
Abstract—Frequency regulation in interconnected networks is
one of the main challenges in power systems. Significant
interconnection frequency deviations can cause under/over
frequency relaying and disconnect some loads and generations.
Under unfavorable conditions, this may result in a cascading
failure and system collapse. A control strategy for solving this
problem in a multi-area power system is presented by an
intelligent based load frequency control (LFC) using Bayesian
networks (BNs). This method admits considerable flexibility in
defining the control objectives specifically in a large scale power
system. The BNs provide efficient probabilistic inference
algorithms that permit answering various probabilistic queries
about the system and incorporate expert knowledge and
historical data for revising the prior belief in the light of new
evidence in many fields. It is also possible to include local
conditional dependencies into the model, by directly specifying
the causes that influence a given effect.

To demonstrate the capability of the proposed control
structure, a three-control area power system simulation with two
different scenarios is presented.

Index Terms— Bayesian Networks; Load-frequency control;
genetic algorithm

I. INTRODUCTION

HE load-frequency control (LFC) is known as one of the
important power system control problems in multi-area

power systems [1, 2]. Since, the classic and linear control
methodologies are usually suitable for specific operating
points, if the dynamic/structure of system varies; they may not
perform as expected for the LFC loop design in a power
system. Most of conventional control strategies provide model
based controllers that are highly dependent to the specific
models, and are not usable for large-scale power systems with
nonlinearities, undefined parameters and uncertain parameters.
Also if the dimensions of power system increase, these control
design may become more difficult as the number of the state
variables increase, significantly.

Therefore, design of intelligent controllers that are more
adaptive and flexible than conventional controllers is become
an appealing approach. Intelligent controllers has been widely
used for the frequency regulation issue in the power systems
[3-5]; however there are just few reports on using Bayesian
Networks on the frequency control design [6, 7].
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Bayesian  Network  (BN)  is  one  of  the  adaptive  and
nonlinear control techniques that can be applicable in the LFC
design. BNs are powerful tools for knowledge representation
and inference under conditions of uncertainty. They have been
successfully applied in a variety of real-world engineering
tasks but they have received little attention in the area of
power system control issues. It has been effectively used to
incorporate expert knowledge and historical data for revising
the prior belief in the light of new evidence in many fields.
The main feature of the BN is that it is possible to include
local conditional dependencies into the model, by directly
specifying the causes that influence a given effect [8].

Since, the BNs are based on learning methods then they are
independent of environment conditions and can consider all
kinds of environment disturbances, so they are not model
based and can easily scalable for large scale systems, such as
power systems. They can also work well in nonlinear
conditions and nonlinear systems.

This paper addresses the LFC design using an intelligent
solution for a large interconnected power system. Here, a
Bayesian Networks control structure is proposed. It has one
controller in each control area that provides an appropriate
control signal according to load disturbances and tie-line
power changes received from other areas.

The above technique has been applied to the LFC problem
in a three-control area power system as a case study.

The  organization  of  the  rest  of  the  paper  is  as  follows.  In
Section 2, a brief introduction to LFC problem and BN is
given. In Section 3, the proposed intelligent frequency control
technique using BN and the structure of a network which the
above architecture is implemented for are discussed. It is also
explained that how a load-frequency controller and the test
cases study can be work within this formulation. Simulation
results are provided in Section 4 and the paper is concluded in
Section 5.

II. PRELIMINARIES

A. LFC Model
As mentioned, a three-control area power system used to

examine the applicability of the proposed intelligent
controller. The block diagram of a control area-i of  the  test
system which includes n Gencos, is shown in Fig. 1[9].

Within a control area, following a load disturbance, the
frequency of that area experiences a transient change, the
feedback mechanism comes into play and generates
appropriate rise/lower signal to the participating Gencos
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Fig. 1 LFC system with different generation units and participation factors in area i [9]

according to their participation factors ( ji) to make
generation follow the load. In the steady state, the generation
is  matched  with  the  load,  driving  the  tie-line  power  and
frequency deviations to zero.  Therefore the ACE for each
control area can be expressed as a linear combination of tie-
line power change and frequency deviation (according to (1))
[9].

itieiii PfACE      (1)

B. Bayesian Networks
In real learning problems, there is large number of variables

with relationships. The BN is a representation suited to this
task. It includes a graphical model that efficiently encodes the
joint probability distribution for a large set of variables.

A probabilistic graphical model is a mathematical graph in
that nodes are random variables, and arcs represent conditional
independence assumptions between variables [10]. If there is
no arc between two nodes, they are independent nodes else
they are dependent variables. The arcs pattern provides a
concise representation of joint probability distributions. In a
graphical model an arc from node A to B can be informally
interpreted that A “causes” B, (Which A is the parent node of B
and B is the child node of A) [10].

In  summary  a  BN  consists  of  three  components (i) a
graphical model S, (ii) a set of random variables x={x1,…,xn}
(the graph nodes) and a set of arcs that determines the nodes
(random variables) dependencies, and (iii) a conditional
probability table (CPT) associated with each variable
(p(xi|pai)).

Together these components define the joint probability
distribution for x.  The  nodes  in S are in one-to-one
correspondence with the variables x. In this structure, xi
denotes both the variables and its corresponding node, and pai

to denote the parents of node xi in S as  well  as  the  variables
corresponding to those parents. The lack of possible arcs in S

encodes conditional indecencies. In particular given structure
S, the joint probability distribution for x is given by,
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The basic tasks related to the BNs are (i) structure learning
phase: finding the graphical model structure, (ii) parameter
learning phase: finding nodes probability distribution, and (iii)
Bayesian Network inference. The structure and parameter
learning are based on the prior knowledge and prior data
(training data) of the model.

The basic inference task of a BN consists of computing the
posterior probability distribution on a set of query variables q,
given the observation of another set of variables e called the
evidence (i.e. p(q|e)). Different classes of algorithms have
been developed that compute the marginal posterior
probability p(x|e) for each variable x, given the evidence e.

III. BAYESIAN NETWORKS BASED CONTROLLER DESIGN

In this section, an intelligent control design algorithm using
BNs technique for a PI controller is presented. The objective
of the proposed design is to regulate the frequency in power
system with various load disturbances and achieve a desirable
control performance.

Fig.  2  shows the  proposed model  for  area i. An intelligent
controller is used in this area, which is responsible to provide
an appropriate supplementary control action.

A. BN Controller Structure
To illustrate the process of a BN construction, we must (i)

correctly identify the goal of modeling, (ii) identify many
possible observations that may be relevant to the problem, (iii)
determine what subset of those observations is worthwhile to
model, and (iv) organize the observations into variables having
mutually exclusive and collectively exhaustive states.



Here the aim is to achieve the conventional LFC objective
and keep the ACE signal  within  a  small  band  around  zero
using the supplementary control action signal (Fig. 1). Then,
the query variable in the posterior probability distribution is

Pc signal and the posterior probabilities according to possible
observations relevant to the problem are as follows,
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Fig. 2 The proposed model for area i

According to (3), there are so many observations that are
related to this problem, however the best one that has the least
dependency to the model parameters and causes the maximum
effect on the frequency deviation and consequently ACE
signal changes, are load disturbance and tie-line power
deviation signals.  Then the appropriate posterior probability
that should be found is p( Pc| Ptie, PL).

The Ptie can be practically obtained. However, the PL is
one of the input parameters that is not measurable directly, but
it can be easily estimated using a numerical/analytical method
[9]. This estimation method is initially based on the measured
frequency gradient and the specified system characteristics
[9]. On the other hand, regarding the LFC duty cycle, the total
consumed time needed for the estimation process is not
important.

After determining the most worthwhile subset of the
observations ( Ptie, PL),  in  the  next  phase  of  the  BN
construction, a directed acyclic graph that encodes assertion of
conditional independence is built. It includes the problem
random variables, nodes conditional probability distribution
and nodes dependencies (Fig. 3).

B. BN Learning and Inference
As  mentioned  and  is  shown  in  the  graphical  model  of  a

control area (Fig. 3), the essential parameters used for the
learning phase among each control area of the test system are
considered as Ptie, PL, and Pc.

In this step of BN construction (parameter learning), the
local conditional probability distribution(s) p(xi|pai) are
computed from the training data. Probability distributions and
conditional probability distribution related to this problem
according to Fig. 3 are: p( PL), p( Ptie) and p( Pc| PL, Ptie).

After providing the training set, the training data related to
each area are separately given to the Bayesian Network
Toolbox (BNT) (11). The BNT uses the input data and do the
parameter learning phase for each control area parameters. It
founds prior and conditional probability distribution related to
that area’s parameters, which according to Fig. 3, are p( PL),
p( Ptie) and p( Pc| PL, Ptie).

Once, a BN has been constructed (from prior knowledge,
data or a combination), various probabilities of interest from
the model are determined. For the problem at hand, it is
desired to compute the posterior probability distribution on a
set of query variables, given the observation of another set of
variables called the evidence. The posterior probability that
should be found is p( Pc| Ptie, PL). This probability is not
stored directly in the model, and hence needs to be computed.
In general, the computation of a probability of interest given a
model is known as probabilistic inference.

During the simulation stage and after the learning phase
completed, the probabilistic inference phase is done as
follows: at each simulation time step, corresponding controller
of each area gets the input parameters ( Ptie, PL)  of  the
model,  and  digitizes  them  for  the  BNT  (the  BNT  does  not
work with continuous values). The BNT finds the posterior
probability distribution values p( Pc| Ptie, PL) related to
each area (see Table I). Then, the controller finds the
maximum posterior probability distribution from the return
set, and gives the most probable evidence Pc in the control
area. Using this change to the governors setting, the current
values of the load disturbances and the tie-line power
deviation are integrated for the next time.

Fig. 3 The graphical model for area i [7]

Table I
Returned Posterior Probability Distribution Values From BNT of Area i=2

for Ptie-i,=0.03 and PLi=0.01
p( Pci| Ptie-i, PLi ) 0.005 0.1 0.032  0
Pci (pu) -0.08 0.03   0.1 -0.005



C. Finding Training Data based on GA
 Here genetic algorithm is used to find a related set of

training data ( Ptie, PL, Pc) and to gain better results. It
produces a Pc vector and the simulation is run (with the
obtained Pc) for a special load disturbance. Then the
appropriate Pc is evaluated based on the gained ACE signal.

 The start population size is equal to 30 individuals and it
was run for 100 generations.

   To find individual’s eligibility (fitness), after finding the
corresponding Pc, the simulation is run for a special PL (a
signal with 100 instances) and with above Pc, for 100
seconds. The individual’s fitness is proportional to the average
distances of gained ACE signal instances from zero after 100
seconds simulation. Each individual that causes to smaller
fitness is the best one and the tuple ( Ptie, PL, Pc)  related to
that simulation is one row of the training data matrix [7].

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed control
design, some simulations are carried out. In these simulations,
the proposed controllers are applied to the three-control area
power system model described in Section II and III (see Fig.
4), and will be tested for the various possible load
disturbances. It is assumed that each control area includes
three Gencos and its parameters are given in [9].

Fig. 4 The proposed model for the three-control area

Scenario 1: As the first test case, the following large load
disturbances (step increase in demand) are applied to three
areas:

Pd1=100MW; Pd2=80MW; Pd3=50MW;

 The frequency deviation ( f) area control error (ACE) and
control action ( Pc) signals of the closed-loop system are
shown in “Fig. 5”.

Scenario 2: Consider larger demands by areas 2 and 3, i.e.

Pd1=100MW; Pd2=100MW; Pd3=100MW;
   The closed-loop responses for each control area are

shown in “Fig. 6”.
The simulation results for the test system illustrate the

capability of the proposed intelligent based LFC scheme. As it
is obtained from the above pictures the proposed method
causes the ACE and frequency deviation of all areas are
properly driven back to zero, the convergence speed of the
frequency deviation and the ACE signal to its final values are
good, also the generation control signal deviation ( Pc)
change is low and it smoothly goes to the steady state and
satisfies the system physical conditions well.

In summary, flexibility, higher degree of intelligence,
model independency, and handling of incomplete measured
data (uncertainty consideration) can be considered as some
important advantages of the proposed methodology.

(a)

(b)

(c)
Fig. 5: System responses in case 1, (a) area 1, (b) area 2, (c) area 3
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Fig. 6: System responses in case 2, (a) area 1, (b) area 2, (c) area 3

V. CONCLUSION

A new method for frequency regulation using a Bayesian
networks has been proposed for a three-control area power
system. The results show that the new algorithm presents a
desirable performance. Two important features of the new
approach, i.e. model independence from power system
parameters and flexibility in specifying the control objectives,
make it very attractive for frequency control practices.
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