
Abstract—Conventional load-frequency control (LFC) systems
use proportional-integral (PI) controllers. These controllers are
designed based on a linear model and the nonlinearities of the
system are not accounted for. Then they are incapable to gain
good dynamical performance for a wide range of operating
conditions. A control strategy for solving this problem in a multi-
area power system is presented by using a multi-agent
reinforcement learning (MARL) approach based on the
frequency bias ( ) estimation that genetic algorithm (GA)
optimization is used to tune its parameters. This approach
contains  two  agents  in  each  control  area,  estimator  agent  and
controller agent that communicate with each other.

The proposed method does not depend on any knowledge of
the system and finding area control error (ACE) signal based on
the frequency biased estimation, improves the LFC performance.
To demonstrate the capability of the proposed control structure,
a three-control area power system simulation with two different
scenarios is presented.

Index Terms— Multi-agent reinforcement learning; Load-
frequency control;  estimation

I. INTRODUCTION

REQUENCY changes in large scale power systems are a
direct result of the imbalance between the electrical load

and the power supplied by system connected generators [1].
Therefore load-frequency control is one of the important
power system control problems which there have been
considerable research works for it [2-5].

However the conventional controllers are designed for a
specific disturbance and if the nature of the disturbance varies,
they may not perform as expected. Also most of them assume
all model parameters are defined and measurable (fix) too, that
in a real power system some parameters like  change with
environment conditions and don’t have constant values.
Therefore, design of intelligent controllers that are more
adaptive than conventional controllers is become an appealing
approach [6-8].

Multi-agent reinforcement learning (MARL) is one of the
adaptive and intelligent control techniques [9-13] that has
found little attentions in the LFC design [9-11]. As it is based
on learning, it can learn each kind of environment
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disturbances, and can easily scalable for large scale systems.
In this paper, a multi-agent reinforcement learning

controller with  estimation is proposed. It has two agents in
each control area that communicate with each other to control
the whole system. The first agent (estimator agent) provides
the  ACE  signal  based  on  parameter estimation and the
second agent (controller agent) provides  according to
ACE signal received from estimator agent, using
reinforcement learning, then it is distributed among the
different units under control using fixed participation factors.

The above technique has been applied to the LFC problem
in  a  three-control  area  power  system  as  a  case  study.  In  the
new environment, each control area consists of a number of
generating companies (Gencos) and it is responsible for
tracking its own load and performing the LFC task.

The  organization  of  the  rest  of  the  paper  is  as  follows.  In
Section 2, a brief introduction to multi-agent RL and LFC
problem is given. In section 3, an explanation on how a load-
frequency controller can work within this formulation is
provided. In Section 4, a case study of three-control area
power system and simulation results is discussed, finally the
paper is concluded in Section 5.

II. BACKGROUNDS

A. Multi-agent Reinforcement Learning
Reinforcement learning methods learn to solve a problem

by interacting with a system and multi-agent reinforcement
learning (MARL) is learning how a multi-agent system maps
situations (x)  to  actions  (a) so as to maximize a numerical
reward signal (r) [14] while following policy ( , ). Policy is
the way the agent maps the states to the actions [14]. In most
RL methods, another term known as ( , ) is defined
which is the expected discounted reward while starting at state

	and taking action .
In  fact  the  presentation  of  an  MARL  is  as  a  tuple <

, , . . . , , , , . . . , > where  is the number of agents,
is the discrete set of environment states, , = 1, . . . ,  are
the discrete sets of actions available to the agents, yielding the
joint action set = ×···× , : × × [0, 1] is the
state transition probability function, and × ×

, = 1, . . . ,  are the reward functions of the agents. In the
multi-agent case, the state transitions are the result of the joint
action of all the agents,
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Fig. 1 LFC system with different generation units and participation factors in area i [16]

= , , . . . , , , , ,  (  denotes vector
transpose). As a result, the rewards ,  and the returns ,
also  depend  on  the  joint  action.  The  policies ×
[0, 1] form together the joint policy . The Q-function of each
agent depends on the joint action and is conditioned on the
joint policy, 	 ×  [15].

Agents will discover which joint action should be taken by
interacting with the system and trying the different joint
actions which may lead to the highest reward.

B. LFC Design Model
As mentioned, a three-control area power system used to

examine the applicability of the proposed intelligent
controller. The block diagram of a control area-i of  the  test
system which includes n Gencos, is shown in Fig. 1[16].
Within a control area, following a load disturbance, the
frequency of that area experiences a transient change, the
feedback mechanism comes into play and generates
appropriate rise/lower signal to the participating Gencos
according to their participation factors ( ji) to make generation
follow the load. In the steady state, the generation is matched
with the load, driving the tie-line power and frequency
deviations to zero.  Therefore the ACE for each control area
can be expressed as a linear combination of tie-line power
change and frequency deviation (according to (1)) [16].

itieiii PfACE      (1)

III. PROPOSED INTELLIGENT CONTROL DESIGN

In this section, an intelligent control design algorithm using
MARL technique for a PI controller is presented. The design
objective of the proposed method is to regulate the frequency
in power system with various load disturbances and achieve a
desirable control performance.

Fig. 2 shows the proposed model for area i. two  kinds  of

intelligent agent have been used in this structure, controller
agent and estimator agent. The estimator agent is responsible
to estimate frequency bias parameter ( ) and calculate ACE
signal, however controller agent is responsible to find
according to  signal using RL and GA.

Fig. 2 The proposed model for area i

A. MARL Controller Agent
In this algorithm the average of ACE signal instances and

	instances over the LFC execution period are used as the
state vector. The state vector consists of some quantities,
which are normally available to the controller agent. For the
algorithm presented in this paper, it is assumed that the set of
all possible states  and actions , is finite. Therefore the
values of various quantities that constitute the state and action
information should be quantized. The possible actions of the
controller agent are the various values of , that can be
demanded in the generation level within a LFC interval.  is
also discretised to some finite number of levels. Now, since
both  and  are finite sets, a model for this dynamic system
can be specified through a set of probabilities.

At each time step (as determined by the sampling time for



LFC action) the state input vector, , to the LFC is determined
then an action in that state is selected and applied on the
model, the model is integrated for a time interval equal to the
sampling time of LFC to obtain the state vector  at the next
time step.

In this paper an algorithm same as the presented algorithm
in [17] is used as follow.

At each instant (on a discrete time scale ), = 1, 2, . . ., the
controller agent observes the current state of the system, ,
and takes an action, . If a sequence of samples is like,
( , , , ), =1, 2 ... (  is the LFC execution period).
Each sample is such that  is  the  (random)  state  that
resulted when action  is performed in state  and =

( , , ) is the consequent immediate reinforcement.
This sequence of samples (called training set) can be used to
estimate .  The  specific  algorithm  that  is  used  is  as
following. Suppose  is the estimate of  at th iteration.
Let the next sample be ( , , , ). Then  is
obtained as [17]:

( , ) = ( , ) + [ ( , , ) +

max ( , ) ( , )]                                    (2)

where 0 < < 1 is a constant called the step size of
learning algorithm.

Here an exploration policy for choosing actions in different
states  is  used.  In  this  algorithm  for  each  state , actions are
chosen based on a probability distribution over the action
space. Initially a uniform probability distribution is chose (3).
Let  denote the probability distribution over the action set
for state vector  at  the th iteration of learning. That is,
( ) is the probability of choosing action  in state  at
iteration	  [17].

( ) = | |                                                 (3)

Using our simulation model the system is integrated for the
next time interval and  is updated to  using (2) also at
iteration  the probability of choosing the greedy action  in
state  is slightly increased and the probabilities of choosing
all other actions in state  are proportionally decreased like as
follows [17],

= + 	 1

( ) = 	 ( )(1 ) ,                    (4)

( ) = ( ) ,

Where 0 < < 1 is a constant.
Here each state vector consists of two state variables: the

average value of the ACE (the first state variable, 	 ) and the
 (the second state variable, ) and the control action is the

set point, . Since, The RL algorithms are based on finite
number of states and actions, state and action variables will be

discretised to finite levels using genetic algorithms
optimization.

The next step is to choose an immediate reinforcement
function, . The reward matrix initially is full of zero, at each
LFC execution period the average value of  and average
value of ACE signal are obtained, then according to the
discritised values gained from GA, determine the  state of the
system, whenever the  state is desirable (i.e. | | is less than
) then reward function ( , , ) is  assigned  a  value

zero. When it is undesirable (i.e. | | > 	 ) then
( , , ) is  assigned a  value  -| | (all actions which

cause  to  go  to  an  undesirable  state  are  penalized  with  a
negative value) [17].

B. Discretized Actions and States Using GA
To quantize the state range and action rang using GA, each

individual is a double vector (population type) that is
quantized values of states and actions, with 406 variables
between [0: 1] that consists of 400 variables for ACE signal
and 6 variables for  signal.

The start population size is equal to 30 individuals and it
was run for 100 generations.

To find eligibility (fitness) of individuals, 6 variables are
randomly chosen as discretized values of actions from each
individual, then the model is run with these properties, and the
individual’s fitness is obtained from below:

	 = | | ( 	 )

Each individual that has the smallest fitness is the best one.

C. Estimator Agent
Finding ACE from equation (1) required to know

frequency bias factor ( ). Getting a good estimate of the
area’s  to improve the load-frequency control performance is
a motivation for estimator agent to estimate  parameter and
find ACE signal based on it.  The conventional approaches in
tie-line bias control use the frequency bias coefficient -10 , to
offset the area’s frequency response characteristic, . But it is
related  to  many  factors  and  with -10 = 	 , the area control
error (ACE) would only react to internal disturbances. To do
that in each time, the estimator agent gets , , ,
as inputs, then calculates the  parameter and finds ACE
signal according to that.

Equation (5) shows the per unit equation of the
electromechanical power balance for the local control area.

( ) ( ) , ( ) = 2 ( ) +
( ) (5)

Also the below equation is concluded from (1):

, ( ) = ( ) 	 ( )                                       (6)



Then according to (5), (6),

( ) ( ) + ( ) ( ) =
2 ( ) + ( )                                                             (7)

And,

( ) = ( ) ( ) + ( ) ( )
2 ( ) (8)

The following equation is obtained for a moving average
over a T-second interval to (8):

= + ( )
2 ( ( )) (9)

Since the values of  vary with system conditions, these
model parameters would have to be updated regularly using a
recursive least square (RLS) algorithm [18].

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed control
design, some simulations are carried out. In these simulations,
the proposed controllers are applied to the three-control area
power system model described in Section II and III (see Fig.
3), and will be tested for the various possible load
disturbances. Also the results have been compared to a
Bayesian Network (BN) based controller described in [13]. It
is assumed that each control area includes three Gencos and its
parameters are given in [19].

Fig. 3 The proposed model for the three-control area

Scenario 1: As the first test case, the following large load
disturbances (step increase in demand) are applied to three
areas:

Pd1=100MW; Pd2=80MW; Pd3=50MW;

The frequency deviation ( f)  area  control  error  (ACE) and
control action ( Pc) signals of the closed-loop system are
shown in “Fig. 4”.

Scenario 2: Consider larger demands by areas 2 and 3, i.e.

Pd1=100MW; Pd2=100MW; Pd3=100MW;

The closed-loop responses for each control area are shown
in “Fig. 5”.

The simulation results for the test system illustrate the
effectiveness and capability of the proposed MARL based
LFC scheme. It causes the ACE and frequency deviation of all
areas are properly driven back to zero, also the generation
control signal deviation ( Pc) change is low and it smoothly
goes to the steady state and satisfies the system physical
conditions well.

(a)

(b)

(c)
Fig. 4 System responses in case 1, (a) area 1, (b) area 2, (c) area 3. Solid line:
proposed method and dashed line: BN controller [13]



(a)

(b)

(c)
Fig. 5 System responses in case 2, (a) area 1, (b) area 2, (c) area 3. Solid line:
proposed method and dashed line: BN controller [13]

V. CONCLUSION

A new method for load-frequency control design using
MARL has been proposed for a three-control area power
system. The results show that the new algorithm presents a
desirable performance. Two important features of the new
approach, i.e. model independence from power system
parameters and flexibility in specifying the control objectives,
make it very attractive for frequency control practices.
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