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Abstract—Energy consumption scheduling to achieve low-power
generation cost and a low peak-to-average ratio is a critical com-
ponent in distributed power networks. Implementing such a
component requires the knowledge of the whole power demand
throughout the network. However, due to the diversity of power
demands, this requirement is not always satisfied in practical sce-
narios. To address this inconsistency, this paper addresses energy
consumption scheduling in a distribution network with connected
microgrids consisting of a local area with a determined demand
and neighboring areas with an uncertain demand. The total cost
and peak-to-average ratio minimizations are formulated as a
multiobjective optimization problem. In addition to a determin-
istic optimal solution, an adaptive scheduling approach is provided
with online stochastic iterations to capture the randomness of the
uncertain demand over time. Numerical results demonstrate the
effectiveness of the proposed adaptive scheduling schemes in the
following results obtained from optimal solutions.

Index Terms—Adaptive optimization, energy consumption
scheduling, microgrid, power grid, uncertain power demand.

I. INTRODUCTION

EPORTS ON energy consumption reveal the increasing
demand for electrical energy worldwide [1]. This in-
crease, along with growing environmental concerns, motivates
the idea of establishing new power systems with flexible and
intelligent programs of demand-side management. These pro-
grams run by utility companies aim to provide consumers with
reliable and cost-efficient energy and, at the same time, make
efficient use of the generation and transmission infrastructure.
While many of these programs are still under investigation, a
number of practical applications already exist in many countries
across the world [2]. Demand side can be managed by either re-
ducing or shifting the consumption of energy. While the former
can be efficient to some extent, the latter proposes shifting of
high-load household consumptions to offpeak hours in order to
reduce peak-to-average ratio (PAR) [3]. The high PAR might
lead to degradation of power quality, voltage problems, and
even potential damage to utility and consumer equipment.
With the advancement of smart-metering technologies [4]
and increasing interest in power distribution networks with
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two-way communications capability [5], load management has
been appeared in the form of energy consumption scheduling
(ECS) [6]. In the ECS, the power consumption time-of-con-
nected units is optimally scheduled so that some interesting
measures, such as generation cost and PAR, can be optimized
efficiently. This results in reducing the risk of getting into a
condition that may lead to a blackout. As an incentive that
subscribers follow ECS decisions, intelligent pricing schemes
in the form of lower utility charges should be provided. Conse-
quently, customers will be encouraged to shift their heavy loads
to off-peak hours. These issues motivate the design of ECS
with the aim of minimizing power generation cost and PAR.

Traditionally, demand-management programs use direct load
control, where portions of the system load are under the di-
rect operational control of utility companies [7], [8]. With the
emerging real-time pricing schemes [9], consumers would be
able to schedule their own demand following incentives pro-
vided by the utility. In a grid of appliances, given predetermined
daily total demand of each appliance, the works in [10] and [11]
propose real-time load scheduling schemes based on a multiob-
jective linear problem of cost and waiting time minimization.
Utility-based power scheduling, to enhance the customer ex-
perience and satisfaction degree of the scheduled power, has
been investigated in [12] and [13]. In particular, the work in
[12] presents power allocation as a social welfare maximization
problem.

With known prior information on the daily demand of all
connected consumers, power scheduling has been modeled as
a game between consumers in a grid toward cost minimization
in [14] and [15]. Under the assumption that the utility charges
consumers proportional to their demands, these works propose
incentive-based energy scheduling games with near optimal per-
formance. Power scheduling with uncertainty in renewable en-
ergy sources, but with given probability distribution, has been
handled using particle swarm optimization in [16]. Power dis-
patching with a nonconvex cost function has also been tackled
with an improved particle swarm optimization in [17] and in-
cremental consensus algorithm in [18]. The Markov chain has
been employed in [19] to design power scheduling policies in a
grid with random demand request arrivals but with known sta-
tistical characteristics.

The proposed ECS schemes in the literature mainly per-
form network-wide load management with the assumption of
the knowledge of the whole network demand a priori or at
least with known statistical characteristics. In other words,
a network operator should be aware of the whole network
demand in some way. Due to the diversity of power customers
ranging from household to industrial domains with uncertain
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demands, however, this case is not mostly valid. Alternatively,
an operator who is aware of demand in a local area, not other
neighboring areas, might be interested in ECS within this area.
The fact that aggregate power generation cost depends on the
network-wide demand necessities considering the impact of
uncertain demands in the design of the ECS.

To investigate the mentioned difficulty, in this paper, we con-
sider a distribution network connecting to a local area (LA) con-
sisting of several microgrids with known demand in average and
other neighbor areas (NAs) with uncertain demands. The net-
work operator performs ECS of demand in the LA considering
NAs demand as a random variable. This ECS is formulated with
two stochastic optimization problems—one with the objective of
the network-wide power generation cost minimization and the
other with the objective of PAR minimization. While these two
objectives are correlated in some extent, optimizing one does
not necessarily imply the optimality of the other.

These objectives are compared using optimal, adaptive, and
uniform scheduling schemes in terms of generation cost and
PAR. In the optimal one, the optimal solution of two underlying
problems is achieved with the assumption of the knowledge of
NAs demand in advance. Without this assumption for practical
purposes, we propose an adaptive scheme with online stochastic
iterations to capture the randomness of uncertain demands over
the time horizon continually. Finally, in uniform scheduling, the
demand of MGs in LA is uniformly distributed over the time
horizon regardless of NAs demand.

The paper is organized as follows. Background and modeling
is described in Section II. The cost and PAR minimization for-
mulations along with their solutions are presented in Sections III
and IV, respectively. Numerical results are given in Section V
and the paper concludes in Section VI.

II. BACKGROUND AND MODELING

A. Distribution Network With Connected Microgrids

A microgrid (MQG) is an interconnection of domestic loads
and low-voltage distributed energy sources, such as microtur-
bines, wind turbines, PVs, and storage devices. The domestic
load can be divided into sensitive/critical and nonsensitive/non-
critical loads via separate feeders. For the feeders with sensitive
loads, the local power supply, such as diesel generators or en-
ergy capacitor systems with enough energy saving capacity, are
needed to avoid interruptions of electrical supply. Each unit’s
feeder has a circuit breaker and a power-flow controller com-
manded by the central controller.

A simplified architecture of a distribution network organized
by a distribution company (Discoy) is shown in Fig. 1. This
network consists of N-connected microgrids in a LA, and
NAs which may belong to another company (Disco;). The
microsources and storage devices use power-electronic circuits
to connect to the MG. The MG can be connected to the network
by a point of common coupling (PCC) via a static switch. This
switch is capable of islanding the MG for maintenance purposes
or when faults or a contingency occur. Each MG can operate in
autonomous (isolated from the main grid) and grid-connected
modes. The performance measure in autonomous mode is the
reliability of stand-alone operation. However, in grid-connected
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Fig. 1. Local and neighbor areas in a distribution network.

mode, the demand load supplement is guaranteed all of the time
by the grid as a result of power sharing.

An MG central controller (MGCC) interfaces between an MG
and the distribution network (main grid). This controller facil-
itates a high-level management of the MG operation by means
of technical and economical functions. The microsource con-
trollers (MCs) control the microsources and the energy storage
systems. Finally, the controllable loads are controlled by load
controllers (LCs). For increasing reliability in the overall power
network, the MG systems must be able to have proper perfor-
mance in the connected mode. In this mode, the main grid is
responsible for controlling and maintaining the power network
in a desirable condition [20]-[22].

B. Distribution Network Operator (DNO)

The DNO deals with some overall responsibilities for the
distribution network (Disco) and the connected MGs, such as
interchange power between the main grid and the MGs. This
unit, which is located in the application layer of the distribu-
tion-management system (DMS), is acting in an economical-
based energy management between the main grid and the neigh-
boring MGs. It is similar to the existing supervisors for power
exchanges and economic dispatch in a conventional multiarea
power system [2], [23]. To meet the aforementioned global ob-
jectives, wide-area monitoring and estimation are needed for
many parameters and indices including fuel and storage con-
ditions, commercial power cost,and demand charge tariffs, MG
reliability, real/reactive power components (power factor), pre-
dicted weather, system constraints, and load pattern.

As shown in Fig. 1, DNO interfaces the main grid (Discoy )
with the connected MGs (in the LA) as well as other neighboring
grids (in NAs which may be covered by another Disco). DNO
also supervises the power-flow control and market operation.
This operator controls power flow from the main grid to the
MGs to be maintained close to the scheduled values.
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In the mentioned network, identifying the optimal consump-
tion/generation schedule to minimize production costs and to
balance the demand and supply, as well as online assessment
of security and reliability are the responsibilities of the DNO
unit. The DNO, together with the MGCCs, supervise the MGs’
market activities, such as buying and selling active and reactive
power to the grid and possible network congestions for transfer-
ring energy from a distribution network to the MGs in the local
area and other neighboring areas.

The mentioned global task for an interconnected power net-
work should be implemented through the cooperation of its var-
ious grids, on the basis of communication and collection of in-
formation about distributed energy systems and control com-
mands [24]. Due to the high diversity of generation and loads, an
interconnected network exhibits high nonlinearities, changing
dynamics, and uncertainties that may require advanced con-
trol and optimization strategies, such as the used methodology
in this paper. This paper focuses on the optimal/adaptive ECS
problem as an important objective of the DNO for the connected
MGs in a distributed electric network.

C. System Model

A network as shown in Fig. 1 is considered. This network,
owned by a Disco, is connected to a set N 2 {n:n =
1,..., N} of MGs operating in LA and other MGs working
as NAs, which may belong to a different Disco. It is assumed
that all MGs operate in the grid-connected mode. The DNO per-
forms ECS for MGs in the LA during a time horizon T 2 {t:
t =1,...,T}. The aim of ECS is to optimally manage and to
shift the LA demand to reduce power generation cost and PAR
within the power network. The demand of each MG,, in LA
during this interval is assumed to be a known value £, in av-
erage. However, the demand by MGs in NAs is assumed to be
an unknown value, denoted by ~.

Let p!, be the power provided to MG,, in LA during time
slot ¢. The objective of ECS is to determine a power set P 2
{pr}ZEETV to optimize a target performance measure and, at the
same time, to provide each MG,, with a determined demand
FE,, in average. Since the generation cost in the distribution net-
work depends on LA and NAs demands, the uncertainty of -y
should be taken into account in the determination of P. More-
over, these powers have strict minimum and maximum power
levels. This imposes a constraint that each pf, must be within
™" and p™*, minimum and maximum power levels, respec-
tively. In the mentioned network, the objective of DNO by im-
plementing ECS could be either to minimize power generation
cost or to minimize PAR. These objectives are discussed in sub-
sequent sections.

III. COST MINIMIZATION FORMULATION

The pricing of electricity can be used as a mechanism to en-
courage customers to follow a specified load scheduling. Var-
ious pricing schemes have been proposed by economists and
regulatory agencies such as flat pricing, critical-peak pricing,
time-of-use pricing, and real-time pricing. These schemes have
been also used in communications and transportation networks
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[25]. Among them, real-time pricing is motivated to be used in
the next generation power systems concerning its environmental
and economical gains [26], [27]. Accordingly, in the present
paper, an energy scheduling approach based on real-time gener-
ation cost is proposed, which can be used to establish a real-time
pricing scheme.

Let pt = 22:1 p!, + v(t) be the total amount of power gen-
erated at time £ to be delivered to LA and NAs. The power gen-
eration cost at this time can be denoted as a differentiable and
convex function of p’, denoted by C(p*). Accordingly, mini-
mizing the average generation cost during the time horizon 7 is

formulated as
mm—ZC (an + 1‘)) (D

n=1

1

LShrE wew e
t=1

pglin < pz < pglax Vn € ./\/’. VieT. (2b)

Constraints (2a) satisfy the required average demands by
MGs in LA. Constraints (2b) restrict the power levels within
some upper and lower bounds. This problem is convex and can
be solved using convex optimization techniques such as interior
point method (IPM) [28]. This requires the knowledge of v(¢)
for all ¢ in the beginning of the time horizon 7. However, this
assumption is not valid in practice as the DNO is not aware of
NAs demand a priori (i.e., in the beginning of the horizon).
Alternatively, we consider -y as an uncertain parameter in the
form of a random variable varying over the time, but without
any assumption on its probability density function (PDF). With
this assumption, (1) and (2) can be rewritten as

111111 E, (Z Pn + 'y) 3)
st. Eylpn] > E VneN (4a)
pIIlIIl < p7l < pIIldX vn E N (4b)

where E., denotes the expectation with respect to y. The afore-
mentioned problem is also convex. However, we are interested
in solving this problem progressively over time, when + is real-
ized at each time instant ¢.

The challenge in the solution of problem (3) and (4) is due
to the expectations that couple the scheduling over time. The
solution would be straightforward if one decouples the demand
constraints over time. This motivates the incorporation of (4a)
into the objective function and forms a Lagrangian function as

- Z /\n ([Ew[pn] - En)

L(P,A) (Z Pu + “/)
n=1
)
and the corresponding dual function as
D(A) = i%f {L(P,A): (4b)} (6)

where A = {\,, > 0},cn is the set of Lagrange multipliers
and inf represents infimum operation. The dual function pro-
vides a lower bound on the optimal solution of (3) and (4). The
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best lower bound is surely achieved by the corresponding dual
problem as

max D(A). @)

Prior to solving this problem in the dual domain, we first need
to evaluate D(A). L(P, A) can be rewritten as

(im+0 ZM%

Therefore, to evaluate D(A) in (6), we solve

N
(Z Pn + ’Y) - Z Anpn] (9)
n=1

st it < pa <™ (10)

N
—I—Z)\ E,.

®

L(P,A)

mm E,

Vn S /\/’.

For each value of +, this problem is convex and can be solved
using IPM [28] to obtain the optimal values {p;(7)},, ¢ -

Having obtained {p};(7)}, > the dual problem in (7) can
be solved using the subgradient method [29]. Beginning with
an initial A,,(0), given A, (#) at time #, the optimal values
{pfl*(’y)}nE./\/' can be obtained from (9), (10). Based on our
experience, we usually choose A, (0)’s values such that the
solution of the problem with relaxed constraints using these
initial multipliers lies within the feasible region of decision
variables, rather than the margin of feasible region. We then
update the Lagrange multiplier as

Mt +1) =)+ (B -, [°0)])T ap

where £, —E. [p!," (7)] is the subgradient of D(A) with respect

t0 A, v is a step size, and (2)* 2 max(z,0).

The gradient iteration (11) is efficient to find the optimal
scheduling. A key knowledge we need in (11) is the PDF of ~,
only with which the expected value E., can be evaluated. The as-
sumption of a known PDF of v may be reasonable for theoretic
studies. However, the importance of practical energy scheduling
schemes motivate the optimal strategy by learning NAs demand
on the fly. Interestingly, a stochastic gradient iteration can be de-
veloped to solve (7) without the PDF of ~ a priori. To this end,
we consider dropping E., from (11) to devise online iterations
for adaptive decisions, based on per slot realization (%), as

(B2l ()

where hats are to emphasize that these iterations are stochastic
estimates of those in (11). Provided that the random NAs de-
mand process is stationary and ergodic, the stochastic gradient
iteration (12) and the ensemble gradient iterations (11) consist
of a pair of primary and averaged systems [30]. The conver-
gence of such a stochastic gradient iteration can be established
statistically, provided that cv is small enough [31]. The above de-
scribed solution can be summarized as an adaptive cost-aware
ECS (ACA-ECS) scheme in Algorithm 1.

An(t+1) = An(t) + (12)
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Algorithm 1 ACA-ECS scheme

1: Initialization: £ = 0 and j\n(()) = Apit Y € N,
2: whilet < T do
3:  Generate a new NAs demand ~y(%).

4:  Determine optimal {p},(v(#))},c, from problem (9),
(10).

5: Update A, (t) using (12) forall n € A"
6: t=1%t+1.
7: end while

IV. PAR MINIMIZATION FORMULATION

In order to minimize PAR of the total instantaneous power
delivered to LA and NAs during the time period 7', a minmax
formulation is proposed with the objective of minimizing the
peak of this power. The objective is expressed as

N

: t
: t).
min max > ol + ()

(13)

n=1

Due to the unavailability of y(¢) a priori, this objective, along
with the already mentioned constraints in Section III, can be
translated into the problem

min s (14)

N
Z (15a)
E. [pn] > E, YneN (15b)
PRt < g, < pmax Yo e N (15¢)

where s is an auxiliary variable. The solution is mostly similar
to that of the cost minimization. The Lagrangian can be formed
as

IV
1) =3—> in (Exfpn] — En) (16)
n=1

and dual function as
D(w) = inf {L(P. ) : (15), (15)}  (17)

where pt = {5, > 0}, is the set of Lagrange multipliers. To
evaluate D (1), the following minimization problem should be
solved:

N
Il}:i)n 8§ — Z:l IJ/nIE-y [pn] (18)
st (15a), (15¢). (19)

Similar to the online learning iteration in Section III, the sto-
chastic estimation of each ,, (i.e., fi,) can be learned over the
time using

« +
b +1) = u(8) + o (B =l ((2))) 20)
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By these iterations, problem (18) and (19) at each iteration 7
can be rewritten as

N
. . _ A,n t +
min 5 Z:lu (t)ph, (21)
N
st.os> > ph4at)  VteT (22a)
n=1
prin < gt < pmax VneN,VieT. (22b)

Constraint (22a) can be expressed as s = s’ + Zﬁ;l pl +

~(t), where s’ > 0 is an auxiliary variable. Substituting s with
s"in (21), (22), we obtain

N
ins’ 1 — fi, (1)) Pt 2
min s’ + Z_jl( fin () p, (23)
st plin < pt <pIX Ypne N VEeT  (24a)
s > 0. (24b)

The solution for this problem is trivially achieved when s’ = 0
and each term (1 — fi,,(¢))p’, is minimized for p™» < pf <
p®x_ The latter is absolutely dependent on the sign of (1 —
fin(t)). Doing so, it is concluded that pf, = p™i if i, (¢) < 1,
Dy, = pp if i, (t) > 1, and pj, = (p™ + pj'™)/2 as a mid-
point between these two extremes if f1,,(£) = 1. This solution
results in an adaptive PAR-aware ECS (PAR-ECS) scheme in

Algorithm 2.

Algorithm 2 PAR-ECS scheme

1: Initialization: ¢ = 0 and i, (0) = ptinis ¥ € N
2: whilet < T do
3:  Generate a new NAs demand (7).

4: forn € AN do

5 if i, (t) < 1 then

6: P =Pt

7 else if i,,(¢) > 1 then

T

9 else

10: pl = g 4 )2
11: end if

12: Update fi,, (%) using (20) for all n € A.
13:  end for

14: ¢t =t+1.

15: end while

V. PERFORMANCE EVALUATION

A distribution network is considered in connection with a LA
consisting of N = 10 MGs and an NA. The ECS located in the
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Fig. 2. Generated NAs demand and the system-wide optimal demand.

DNO schedules energy consumption of MGs in LA during a
time horizon of length 6 h. The scheduling is updated every 1
min (i.e., T = 360). Average demands of MGs in LA are F =
(1/T,2/T,...,n/T,...,N/T], where n/T is the average de-
mand of MG,, in kilowatt-hours per unit of time [i.e., #,, in con-
straints (2a) and (15b)]. Minimum and maximum power levels
are p™" = [0,1,...,9] and p™*® = [5,6,...,14], respec-
tively. The power generation cost is considered to be quadratic
function [i.e., C(.) = (.)? in (1) and (2)], even though the pro-
posed solutions are valid for any convex cost function. The per-
formance of the proposed algorithms are evaluated in the fol-
lowing subsections.

A. Cost Formulation

First, we are interested in evaluating the impact of the pro-
posed ACA-ECS scheme in Algorithm 1 on the time-domain
curvature of the total grid demand in the presence of an un-
known NAs demand. We are also interested in comparing this
curve with that of the optimal solution in (1) and (2), albeit when
NAs demand is known in the beginning of the time horizon 7 .
Toward this end, NAs demand during this horizon is required
to be generated in some way. Here, we assume that this de-
mand is a normal random variable with a mean of 100-kWh per
unit of time and standard deviation o (i.e., v ~ N(100,0)).
Given these values, the optimal solution of the cost minimiza-
tion problem in (1) and (2) is obtained using IPM, once in the
beginning of the time horizon. In fact, it is a deterministic solu-
tion when the knowledge of NAs demand is fully available. It is
noteworthy that the ACA-ECS scheme still makes scheduling
decisions per time instant and at each instant only uses the cor-
responding NAs demand value. A typical realization of 7' = 0
36 samples of NAs demand with ¢ = 20 kWh and the corre-
sponding optimal total demand p' in (1) and (2) are shown in
Fig. 2. As observed, the optimal solution schedules LA demand
such that the system-wide total demand becomes smooth suit-
able for cost minimization. In fact, scheduling the LA demand
provides a diversity for the ECS to mitigate the stochastic nature
of NAs demand. Total demand using the ACA-ECS scheme and
the corresponding Lagrange multipliers in (12) are also shown
in Fig. 3. Intuitively, after some initial time slots, the behavior
of the total demand curve approximately converges to that of
the optimal solution in Fig. 2. This observation is completely
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Fig. 4. Generation cost per kilowatt-hour in cost formulation.

in accordance with the convergence of Lagrange multipliers of
(12) in Fig. 3.

Performance measures of the ACA-ECS and the optimal ECS
schemes, such as generation cost per kilowatt-hour and PAR,
versus the randomness of the NAs demand could be interesting
as follows. As another scheduling scheme, the results of uniform
ECS scheme are also included. In this scheme, the demand of
each MG,, in LA is uniformly distributed over the whole time
horizon, independent of the NAs demand (i.e., pl, = E,Vn €
N, t € T). This can also be considered as a deterministic solu-
tion. Cost and PAR performances versus the standard deviation
of v (i.e., o) are shown in Figs. 4 and 5, respectively. For each
instance of o, similar to the time-domain performance, we first
generate a data set with 7 = 360 samples of the distribution
N (100, o), as partially shown in Table I. This set is used to ob-
tain the optimal ECS solution once in the beginning of the time
horizon as well as to provide the ACA-ECS scheme with in-
stantaneous realized NAs demand. As shown in the first part of
Fig. 2, there is a typical generated data set with ¢ = 20 kWh.

As a common observation in Figs. 4 and 5, performance mea-
sures are getting worse as ¢ increases. In the case of cost mea-
sure, this is due to the fact that the considered squared cost func-
tion results in higher cost per kilowatt-hour for high demand
values in comparison with low demand values. The results in
PAR are based on the fact that the averages of both LA and
NAs demands are made constant when o increases. Considering
PAR as a fractional term of the peak demand over the average
demand, it is reasonable to conclude that PAR increases as o
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increases. Moreover, in Fig. 4, with an increase in &, the perfor-
mance gap between the compared ECS schemes and the optimal
one increases. In case of ACA-ECS, this is due to the fact that
the stochastic estimator (12) would be far from optimality with
the increase in the randomness of v(#). In case of uniform ECS,
the degradation effect of high randomness would be more se-
vere since this scheme does not take care of NAs demand in the
scheduling decisions.

Furthermore, in Fig. 4 and Fig. 5, the generation cost and PAR
performances of the ACA-ECS scheme outperform those of uni-
form ECS. This is reasonably expected as ACA-ECS takes ad-
vantage of the diversity in NAs demand to smooth the total de-
mand and therefore achieves a better performance. In the com-
parison between ACA—-ECS and the optimal solution, it is ob-
served that the optimal solution achieves lower cost. This is due
to the fact that this solution fully takes into account the knowl-
edge of NAs demand at the beginning of the time horizon for
the scheduling of LA demand. However, ACA-ECS makes a
scheduling decision adaptively per a time unit, when the de-
mand of NAs is available in that unit. Remarkably, the PAR of
ACA-ECS is comparable to that of the optimal solution. This
implies that the optimality of generation cost does not neces-
sarily imply the optimality of PAR too. This observation mo-
tivates the performance evaluation of PAR formulation in the
following.

B. PAR Formulation

In order to evaluate the efficiency of PAR formulation, the
generation cost per kWh and PAR performances of this for-
mulation are illustrated in Figs. 6 and 7, respectively. Similar
to the cost formulation in Section V-A, the results of the op-
timal solution in PAR formulation (optimal PAR) and uniform
scheduling (uniform PAR) scheme are also included. Since the
scheduling of the uniform strategy is independent of the objec-
tive function, the achieved results are the same in both cost and
PAR formulations. We take advantage of this equality and take
uniform strategy curves as references for comparison between
these formulations.

Comparing Figs. 4 and 6, it is observed that uniform sched-
uling was the worst in the former, whereas it is the best in the
latter. Considering the results of uniform scheduling as refer-
ence in both figures, we conclude that cost minimization formu-
lation is more cost efficient in comparison with PAR formula-
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TABLE I
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NAS DEMAND FOR SIMULATION

v (kWh)
o (kWh) |— ) 3 7 T [ 18T [ 182 [ 183 [ T84 [ .. ] 357 ] 358 [ 339 | 360
5 108.6 90.5 103.8 86.7 99.6 99.3 96.2 98.5 99.0 99.7 103.0 | 100.3
10 95.0 100.9 81.7 90.5 85.3 109.4 | 109.9 | 101.0 87.1 100.9 | 106.7 95.1
15 115.1 93.3 1143 | 108.8 84.7 76.1 98.8 76.5 80.3 118.9 81.3 118.2
20 96.6 117.1 126.0 93.8 102.3 92.6 88.9 80.3 98.4 59.6 123.7 | 126.9
25 678 | 932 | 1154 | 1217 727 | 1150 | 785 | 1048 490 | 647 | 914 | 1117
30 118.2 | 100.5 | 105.0 | 118.4 128.5 | 140.5 | 113.8 | 151.7 78.2 114.8 75.1 110.8
35 125.9 | 130.7 16.7 121.5 127.5 85.5 87.0 87.7 90.0 93.6 78.3 89.3
40 136.9 65.1 128.4 | 82.07 116.7 | 112.5 | 75.01 116.5 139.2 87.1 82.3 126.6
185 : : ‘ C. Comparison With Game Theory
—%F— Optimal PAR
180 —©—— PAR-ECS One interesting proposed approach for power scheduling in
~ —e— Uniform PAR . . .
s nfom the literature is game theory [14], [15]. Customized to our work,
g p in this approach, each MG in LA autonomously updates its own
§ 170l | strate'gy (de.mand), given strategies (demands) by othel.r MGs.
2 In this section, the performance of our proposed adaptive ap-
g 165 proach is investigated in comparison with the game-theoretic
© approach. Without loss of generality, the cost minimization for-
18 mulation (i.e. ACA-ECS algorithm) is considered even though
(e : , ‘ ‘ . ‘ the comparison is also valid for PAR minimization formulation.
5 10 1520 (kWh2)5 0 3% 4o To apply the game-theoretic approach to solve (1) and (2), we
(o}

Fig. 6. Generation cost per kilowatt-hour in the PAR formulation.

2 : : - o)
=—RF— Optimal PAR
—©— PAR-ECS
181 g Uniform PAR p

& (KWh)

Fig. 7. PAR in PAR formulation.

tion. In terms of PAR, the optimal solution in the PAR formula-
tion achieves the lowest PAR. This is reasonably expected since
this solution takes NAs demand into account a priori. In com-
parison with the uniform strategy, the PAR of PAR-ECS scheme
is high. This is due to oscillations between min and max power
levels in PAR-ECS scheme in Algorithm 2. More important,
this implies that PAR performance of our proposed adaptive ap-
proach in cost minimization formulation even outperforms its
equivalent one in the PAR minimization formulation. This ob-
servation along with the lower generation cost in cost formula-
tion demonstrates that our proposed adaptive approach achieves
more efficient results with this formulation compared with PAR
one. Also the proposed adaptive approach is a trade off between
the optimal (full NAs demand) and uniform (no NAs demand)
schemes in terms of generation cost and PAR minimization.

first need to make it clear if this approach assumes either known
or unknown NAs demand. Either case results in a different solu-
tion. In the case of known demand a priori, the game-theoretic
approach takes this knowledge into account to obtain the solu-
tion immediately in the beginning of the time horizon 7. As
shown in [14] and [15], the performance in this case is that of
the optimal solution, due to the convexity of problem (1) and
(2). In other words, the game-theoretic performance translates
to the optimal solution, shown in the appeared figures.

Under the assumption that NAs demand is unknown in ad-
vance, the game-theoretic approach has to make scheduling de-
cisions per time instant, once NAs demand value is realized. In
other words, this approach decouples problem (1) and (2) over
time. Suppose that MG,, wishes to determine p?, at time instant
¢ in the presence of NAs demand ~(¢) and given demands by
other MGs in LA (i.e., pl,, eN'n,N?ﬁn). Revising problem (1) and
(2) with this setup, it is equivalent to

min ¢ (pl, + A) (25)
st ph > B, (26a)
Py < Bl < ™ (26)

where A 2 > wizn Py + (1) takes a constant value. The
trivial solution of this problem, assuming F,, > pf{lin, is always
pl, = F,. In other words, the performance of the game-theo-
retic approach in this case is that of the uniform scheduling in
the appearing figures. Numerically from Fig. 4, the generation
cost of game theory in the case of known NAs demand is 86%
of that in the case of unknown NAs demand. Similarly, the PAR
of known NAs demand is 87% of that in unknown NAs demand,
derived from Fig. 7.

In summary, the game-theoretic approach outperforms the
proposed adaptive one if the knowledge of NAs demand is fully
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taken into account in the beginning of the time horizon. On the
other hand, our adaptive approach achieves better performance.

VI. CONCLUSION

The unpredictable demand throughout a distribution network
avoids global and optimal energy consumption scheduling.
Alternatively, we resort to local and suboptimal scheduling
schemes that adaptively perform energy scheduling. In this
paper, a stochastic model of scheduling in a local area of a
network with the objective of cost minimization and peak-to-av-
erage ratio minimization has been presented. In both cases, it
is shown that optimal scheduling can be followed by an online
iteration that captures the randomness of neighbor grids de-
mand adaptively. This approach makes decisions progressively
over time. Indeed, the proposed adaptive schemes can provide
an estimation of the optimal solution. Through simulations, we
concluded that the general performance of cost minimization
formulation outperforms the peak-to-average ratio minimiza-
tion formulation with an underlying adaptive approach.
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