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Abstract— This paper presents an intelligent control approach 
to optimally tune control parameters utilized in the control 
structure of a microgrid (MG) so that the voltage and frequency 
of islanded MGs return to the nominal values under occurring 
sudden changes in load. The proposed approach is based on 
restoring the voltage and frequency by using online tuning of the 
control parameters by means of an intelligent self-optimizing-
based MG central controller (MGCC).  The MGCC is used in 
order to implement an optimal secondary voltage/frequency 
control. An online ANN tuner is applied to the system to adjust 
the secondary controllers' parameters. The main advantage of 
online ANN-based MGCC is independency from human actions 
under occurring disturbances and also in industrial and 
uncertain environments. Simulation results are presented to 
show the feasibility of the proposed intelligent approach. 

I. INTRODUCTION 
Microgrids (MGs) are local grids including several 

different technologies such as power electronic devices, 
renewable energy sources (RESs), telecommunications and 
storage devices that can be operated in two operating modes: 
connected and islanded modes. Due to existence of these 
technologies diversity in MGs, uncertainty in the RESs as well 
as other modern power systems components, and physical 
disturbances, intelligent control structures are essential to 
provide stability and effective operation of MGs. To preserve 
desirable performance and economic operation, various 
control units such as active/reactive power control, voltage 
and frequency regulation, angle synchronization process 
between MG and the main grid, energy management, 
economic optimization and system recovery are used in MGs 
[1].  

According to IEEE Standard 1547 [2], the existing 
controls must supply the required active and reactive powers 
and provide frequency and voltage stability. In MGs, a 
hierarchical control structure with different levels has been 
defined. Typical control structure of a MG is shown in Fig. 1 
[1]. There are two local controllers: microsource controller 
(MC) and load controller (LC). The MCs locally control 
voltage and frequency of each distributed generation (DG) and 
the LCs provide load control capabilities at the controllable 
loads [1]. In [3], three control layers: primary (local), 
supplementary (secondary) and global (tertiary) are defined in 

order to standardize MGs operation. The primary control 
consists of initial voltage and current control loops in the DGs. 
To achieve zero deviations of voltage and frequency of the 
MG after every change in load or generation, the 
supplementary control is considered. The global control 
manages the MG to work as economic and to organize the 
relation with the main grid in the connected mode.  

 
Fig. 1. A hierarchical control for reliable operation of a MG [1]. 
 

In [1], another layer named emergency control is 
presented. The emergency control is responsible to identify all 
types of contingencies and to select proper preventive and 
corrective actions. This preventive/corrective decisions are 
exported from the MG central controller (MGCC). The 
MGCC exchanges information with distribution management 
system/distribution network operator (DMS/DNO) to manage 
the MG operation in the connected mode. 

Recently, two online intelligent secondary controllers in 
islanded MGs [4], [5] are proposed. In both works, intelligent 
techniques such as fuzzy logic (FL) combined with particle 
swarm optimization (PSO) and artificial neural network 
(ANN) are used for optimal tuning of the conventional 
proportional-integral (PI) controllers. The PI parameters are 
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automatically tuned according to the online measurements. 
The online controller provides a desirable performance in 
different operating conditions. But, these control structures 
have been only applied to the frequency model of MGs and a 
complete model of MG has not been considered. In this paper, 
a control structure containing inner control loops, droop and 
secondary control loops for automatic regulation of the MG's 
voltage and frequency is presented. In order to minimize the 
voltage and frequency deviations of MGs caused by change in 
load, a self-tuning structure based on ANNs changes value of 
the control loop parameters, optimally.  

II. CONTROL STRUCTURE  
A. Power and Inner Controllers 

Consider an islanded MG as shown in Fig. 2. This MG 
consists of three inverter interfaced Distributed Generations 
(IIDGs) (220V, 50Hz) and two load banks [6]. Control 
structure of each IIDG is depicted in Fig. 3. All the measured 
signals in this structure are in the d-q frame. The power 
section consists of inverter, a pulse width modulator (PWM), 
an output LC filter and a coupling inductor. In comparison 
with fast dynamic of inverter, the DC side can be considered 
as an ideal DC source and its dynamics can be neglected [7]. 
The local controllers are divided into three parts: power, 
voltage and current controllers. The power control loop sets 
the voltage magnitude and frequency as reference values for 
the inverter output voltage/frequency according to the droop 
characteristics of P/f and Q/v [6, 8]. Then, the voltage and 
current controllers are designed to reject high frequency 
disturbances [9]-[11].  
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Fig. 2. An islanded MG with three IIDGs and two load banks 
 

Fig. 4 shows scheme of the power controller. In order to 
remove instantaneous fluctuations in the power calculations, 
instantaneous active and reactive power components p and q 
are passed through two low-pass filters with cut-off frequency

.cω In order to locally supply the required power among 
IIDGs, the P/f and Q/v droop controls are designed for 
determining the frequency and voltage magnitude references. 
Interested readers can find a simplified mathematical model 
for a MG with various DGs in [4, 12]. As shown in Fig. 4, m 
and n are the frequency and voltage conventional droop 
coefficients. The conventional frequency and voltage droop 
methods (P/f and Q/v droop characteristics), taken from 
conventional power system controls have limitations, 
especially when the line impedances between the IIDGs and 
loads have a significant resistive component. Considering that 
the proposed intelligent MGCC monitors the MG system as 
online, hence this problem can be appropriately solved by 
online tuning of the PI secondary voltage and frequency 
controllers. Here, the output voltage magnitude reference is 
aligned to the d-axis and the q-axis reference is set to zero. 

Fig. 5 shows the inner control loops containing initial 
voltage and current controllers. Two conventional PI 
controllers are implemented to track the voltage magnitude 
reference and to control output filter inductor current. The 
feedforward terms shown in Fig. 5 are used to improve 
transient performance and compensate for the coupling of the 
d and q dynamics [11]. Here, F is the feedforward voltage 
controller gain. 

B. Secondary Controllers 
Secondary controllers are classified into central controllers 

cluster and they are used in order to compensate steady state 
errors uncompensated by droop controllers. Secondary voltage 
magnitude and frequency controllers used in this paper are 
shown in Fig. 6. 

 

Fig. 4. Power controller. 

 
  

 

 

 



Fig. 3. Control structure of the IIDGs 
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Fig. 5. Inner control loops: a) voltage controller, b) current controller. 

 

Fig. 6. Secondary voltage magnitude and frequency controllers 

,pfk ,ifk ,pEk and iEk are the PI controllers parameters. The 
frequency is instantaneously calculated and is compared with 
the nominal value. The frequency deviation after passing 
through the PI frequency controller is added into the power 
controller output (see Fig. 4). This process is reiterated for the 
voltage deviations. If these PI controller parameters are 
properly selected, the secondary PI controllers play in the role 
of voltage and frequency deviation minimizers. 

III. ANN-BASED ONLINE TUNING  
As explained, to return the system voltage and frequency 

to the nominal values, a supplementary control loop is used 
that is called secondary control. This control is commonly 
done by the conventional PI controllers to regulate the 
voltage and frequency deviations toward zero after every 
change in the load or supply. The PI parameters are applied to 
the system after initial tuning by try and error method. If 
operating conditions are varying, obtaining an optimal 
response will be difficult. Recently, [4], [5] and [13] have 
used intelligent and evolutionary algorithms to tune the 
control parameters. The main objective of such online tuning 
is to implement a self-tuning system so that could operate 
with a more independence from human actions in an 
industrial and uncertain environment [14]. In this section, an 
ANN-based MGCC is presented to automatically tune the PI 
parameters.  

The ANN is a parallel computational system including 
several simple processing components connected together in 
a specific way in order to perform a particular task. Some 
advantages of ANNs are capability of parallel processing, 

learning, generalization and fault/noise tolerating. The 
weights updating and networks training is done by two basic 
methods: feedforward and feedback processes. The feedback 
process has three methods: supervised, unsupervised and 
reinforcement learning [15, 16].      

Fig. 7 shows schematic diagram of the proposed central 
controller scheme for the ANN-based online tuning MG 
voltage and frequency control. When the operating conditions 
of the MG changes due to change in loads or outgoing a DG, 
the voltage and frequency of the MG are deviated from its 
nominal values. The settled coefficients of the PI secondary 
voltage and frequency controllers tuned by try and error 
method may cannot immediately return the voltage and 
frequency to their nominal values. In case of a more serious 
event or a contingency, the previous coefficients of the 
secondary controllers may not return the MG voltage and 
frequency to the nominal values or even it leads the MG to be 
collapsed. To avoid this problem and for better performance of 
the MG under events and sudden changes in load, an ANN-
based intelligent control unit named MGCC collects the 
information about the voltage and frequency of all DGs and 
Loads. The collected data are considered as the ANN inputs. 
A corrective decision for optimizing the secondary 
controllers’ behavior is sent to each DG. The ANN plays role 
of an online optimizer for the PI control parameters. By 
getting input-output data based on some certain ANN learning 
rules namely the back-propagation rules, the weights are 
adjusted and an appropriate control signal is recommended to 
each DG control structure. 

 

 

 



 

Fig. 11. Overall structure of online central controller. 

To use ANNs in the optimization tasks, it is necessary to 
have a mathematical model for neural networks. Fig. 8 shows 
a simple mathematical model for a neuron as the basic 
element of an ANN. A neuron consists of three basic 
components: weights Wj=[w1 w2 … wn], bias θ, and a single 
activation function f(net). The inputs xj are multiplied by 
related weight of the neuron connection. The bias θ is the 
magnitude offset that is applied to the activation function of 
the kth node output y(k) as follows [17]: 

1
( ) ( )

n

j j
j

y k f w x k θ
=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑  (1) 

The activation function f(net) can be selected as 
logsigmoid, sign, tansigmoid or other functions. For learning 
algorithms such as back-propagation, derivative of the 
activation function ' ( )f net is necessary. So, the selected 
activation function must be differentiable.  

 
Fig. 8. Typical mathematical model of a neuron. 
 
The employed ANN structure for tuning the control 

parameters is shown in Fig. 9. The desired frequency fd and 
voltage Vd are considered as the input vectors. Usually, 
number of hidden layer’s neurons are selected as twice of the 
input layer’s neurons. In this structure by try and error 
method, ten linear neurons, and twenty nonlinear neurons are 
considered for input and hidden layers, respectively. The 
advantage of using the nonlinear functions is to perform a 
smooth updating of weights. There are three IIDGs in the MG 
shown in Fig. 2 and each IIDG has two secondary controllers 
(voltage and frequency controllers). The number of output 
layer's neurons is equal to the number of the control 
parameters. Therefore, twelve linear neurons are considered 
for the output layer. W1 and W2 are weight vectors of the 

hidden and output layers, respectively. In the feed-forward 
process, the values of hidden layer and then the output layer 
are provided by applying the input vector.  The outputs of 
frequency (f) and voltage (V) of each IIDG are compared with 
desired vectors yd (nominal values: 220V and 50Hz). As 
shown in Fig. 9, the feedback process is based on supervised 
learning. There are several learning methods for supervised 
learning such as widrow-hoff, back-propagation, and 
correlation learning methods. In the proposed structure, the 
back-propagation is selected. Flowchart of the back-
propagation learning algorithm is shown in Fig. 10. The 
learning procedure is done to minimize the function given by 
(2), where y and yd are measured and desired output variables, 
respectively.  
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Here, yd is the nominal values of voltage and frequency 
(yd=[220 50]). The error (e) is employed to update the 
weights as follows. 

2 2 2 2( 1) ( ) ( ) k jW k W k W W k Hηδ+ = + Δ = + (3) 

1 1 1 1( 1) ( ) ( )W k W k W W k Xησ+ = + Δ = +  (4) 

where, 1WΔ and 2WΔ are obtained by equations (5) and 
(6), respectively.  
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Fig. 9. ANN structure used for tuning the MG control parameters. 
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Fig. 10. Flowchart of back-propagation learning algorithm for updating 
weights [17]. 

All symbols used in Equations (5) and (6) can be visible in 
Fig. 10. The small positive constant is the learning rate. The 
learning process will continue to reach the defined minimum 
error [16, 17]. 

IV. SIMULATION RESULTS 
To evaluate performance of the proposed control 

structure, the islanded MG shown in Fig. 2 is carried out 
under various load changes. To illustrate the dynamic 
response of the MG system, the proposed control system is 
examined in face of a multiple step changes in load. In times 
0.3, 0.5, 0.7, 0.9 and 1.1, step changes are occurred in loads 1 
and 2 as given in Table I. All numerical data of IIDGs and 
lines have been given in [6]. After applying the load changes 
scenario to the MG, the system response including voltage 
and frequency profiles are obtained as shown in Fig. 11 and 
Fig 12, respectively. these results shows that existence of the 
proposed ANN-based MGCC remains the MG's voltage and 
frequency profiles in the nominal values range under 
occurring severe disturbances such as sudden changes in load.  

The ANN-based-online tuning shows a desirable 
performance in terms of settling time and minimization of the 
voltage and frequency deviations (steady state errors). 

 

Fig. 11. Voltage profile under sudden load changes.  

 

Fig. 12. Frequency profile under sudden load changes. 

TABLE I 
LOAD CHANGE SCENARIO 

Time duration [s] Load 1 Load 2 
0-0.3 100 +200mH  150 +100mH+30μF  

0.3-0.5 50 +100mH  100 +10μF  
0.5-0.7 0  0  
0.7-0.9 40 +5μF 10 +50μF 
0.9-1.1 5 +10mH  200 +10mH+150μF  

1.1-1.3 5 +10mH  500 +10μF  
 

V. CONCLUSION 
An important issue in the ac microgrids is simultaneous 

regulation of voltage and frequency in the presence of 
disturbances such as sudden load changes. In practice, simple 
PI controllers usually used. These controllers have a poor 
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performance in the presence of serious disturbances. This 
paper has introduced an intelligent centralized control strategy 
to restore the voltage and frequency of islanded MGs by 
adjusting the secondary controllers' parameters. In the 
proposed control structure, utilizing an ANN, an MG central 
controller (MGCC) has implemented to the MG for online 
tuning/updating of the secondary voltage/frequency 
controllers parameters under occurring disturbances. The 
simulation results showed that the proposed control strategy 
has a desirable performance in restoring voltage and frequency 
of MG and removing steady state errors. 
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