

function parameters are obtained as listed in Table II:

f =
1

3

3
∑

i=1

(
∫

t(|�fi| +
∣

∣�Ptie,i

∣

∣)dt

)

. (10)

V. Test System

To investigate the performance of the proposed control

strategy, a network with the same topology as the well-known

IEEE 10 generators 39-bus system is considered as the test

system. This system is widely used as a standard system for

testing of new power system analysis and control synthesis

methodologies. Fig. 5 shows a single-line diagram of the test

system. This system consists of 10 generators, 19 loads, 34
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Fig. 6. Overall LFC structure.

Fig. 7. Wind velocity and power in scenario 1. (a) Wind velocity pattern.
(b) Total wind power generation.

transmission lines, and 12 transformers. The power system

is divided to three control areas. The simulation parameters

for the generators, loads, lines, and transformers of the test

system are given in [2]. As mentioned, the main objective

of this paper is to propose an effective LFC scheme with a

desirable performance in the presence of high penetration of

wind turbines; therefore, the case study is updated by adding a

wind farm to each control area. All wind farms are composed

of a number of more popular type of wind turbines, i.e., DFIG.

For the sake of simulation, random variations of wind velocity

have been considered.

All power plants in the power system are equipped with

speed governor and power system stabilizer. Fig. 6 shows a

schematic block diagram which represents the decentralized

fuzzy logic-based control structure for the considered power

system. As it can be seen in Fig. 6, only one generator in

each area is responsible for the LFC task, i.e., G1 in Area

1, G9 in Area 2, and G4 in Area 3, which are equipped with

proposed fuzzy logic controller. The controllers are responsible

for producing appropriate control actions (�Pc) according to

the measured ACEs and their time derivatives (dACE). To

show the capability of the proposed intelligent LFC scheme,

two scenarios with different rate of wind power penetrations

and area deviation are considered.

Fig. 8. Area 1 responses for scenario 1. Proposed LFC scheme (solid);
conventional LFC design (dotted).

Fig. 9. Area 2 responses in scenario 1. Proposed LFC scheme (solid);
conventional LFC design (dotted).

A. Scenario 1

For scenario 1, the start up, rated, and cut out wind

velocity for the aggregated wind systems are specified as

about 5 m/s, 14 m/s, and 24.5 m/s, respectively. Total system

installed capacity are 582.57 MW of conventional generation

and 68.4 MW of average wind power generation (10% pen-

etration). In Fig. 5, the areas borders are shown as dashed

line. There are 195.07 MW of conventional power generation,

22.7 MW of average wind power generation, and 265.25 MW

load in Area 1. In Area 2, there are 157.6 MW of conventional

power generation, 19 MW of average wind power generation,

and 232.83 MW load.

In Area 3, there are 229.9 MW of conventional power

generation, 26.7 MW of average wind power generation, and

124.78 MW load. As it is seen, the amounts of total load and

generation in each area are almost equal.

B. Scenario 2

For scenario 2, the total wind power penetration is increased

to 30%. Furthermore, as shown in Fig. 5, the new borders

(dotted line) are considered such that the difference between

load and generation in each area is higher than scenario 1, and
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Fig. 10. Area 3 responses in scenario 1. Proposed LFC scheme (solid);
conventional LFC design (dotted).

Fig. 11. Tie-line power interchanges in scenario 1. (a) Area 1. (b) Area 2.
(c) Area 3. Proposed LFC scheme (solid); conventional LFC design (dotted).

three areas are pretty imbalanced in terms of generation and

load.

The start up, rated, and cut out wind velocity for the

aggregated wind systems are specified as about 4 m/s, 13 m/s,

and 21 m/s, respectively. Total system installed capacity are

450.07 MW of conventional generation and 200.91 MW of

average wind power generation. There are 152.43 MW of

conventional power generation, 65.35 MW of average wind

power generation, and 329.3 MW load in Area 1. In Area 2,

there are 119.45 MW of conventional power generation,

57.15 MW of average wind power generation, and 74 MW

load. In Area 3, there are 178.19 MW of conventional power

generation, 78.41 MW of average wind power generation, and

219.6 MW load.

VI. Simulation Results

To demonstrate the effectiveness of the proposed control

design, some nonlinear simulations are performed in the Sim-

Power environment of MATLAB software. In the simulations,

the performance of the closed-loop system using the designed

Fig. 12. ACE signals in scenario 2. (a) Area 1. (b) Area 2. (c) Area 3.
Proposed LFC scheme (solid); conventional LFC design (dotted).

Fig. 13. Frequency deviations in scenario 2. (a) Area 1. (b) Area 2.
(c) Area 3. Proposed LFC scheme (solid); conventional LFC design (dotted).

fuzzy logic-based controllers are compared with well-tuned

conventional PI controllers.

As a serious test condition, three load disturbances (step

increase in demand) are applied to control areas as simultane-

ous 6.66 pu step load increase in each area at 5 s for scenario

1 and 10 s for scenario 2. All unitized values in this paper

are given based on the value of the largest generator nominal

power, i.e., 150 MW.

The simulation results for scenario 1 are shown in

Figs. 7–11. Wind speed pattern and total wind power gen-

eration are shown in Fig. 7. In Figs. 8–10, the ACE and

the frequency deviation (�f ) of the closed-loop system for

all areas are shown, following the applied load disturbances.

These figures show the superior performance of proposed

fuzzy logic-based LFC schemes to the conventional PI-based

LFC designs in deriving ACE and frequency deviation close

to zero.
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Also, tie-line power interchanges of all areas are shown in

Fig. 11. It can be seen that the tie-line power flows in the case

of using the conventional LFC design shows more oscillations

and poor performance in keeping tie-lines power interchanges

in an acceptable tolerance close to the scheduled values.

System responses for scenario 2, in the face of similar load

disturbances, are shown in Figs. 12 and 13. These figures show

better performance for the proposed fuzzy logic-based LFC

schemes in comparison of conventional PI-based LFC design

in deriving ACE and frequency deviation close to zero.

VII. Conclusion

An adaptive fuzzy logic structure was used to propose a new

intelligent LFC scheme in the interconnected large-scale power

systems in the presence of wind turbines. The PSO technique

was applied to adjust fuzzy control parameters. The proposed

method was examined on a network with same topology

as the standard 10-generators 39-bus system, including wind

farms. The simulation results demonstrated that the proposed

intelligent LFC scheme provides desirable performance against

sudden load change and wind power fluctuations in different

wind power penetration rates. The achieved closed-loop per-

formance was also compared with the application results of

conventional LFC design.
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