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A B S T R A C T

In this paper, the decision making problem of microgrids (MGs) in simultaneous participation in the energy and
reserve markets under uncertainty is investigated using a two-level framework. In the first level, the un-
certainties of wind speed, solar radiation, probability of calling reserve, energy and reserve market prices, and
demand are modeled using their probability distribution functions regarding which the operation problem of MG
operator (MGO) is formulated as a two-stage stochastic optimization approach. The expected total cost and the
amount of the provided reserve by the MGO for the reserve market are the output decisions of this problem
which are considered as the parameters in the second level problem. The uncertainty of the accepted reserve by
the market regarding the required reserve of the system and the behavior of the market players are modeled
using the information gap decision theory (IGDT) approach as the second level problem. Therefore, the risk of
the MGO is controlled using the conditional value at risk (CVaR) and IGDT risk-aversion parameters. Applying
the proposed model on the 15-bus modified MG and 40-bus real test system shows the optimal decisions of the
MGO in both markets to manage its uncertainties. Moreover, the sensitivity analysis is done to investigate the
behavior of the MGO with changing the risk aversion parameters.

1. Introduction

1.1. Motivation and aim

The electrical energy systems have a large share in producing the
carbon dioxide (CO2) emissions. Without any revisions in the electrical
energy generation sources, the emission production by these systems
will increase in the future to meet the developing electrical energy
demand. To solve this challenge, renewable energy sources (RESs) have
used as the cleaner production sources to supply the electrical energy
demand so that many countries consider the RESs in the future power
generation portfolios scenarios. For example, the goal of California is
achieving to a 50% renewable portfolio standard by 2030 [1]. How-
ever, individual integration of these resources in the electrical energy
systems creates several operational challenges for the transmission and
distribution system operators. To reduce them, the RESs can be in-
tegrated with distributed generators (DGs) and energy storages (ESs) to
meet the local demand under the concept of micro-grids (MGs).
Therefore, the MGs facilitate the integration of the RES in the electrical
distribution networks and play an important role in the future electrical
energy system to meet the demand with low emission pollution, low

energy losses, and low investment and operation costs.
The MGs participate in the energy markets to purchase the required

energy from the market or to sell the extra energy to it. On the other
hand, equipping the MGs with the fast-response energy resources give
the ability to them to provide the reserve to the independent system
operator (ISO). In some markets, for example Ontario electricity market
[2], the joint optimization is done for the energy and reserve markets
where the bids and offers in the energy market and offers in the reserve
market are evaluated at the same time. In such markets, an appropriate
decision making framework is required for the market players such as
MGs to determine their optimal decisions in both markets, simulta-
neously. Regarding the small capacity of the MGs in comparison with
other market players, they act in these markets as the price-taker
players. Participation of the renewable energy-based MGs in both en-
ergy and reserve markets has the two main uncertainties. The first one
is related to the output power of RESs, probability of calling reserve,
energy and reserve market prices and demand which have impact on
the decisions of the MGs in both markets and the second one is related
to the market clearing process which is described in detail as follows.

The amount of purchased energy by the MGs from the energy
market is considered as the first block of the demand curve. On the
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other hand, the amount of sold power by them to the energy market is
considered as the first block of the supply curve. Therefore, all the bids/
offers of the MGs in wholesale energy market are accepted by the ISO.
This is while all amount of the reserve suggested by the MGs to the
reserve market may not be accepted because of the amount of the re-
quired reserve of the system at that time and the behavior of other
market players. Therefore, the uncertainty related to the amount of the
reserve which will be accepted by the ISO has the important impact on
the decisions of the MGs.

These uncertainties, i.e. the output power of RESs, probability of
calling reserve, energy and reserve market prices, demand, and the
amount of reserve should be modeled in the decision making problem
of the MGs in the energy and reserve markets which is the aim of this
paper.

1.2. Literature review and contributions

The operation problem of the MGs considering their participations
in wholesale energy and reserve markets has investigated in many
studies. In [3], an optimal energy dispatch for a grid-connected MG
including distributed energy resources (DERs) and demand response

(DR) is proposed. In [4], the non-linear DR programs are utilized in the
energy management problem of a grid-connected MG. The optimal
scheduling of the MG's resources is determined using an intelligent
technique based on recurrent neural network with the aid of Ant-Lion
Optimizer (ALO) algorithm in [5]. The authors of [6] proposed an en-
ergy management model for a grid connected MG with responsive loads
and DERs which is solved using Genetic algorithm. In [7], a short-term
generation scheduling of a grid-connected MG is formulated for parti-
cipating in day-ahead markets in the presence of DR programs. In [8], a
novel energy scheduling system based on a rolling horizon strategy is
implemented for a renewable-based real island MG. In these studies
[3–8], the operation problem of the MGs is modeled when they parti-
cipate in only the energy markets.

Optimal offering strategy of a low voltage renewable-based grid-
connected MG in the energy and reserve markets is investigated in [9].
The authors of [10] proposed a new techno-economic framework for
operation problem of the MGs considering energy and reserve markets
as well as to provide the novel reliability services. In [11], the operation
problem of the MGs in grid-connected and islanding modes is modeled
in which the required spinning reserve is specified to improve the re-
siliency of isolated MG. A double-layer including schedule and dispatch

Nomenclature

Acronyms

CVaR Conditional value at risk
DER Distributed energy resources
DRP Demand response program
DG Distributed Generator
EM Energy market
ES Energy storage
ETC Expected total cost
IGDT Information gap decision theory
MG Micro grid
MGL Micro grid load
PV Photovoltaic system
RES Renewable energy sources
RM Reserve market
TC Total cost
WT Wind turbine

Indices and sets

n NDG, Index and set of DGs
i, j, NB Index and set of buses
nl, NL Index and set of loads on buses
l, NWT Index and set of WTs
m, NPV Index and set of PVs
k, NES Index and set of ESs
s S, Index and set of scenario
t T, Index and set of time period

Variables

Pn t
DG
, /Rn t

DG
, Output power/reserve of DGs (kW)

Pnl t
IL

, /Rnl t
IL

, Interruptible power/reserve of load (kW)
−Pi t s

Grid in
, , / −Pi t s

Grid out
, , Power exchange with main grid in scenario s (kW)

Rt
Dis Reserve provided by DERs to ISO (kW)

Pl t s
WT
, , / Pm t s

PV
, , Output power from WT/PV (kW)

Pk t s
ES
, , /Rk t

ES
, Power/reserve of ESs (kW)

Pk t s
charge
, , Charging power of ES (kW)

Pk t s
discharge
, , Discharging power of ES (kW)

Ek t s
ES
, , The stored energy in ESs (kWh)

Pi t s
D
, , The difference between the initial load and the amount of

load interruption (kW)
S P( )i t s

D
, , Revenue from selling energy to loads (€/kWh)

Pi j t s
InJ
, , , Injection power between buses (kW)

Pi j t s
Flow
, , , Power flow between buses (kW)

Pi j t s
loss
, , , Power losses in lines (kW)

Vi t s, , Voltage magnitude of bus i and time t in sth scenario
Ii j t s, , , current magnitude between bus i and j in time t and sth

scenario

Parameters

βIGDT IGDT risk averse parameter
βCVaR CVaR risk averse parameter
ψIGDT IGDT risk taker parameter
ρs Probability of each scenarios
Cn

DG Cost of DGs power generation (€/kWh)
Ct

IL Cost of interruptible load (€/kWh)
Ct s

EM
, Energy market cost in scenario s (€/kWh)

Ct s
RM
, Reserve market cost in scenario s (€/kWh)

κt s
RM
, Probability of calling reserve in scenario s

Pnl i t s
Load

, , , The amount of initial MGL (kW)
ηGrid Efficiency of the MG’s transformer
ηES Efficiency of the energy storage system
Ri j, Resistance of the lines between buses (Ω)
Zi j, Impedance of the lines between buses (Ω)
V
_

Minimum voltage of each bus (V)

V Maximum voltage of each bus (V)
Pk

ES Maximum charging/ discharging power of a ES unit (kW)
P

n

DG
_

/Pn
DG Minimum/maximum output power from DGs (kW)

Pnl t
IL

, Maximum interruptible load (kW)
P

l t s

WT
_ , ,

/Pl t s
WT
, , Minimum/maximum output power from WTs (kW)

P
m t s

PV
_ , ,

/Pm t s
PV

, , Minimum/maximum output power from PVs (kW)

−P
k

ES charge
_

/ −Pk
ES charge Minimum/maximum charging power of ESs

(kW)
−P

k

ES discharge
_

/ −Pk
ES discharge Minimum/maximum discharging power of

ESs (kW)
E

k

ES
_

/Ek
ES Minimum/maximum energy of ESs (kWh)

−P̄Grid in/ −P̄Grid out Maximum exchange power with main grid (kW)
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layers is proposed in [12] for the MG energy management in both island
and grid-connected modes in which the errors between forecast and
real-time data are managed using the coordination control of the two
layers. This approach uses an adequate reserve capacity in the schedule
layer, then allocating it in the dispatch layer to deal with the in-
determinacy of uncontrollable units. In [13], a grid-connected MG en-
ergy and spinning reserve optimization method is applied in the op-
eration problem in which the provided reserve by sources is not sold to
the reserve market and regulated within the MG. In [14], a novel fuzzy
system-grey wolf optimization based method is presented for optimal
energy management and reserve as well as ES sizing in a standalone
MG. In [15], a comprehensive analysis for a hybrid MG energy man-
agement, consisting of DR and internal power market, is done. In [16],
a co-optimization approach for energy and reserve in a stand-alone MG
is formulated. The problem of MGs is modeled in these studies [9–16]
considering the participation of the MGs in both energy and reserve
markets.

The main problem of the MG operator (MGO) is to model the un-
certain parameters in its decision making problem. These parameters
including the output power of RESs, load consumption and energy and
reserve market prices. Therefore, the risk-based optimization ap-
proaches are needed for the MGOs to model the risk of these parameters
on their decisions. The strategies proposed in the mentioned studies for
controlling the uncertainties are described in details as follows.

The uncertain parameters are not considered in the operation pro-
blem of the MGs in [3,6,12] and the problem is modeled as a de-
terministic optimization approach. The authors of [5,8–11,14,15] have
developed probabilistic and stochastic optimization approaches in
which different scenarios are generated to model the uncertain para-
meters and the results of the MGs decisions in each scenario are de-
termined by the proposed approach. However, they are not proposed
any risk management approaches to control the risk-level of the MGO in
the decisions. In [5], a recurrent neural network is employed to over-
come the uncertainty and prediction error. In [8], a neural network for
two day-ahead electric consumption forecast is designed to model the
uncertainty. In [9], the uncertainties of energy and reserve prices are
modeled using the lognormal PDF and the Latin Hypercube Sampling
method is applied to generate appropriate scenarios. In [10], a sto-
chastic approach is considered based on Monte Carlo simulation for the
calculation of the dynamic price signals to incentive MGs for the pro-
vision of reliability services. In [11], a two-stage stochastic programing
approach is used for optimal scheduling of a resilient MG considering
the uncertainties of wind energy, electric vehicles (EVs), and real-time
market prices. In [14], a fuzzy system-grey wolf optimization method is
introduced to tackle the RESs uncertainties (solar irradiation, wind
speed and tidal speed). In [15], the uncertainties of load, wind speed,
and energy prices are modeled using an stochastic linear programming
approach.

The authors of [4,16] used conditional value-at-risk (CVaR) index as
an appropriate tool for the risk management regarding which the de-
cision-making of MGOs is modeled as a risk-based two-stage stochastic
programming to model the uncertainties of RESs and load consumption.
In [7,13], information gap decision theory (IGDT) approach is em-
ployed to investigate the risk level of MGO's decisions. In [7], the new
IGDT approach is used for modeling the market price uncertainty to
create the step-wise bidding strategy of a MG. In [13], an improved
IGDT-based system spinning reserve robust optimization model is de-
veloped to maximize the maximum allowance of system uncertainty
while taking the operation cost, system operation mode, and RESs pe-
netration rate into consideration.

Although the effective studies are done on the optimal operation of
the MGs in the energy and reserve markets considering the un-
certainties, there are two main research gaps which should be ad-
dressed. These gaps are:

• In the most studies which model the participation of the MGs in the
reserve market, the reserve market price is only considered as the
uncertain parameter. While the amount of the MGs' accepted reserve
by the ISO is an important uncertain parameter regarding the un-
certainties of the total reserve required by the ISO and the uncertain
behavior of other reserve market players.

• In the most studies, the risk management of the MGs are modeled
using only one parameter. In fact, the risk of MGs in decisions re-
garding all uncertain parameters are only controlled by the one risk
parameter. Meanwhile, the different risk modeling approaches
should be employed by the MGs to manage the risk of the different
parameters on their decisions.

In this paper, a new decision-making framework for the participa-
tion of the MGs in the energy and the reserve markets is proposed in
which these gaps are also addressed. In this framework the un-
certainties are modeled in the problem of the MG for the parameters
with known probability distribution functions (PDFs), i.e. wind speed,
solar radiation, probability of calling reserve, energy and reserve
market prices, and demand, as well as for the parameter with unknown
PDF, i.e. the amount of accepted reserve. Moreover, two risk aversion
parameters are proposed to control the effect of these uncertainties on
the decisions of the MG in the markets. The proposed framework is
mathematically modeled as a two-level problem using an hybrid sto-
chastic-IGDT approach. In the first level, the risk-based two-stage sto-
chastic approach is employed in which the uncertainties of parameters
with known PDFs are modeled in the problem of the MG. In this level,
scheduling the MG’s resources and the optimal decisions of the MG in
both markets are determined. The expected total cost and the amount of
the accepted reserve are the output decision variables of this level
which are considered as the parameters in the second level problem. In

Fig. 1. The information flow in the participation problem of the MG in the energy and reserve markets.
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this level, the uncertainty of the amount of the accepted reserve is
modeled in the decision making problem of the MG using the IGDT
approach in which the expected total cost and the amount of the ac-
cepted reserve are considered as the reference value and the uncertain
parameter, respectively. Regarding the different amount of the IGDT
risk-aversion parameter, the optimal decisions of the MG to schedule
the resources and to participate in the markets are determined which
may be different from their optimal values obtained in the first level. In

fact, the decisions made in the first level by the MG may change in the
second level regarding the IGDT risk-aversion parameter. Therefore, the
main contributions of the proposed framework in this paper are as
follows:

• Proposing a two-level model for participation of the MGs in the
energy and reserve markets under uncertainties in which the risk of
the MGs is managed using the CVaR and IGDT risk-aversion

Fig. 2. The proposed two-level model for decision making problem of the MG under uncertainties.
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parameters.

• Modeling the uncertainty related to the accepted reserve of the MG
in the reserve market using the IGDT approach.

The rest of the paper is organized as follows. Section 2 clarifies the
problem description. The problem is formulated in Section 3. The nu-
merical results are presented in Section 4 and Section 5 concludes the
paper.

2. Problem description

In this paper, the operation problem of a grid-connected MG is
modeled where it participates in the energy and reserve markets, si-
multaneously. The MG consists of DGs, RESs, ESs, and interruptible
loads (ILs) and can trade energy with the main grid as well as can
provide reserve for the system as shown in Fig. 1. Since the MGO deals
with several uncertainties in its decision making problem, two main
approaches are proposed to consider the uncertainties in the operation
problem of the MG regarding which the problem is modeled in two
levels as described in Fig. 2. In the first level, the uncertainties of the
demand, the calling reserve probability, the energy and reserve market
prices, and the output power of RESs are modeled using their PDFs. For
this purpose, a large number of scenarios, i.e. 24,000 scenarios, are
generated regarding the normal PDF for demand, energy and reserve
market prices and considering Weibull and irradiance as PDFs of wind
speed, and solar radiation, respectively. These scenarios are reduced to
15 scenarios regarding the proposed approach in [17]. To control the
effect of uncertain parameters on the decisions of the MG with notice to
the generated scenarios, the problem is modeled as a risk-based two-
stage stochastic approach in the second step where the decision vari-
ables of each stage are described in Fig. 2. At the third step, as shown in
Fig. 1, the MGO receives the technical data and bids/offers from the
DERs as well as it forecasts the energy and reserve market prices. In the
next step, the MGO sets the CVaR index parameters and then solves the
problem with the aim of minimizing the expected total cost, considering
the technical constraints of DERs and MG's network. After solving the
problem, the optimal expected total cost and the optimal reserve
scheduled by the MGO are taken into account as the parameters in the
second-level.

In the second level, the uncertainty related to the amount of ac-
cepted value of the MG's reserve is modeled using the IGDT risk-based
approach. The optimal value of the expected total cost and the amount
of reserve extracted from the first-level are considered as the reference
value and the uncertain parameter of the IGDT approach in the first
step. In the second step, the risk-aversion parameter related to the
proposed IGDT model is set with the purpose of indicating the risk-level
of MGO's decision-making regarding which the operation problem of
the MG is solved as the third step. Then, the MGO decides on its optimal
bids/offers to the wholesale energy and reserve markets with control-
ling the uncertainties in its decisions using the two risk-aversion
parameters.

3. Problem formulation

In this section, the operation problem of the MG is modeled in the
first and the second levels as follows.

3.1. First level problem

In the first level, the MG operation problem is formulated as a risk-
based two-stage stochastic model in which the first-stage variables are
independent of scenarios whereas the values of second-stage variables
depend on occurring the scenarios. The details of this model is pre-
sented as follows.

3.1.1. Expected total cost
The objective function of the MGO is modeled as follows:

∑=
=

ETC ρ TC
s
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s s
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EM
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D
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t
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∑= ⎛

⎝
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⎠
⎟ ∀

=

P P P i t s( ) , ,i t s
D

nl

NL

nl i t s
Load

nl i t
IL

, ,
1

, , , , ,
(3)

where Eq. (1) describes the expected total cost and Eq. (2) presents the
total cost of the MGO in each scenario consisting of six terms. The first
term is related to the operation cost of the fossil-fuel based DGs and
their respective cost in invoking reserve with related probability. The
second term illustrates the cost of load interruption and its invoked
reserve with related probability. The third term describes the cost/
revenue of/from the power exchange with the main grid. The fourth
term models the revenue from selling power to the consumers (the
amount of demand consumption in each scenario at each bus is equal to
the difference between the initial load and the amount of load inter-
ruption calculated as Eq. (3)). The fifth term indicates the revenue from
providing reserve to the market and finally, the last term is associated
with the revenue from selling the amount of invoked reserve by the MG.

3.1.2. Risk management
In this paper, the risk-averse decision-making of the MGO is mod-

eled using the CVaR approach because of its advantages in comparison
with other methods [18,19]. The MGO adds the CVaR index to the
operation problem formulation and controls the effects of uncertain
parameters on the results in the worst scenarios using the risk-aversion
parameter (β). In the stochastic optimization approach, the CVaR at the
α confidence level (α - CVaR) can be defined as the expected cost in the
(1-α) × 100 percent of the worst scenarios which is presented as fol-
lows [20]:

∑= +
− =

CVaR δ
α

ρ λ1
1 CVaR

s

S

s s
1 (4)

⩽ ∀ ∈TC δ λ s S- - 0s s (5)

⩾ ∀ ∈λ s S0s (6)

where δ, αCVaR, S, ρs, and λs are the value at risk, confidence level,
number of scenarios, probability of each scenario, and an auxiliary
positive variable which is equal to value at risk minus TC in each sce-
nario, respectively.

3.1.3. Objective function of the first-level problem
The objective function of the first-level problem is to minimize the

ETC and the expected cost of (1-α)% of the worst scenarios (CVaR)
proposed as follows [4,17]:

+Minimize ETC β CVaRCVaR (7)

where βCVaR is the risk aversion parameter. When βCVaR is equal to zero
the MGO is risk neutral and with increasing βCVaR, the MGO become
risk-averse.

3.1.4. Constraints of the first-level problem

• Power and reserve balance constraints
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The power balance at reference bus and other buses are given in
Eqs. (8) and (9). Also, the MG load (MGL) is satisfied by the main grid,
micro-turbines (MTs), fuel cells (FCs), wind turbines (WTs), photo-
voltaic (PV) systems, ESs, and ILs. The power flow problem in the MG is
modeled using the linearized equations as described in [21]. Eqs.
(10)–(12) indicate the injected power to the MG's network consisting of
the active power flow and the power losses between bus i and j. Eqs.
(13) and (14) determine the MG current magnitude and its limitation,
respectively. The upper and lower limitations of the voltage magnitude
at the MG buses are shown in Eq. (15). The reserve provided by the MG
in the reserve market (one of the first-stage decision variables) is met by
DGs, ILs and ESs modeled by (16).
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• DG constraints

Eqs. (17)–(19) are used to model the limitations of the fossil-fuel
based DGs where sum of the amount of the energy and reserve provided
by the DGs is limited between their minimum and maximum output
power [1,22].

⩽ + ⩽ ∀ ∈ ∈P P R P n NDG t T̲ ¯ ,n
DG

n t
DG

n t
DG

n
DG

, , (17)

⩾ ∀ ∈ ∈P n NDG t T0 ,n t
DG
, (18)

⩾ ∀ ∈ ∈R n NDG t T0 ,n t
DG
, (19)

• IL constraints

Eqs. (20)–(22) express the ILs constraints in the MG’s problem. The
demand response program based on the bid mechanism is provided in
which consumers interact with MGO to curtail the certain part of their
loads [23,24].

+ ⩽ ∀ ∈ ∈P R P nl NL t T,nl t
IL

nl t
IL

nl t
IL

, , , (20)

⩾ ∀ ∈ ∈P nl NL t T0 ,nl t
IL

, (21)

⩾ ∀ ∈ ∈R nl NL t T0 ,nl t
IL

, (22)

• RESs constraints

The upper/lower bound of the output power obtained from WT and
PV in each scenario is as follows [4,16]:

⩽ ⩽ ∀ ∈ ∈ ∈P P P l NWT t T s S̲ ¯ , ,l t s
WT

l t s
WT

l t s
WT

, , , , , , (23)

⩽ ⩽ ∀ ∈ ∈ ∈P P P m NPV t T s S̲ ¯ , ,m t s
PV

m t s
PV

m t s
PV

, , , , , , (24)

• Energy storage constraints

Fig. 3. Modified 15 bus MG system test.
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Eqs. (25)–(32) describe the operational modelling of the ES to
provide energy and reserve [1,22]. Eq. (25) defines the charging/dis-
charging power of the ES. Eqs. (26)–(28) indicate the limitations of
discharging and charging power, and the stored energy of the batteries,
respectively. Eqs. (29)–(31) show the limitations of the batteries to
provide energy and reserve. Moreover, the state of charge of the battery
is illustrated in (32).

= − ∀ ∈ ∈ ∈−
−

P P η
P

η
k NES t T s S, ,k t s

ES
k t s
ES Disch e ES k t s

ES Ch e

ES, , , ,
arg , ,

arg

(25)

⩽ ⩽ ∀ ∈ ∈ ∈− − −P P P k NES t T s S̲ ¯ , ,k
ES Disch e

k t s
ES Disch e

k
ES Disch earg

, ,
arg arg

(26)

⩽ ⩽ ∀ ∈ ∈ ∈− − −P P P k NES t T s S̲ ¯ , ,k
ES Ch e

k t s
ES Ch e

k
ES Ch earg

, ,
arg arg

(27)

⩽ ⩽ ∀ ∈ ∈ ∈E E E k NES t T s S̲ ¯ , ,k
ES

k t s
ES

k
ES

, , (28)

+ ⩽ ∀ ∈ ∈ ∈−R P η E k NES t T s S( ) , ,k t
ES

k t s
ES Disch e ES

k t s
ES

, , ,
arg

, , (29)

− + ⩽ ∀ ∈ ∈ ∈− −R P P P k NES t T s S, ,k t
ES

k t s
ES Ch e

k t s
ES Disch e

k
ES

, , ,
arg

, ,
arg

(30)

⩽ ∀ ∈ ∈R P k NES t T,k t
ES

k
ES

, (31)

= + − ∀ ∈ ∈ ∈−
− −E E P P k NES t T s S, ,k t s

ES
k t s
ES

k t s
ES Ch e

k t s
ES Disch e

, , , 1, , ,
arg

, ,
arg

(32)

• Power exchange constraints

Fig. 4. Forecast MGL and the RESs output power.

Fig. 5. Forecast energy and reserve market prices.

Table 1
The probability of calling reserve and the cost of IL.

Hour κt
RM (%) IL cost (€/kWh) Hour κt

RM(%) IL cost (€/kWh)

1 2.1 0.044 13 5.5 0.076
2 1.5 0.026 14 4.9 0.07
3 1.3 0.031 15 5 0.061
4 1.5 0.036 16 7.8 0.057
5 1.9 0.044 17 9.7 0.057
6 2.4 0.057 18 15.6 0.07
7 2.9 0.059 19 15.5 0.07
8 5.5 0.066 20 15.1 0.075
9 7.8 0.068 21 15.4 0.078
10 8.1 0.066 22 15.6 0.066
11 8.3 0.057 23 9.4 0.057
12 8.4 0.075 24 2.4 0.057

Table 2
Characteristics of the DGs, ES, and other MG technical data.

Type of
DG

Marginal
cost
(€/kWh)

Reserve
cost
(€/kWh)

Pmin(kW) Pmax (kW)

MT 0.041 0.0287 6 30
FC 0.03 0.021 3 30
Number

of ES
EES
_

(kWh) E ES(kWh) − −P Pt s
charge

t s
dischargeES ES

, , (kW) ηES

3 9 60 30 0.95
− −P Pgrid in grid out(kW) ηGrid

200 0.99

Fig. 6. Power balance of the MG.

Fig. 7. Reserve balance of the MG.

Fig. 8. Sensitivity of ETC and CVaR to the risk aversion parameter.
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The amount of energy and reserve exchange with the main grid is
restricted by (33) and (34).

⩽ + ⩽ ∀ ∈ ∈− −P R P t T s S0 ¯ ,t s
Grid out

t
Dis Grid out

, (33)

⩽ ⩽ ∀ ∈ ∈− −P P t T s S0 ¯ ,t s
Grid in Grid in
, (34)

3.2. Second level problem

In the first level problem, the MGO decides on optimal power
trading with the energy market and determines the optimal reserve
which can provide to the reserve market. However, with notice to the
behavior of other reserve market players and also the required reserve
of the system, the accepted reserve from the MGO by the ISO faces with
the uncertainty. Therefore, the amount of reserve should be considered
as an uncertain parameter into the MG operation problem. Since this

parameter cannot be modeled with a known PDF in the operation
problem of the MGO, an IGDT-based approach is used to model this
type of uncertainty.

3.2.1. IGDT background
In this paper, to model the MG's decision on the amount of reserve,

the IGDT approach is employed which it is described in details in this
sub-section. Generally, the optimization problems are described as
follows [25,26]:

=f Min f X γ( ( , )) (35)

⩽ =H X γ G X γ( , ) 0, ( , ) 0 (36)

∈γ U (37)

where, γ is the uncertain parameter, U describes the set of uncertain
parameters, and X is the set of problem decision variables. Mathema-
tical definition of the uncertain parameters is as follows:

= = ⎧
⎨⎩

−
⩽ ⎫

⎬⎭
⩾γ α γ

γ γ
γ

α αΓ Γ( , ) : 0
(38)

where γ̄ is the amount of forecast value of the uncertain parameter and
α is the maximum deviation of the uncertain parameter from its fore-
cast value which it is called as the uncertainty radius. A commonplace

Table 3
The results of MGO decisions considering the CVaR risk aversion parameter.

βCVaR =β 0CVaR =β 0.5CVaR =β 1CVaR =β 100CVaR

∑ −Pt t S
grid in
,

447.937 608.429 663.242 626.679

∑ −Pt t S
grid out
,

434.986 468.357 477.192 527.664

∑ Pi j t i j t s
loss

, , , , , 3.167 3.295 3.563 3.557

∑ Pl t l t s
WT

, , , 497.520 497.520 497.520 497.520

∑ Pm t m t s
PV

, , , 186.348 186.348 186.348 186.348

∑ −Pn t n t
DG MT

, , 806.932 681.881 636.809 723.981

∑ −Pn t n t
DG FC

, , 1440 1440 1440 1440

∑ Pk t k t s
ES

, , , −27.456 −27.456 −27.456 −27.456

∑ Pnl t nl t
IL

, , 0 0 0 0

∑ −Rn t n t
DG MT

, , 633.068 758.119 803.191 716.019

∑ −Rn t n t
DG FC

, , 0 0 0 0

∑ Rnl t nl t
IL

, , 285.850 285.850 285.850 285.850

∑ Rk t k t
ES

, , 2005.650 2005.650 2005.650 2005.650

∑ Rt t
Dis 2924.568 3049.619 3094.691 3007.519

∑ s P( )i t i t s
D

, , , (€) −213.041 −213.041 −213.041 −213.041

CVaR –222.468 –223.781 −224.523 −224.601
ETC (€) −235.988 −235.706 −235.223 −234.909

Table 4
The results of MGO decisions considering the IGDT risk averse parameter.

βIGDT 0 0.05 0.1 0.15 0.2 0.25 0.3

∑ −Pt t s
grid in
,

447.937 218.509 200.155 204.117 262.448 288.106 318.830

∑ −Pt t s
grid out
,

434.986 672.707 790.847 814.776 874.649 896.105 922.626

∑ Pi j t i j t s
loss

, , , , ,
3.167 1.903 2.243 2.443 2.868 3.137 3.460

∑ Pl t l t s
WT

, , , 497.520 497.520 497.520 497.520 497.520 497.520 497.520

∑ Pm t m t s
PV

, , , 186.348 186.348 186.348 186.348 186.348 186.348 186.348

∑ −Pn t n t
DG MT

, , 806.932 1284.758 1422.898 1435.058 1440 1440 1440

∑ −Pn t n t
DG FC

, , 1440 1440 1440 1440 1440 1440 1440

∑ Pk t k t s
ES

, , , −27.456 −39.290 −39.585 −31.298 –33.085 −36.544 −39.849

∑ Pnl t nl t
IL

, , 0 0 0 0 0 0 0

∑ −Rn t n t
DG MT

, , 633.068 155.242 17.102 4.942 0 0 0

∑ −Rn t n t
DG FC

, , 0 0 0 0 0 0 0

∑ Rnl t nl t
IL

, , 285.850 140.960 47.948 37.077 9.390 1.472 0.392

∑ Rk t k t
ES

, , 2005.650 1783.256 1503.520 1142.229 808.246 468.567 124.622

∑ Rt t
Dis 2924.568 2079.458 1568.570 1184.247 817.636 470.039 125.014

∑ s P( )i t i t s
D

, , , (€) −213.041 −213.041 −213.041 −213.041 −213.041 −213.041 −213.041

α 0 0.289 0.464 0.595 0.72 0.84 0.957
ETC (€) −235.988 −224.188 −212.389 −200.590 −188.790 −176.991 −165.191

Fig. 9. Sensitivity of ETC to the uncertainty radius.
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strategy is to consider the Eqs. (35)–(37) and assume that the uncertain
parameter is equal to the amount of its forecast value as described as
follow. Hence, it is known as the base model.

=f Min f X γ( ( , ))b (39)

⩽ =H X γ G X γ( , ) 0, ( , ) 0 (40)

Using the Eqs. (39) and (40) the base value of objective function is
obtained [26]. In other words, the optimum value of the objective
function considering the uncertain parameter is exactly equal to its
forecast value. If the uncertain parameter value is different from its
forecast value, the decision makers will deal with the two strategies as
follow [25,26]:

• Risk averse strategy: This strategy is related to a situation that the
uncertain parameter may have undesirable effect on the objective
function. Therefore, this strategy tracks to find the maximum un-
certainty radius for the worse case. This strategy makes robust ob-
jective function which resist against the uncertain parameters de-
viation. Mathematical formulation of this strategy is expressed as
follow:

=
⌢
α C α( ) maxr (41)

⩽ =H X γ G X γ( , ) 0, ( , ) 0 (42)

= × + ⩽ ⩽C f X γ β β( , ) (1 ), 0 1r b
IGDT IGDT (43)

= +γ α γ(1 ) (44)

• Risk taker strategy: The uncertain parameters may not have un-
desirable effect on the objective function. Therefore, this strategy
tracks to find the minimum uncertainty radius for better objective
function than its forecast value. Mathematical formulation of this
strategy is as follow:

=
⌢
β C α( ) min0 (45)

⩽ =H X γ G X γ( , ) 0, ( , ) 0 (46)

= × − ⩽ ⩽C f X γ ψ ψ( , ) (1 ), 0 1b
IGDT IGDT

0 (47)

= −γ α γ(1 ) (48)

3.2.2. Objective function of the second-level problem
In this paper, the risk-averse strategy is employed to model the ef-

fect of the uncertainty of the reserve in the decision-making problem of
the MGO. For this purpose, the operation problem of the MGO is
modeled as Eqs. (49)-(53) where the uncertainty radius is maximized
regarding the risk-level of the MGO βIGDT as modeled in (51). It should
be noted that the ETC obtained in the first-level problem is considered
as the base value ETCb as described in (50) and (51). The amount of
reserve regarding the mentioned uncertainty is calculated as Eq. (52).

=
⌢
α C α( ) maxr

IGDT (49)

Subject to:

= +ETC ETC Minimize ETC β CVaR{ : }b
CVaR (50)

⩽ + ⩽ ⩽ETC β ETC β(1 ) , 0 1IGDT
b

IGDT (51)

= −R α R(1 )t
Dis IGDT

t
Dis (52)

−(1) (34) (53)

The proposed linear optimization model is solved with GAMS 24.1.2
software under CPLEX solver. A personal computer with 6 GB RAM
running on Intel Corei-7 with a CPU speed of 2.00 GHz, 64 bits oper-
ating system is used to solve the model.Ta
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4. Numerical results

To investigate the behavior of the MG in both energy and reserve
markets considering the uncertainties, the proposed model is applied on
the modified 15-bus MG test system [27]. Then, to show the effec-
tiveness of the proposed model for a practical test case, it is applied on a
40-bus real system. The results of both systems are presented in details
in the next sub-sections.

4.1. 15-bus test system

The modified 15-bus MG test system is shown in Fig. 3. The forecast
MGL and the output power of WTs and PVs are given in Fig. 4. Note
that, 80% of entire MGL including L1-L4, L6-L9 are associated with the
loads located at buses 2, 3, 8, 9, 11, 13, 14, and 15 and the remainder
amount of the MGL (L5) is located at bus 5. In addition, the location of
PV1, PV2, WT1, and WT2 are considered to be on buses 13, 8, 3, and
11, respectively. The forecast energy and reserve market prices related
to a sample day extracted from Red Electrica De Espana S.A. market
[28] indicated in Fig. 5. The probability of calling reserve and the IL
incentive cost are given in Table 1 [22]. The characteristics of FCs, MTs,
and the ESs are given in Table 2. Also, the limitation of the power ex-
change with the main grid is specified to be 200 kW. Moreover, the

maximum IL is equal to 10% of the MGL at each hour. The minimum/
maximum magnitude of the bus voltage and the line current are con-
sidered 390/400 V and 0.462/−0.462 KA, respectively. The number of
piecewise of linearization power flow is 40. The results are investigated
in three cases to show the effectiveness of the proposed model as fol-
lows:

• Case I: The results of the first-level problem (the stochastic ap-
proach)

• Case II: The results of the second-level problem (the IGDT approach)

• Case III: The results of both first and second level problems (the
hybrid stochastic-IGDT approach)

• Case I

The numerical results of the MG operation considering the risk-
natural and the risk-averse strategies in scenario 1 are shown in Figs. 6
and 7 with the CVaR confidence level equal to 0.95. Fig. 6 shows the
share of each resource to supply the load consumption. Due to the lower
operation cost of the DGs as well as RESs, the significant amount of the
MGLs is supplied by these resources. Regarding the energy market
prices in comparison with DGs and RESs operation costs, at hours 1,
3–11, 13, 14, 16, 17, and 24 the surplus generated power from these

Fig. 10. Sensitivity of ETC and reserve to risk-aversion parameters.

Fig. 11. The 40-bus real network.
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resources are sold to the main grid. Moreover, the ESs are charged at 2
and discharged in hour 24 to supply the demand. Instead of using MTs
and ESs, the MGO purchases power from the grid to supply the MGLs at
hours 18–19 and 21–23. On the other hand, Fig. 7 illustrates the op-
timal amount of reserve provided by the ILs, ESs, and DG (MT) to the
system. Since the FCs have low operation cost in comparison with the
energy market price and they are scheduled to sell energy to the grid,
their share to provide the reserve is zero. As depicted in this figure, the
significant amount of reserve is provided to the system at hours 3–6, 15,
18–19, and 21–23 because of high reserve market prices. As shown in
Figs. 6 and 7, MT is the main resource to provide the reserve for the
system.

The effect of risk-aversion parameter (βCVaR) on the ETC and the
decision variables is presented in Fig. 8 and Table 3. When the risk
parameter changes from 0 to 100, the ETC increases (minus ETC de-
creases) and the CVaR decreases (minus CVaR increases) as revealed in
Fig. 8. In other words, the MGO utilizes the CVaR index to control the
expected cost of the worst scenarios. This strategy will be carried out by
making the risk-based decisions to reschedule the MG's resources.
Therefore, the risk-averse (βCVaR > 0) MGO changes the first-stage
decisions with the aim of achieving less CVaR through controlling the
results of the MG operation problem in the worst scenarios. When the
value of the risk-aversion parameter increases, the MGO increases its
dependency on the first stage decisions where it uses DGs and ILs to
provide energy and DGs, ILs, and ESs to provide the reserve. According
to Table 3, increasing the CVaR risk-aversion parameter from 0 to 1,
increase the amount of reserve provided by the DGs (MTs) and the sold/
purchased power to/from the main grid. This behavior of the MGO
leads to an increase in the provided reserve to the market. Of note that,
if the risk-aversion parameter increases to a considerable amount (for
instance, 100), the MGO's decisions on the first stage changes to achieve
more efficient outcomes. Regarding Table 3, it is clear that, the MGO
wants to use DGs for producing the required energy instead of

providing the reserve. Moreover, the purchased power from the main
grid decreases as risk-aversion increases.

• Case II

In this sub-section, the IGDT-based operation model without con-
sidering the CVaR index is solved which the obtained results are illu-
strated in Table 4 and Fig. 9. For this purpose, the results of the first
level problem are determined with =β 0CVaR and then the second level
problem is solved considering the value of βIGDT. The results which are
shown in Fig. 9 illustrate that the uncertainty radius increases as the
amount of the risk-aversion parameter changes from 0 to 0.3. As a re-
sult, when the risk-aversion parameter regarding the risk-level of the
MGO’s decisions increases, the ETC of the MG operation rises. For in-
stance, regarding βCVaR = 0 and βIGDT = 0.3, the total cost is
−165.191€ and the maximum uncertainty radius is α = 0.957. Thus,
increasing the radius uncertainty leads to a reduction in the amount of
reserve. The MGO, consequently, decides to use the surplus power of
the DGs (MT) to meet the demand and to sell more energy to the energy
market. According to Table 4, decreasing the amount of reserve from
2924.568 kW to 125.014 kW, increases the sold power to the main grid
from 434.986 kW to 922.626 kW. Also, due to the operation cost of the
ESs, the considerable part of their capacities is used to provide reserve.
As a matter of fact, the amount of uncertainty radius has a significant
effect on the MGO's decisions.

• Case III

In this sub-section, the effect of uncertainties on the decisions of the
MG is investigated using the hybrid stochastic-IGDT appraoch. At first,
the two-stage stochastic problem is solved regarding the different
amount of βCVaR and then the model is resolved for each value of βIGDT.
The behavior of the MGO based on utilizing the proposed hybrid

Fig. 12. Sensitivity of ETC and reserve to risk-aversion parameters in 40-bus real test system.
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approach is presented in Table 5 and Fig. 10. According to Table 5
when =β 0IGDT , the behavior of the MGO depends only on the CVaR
risk-aversion parameter and increasing that, decreases the amount of
the schedueld energy of the DGs and ILs which leads to providing more
reserve to the reserve market as the first stage decision. Moreover,
when =β 0CVaR , the MGO decides to decrease the amount of power
from DGs and ILs to provide reserve and it sells the extra energy to the
energy market.

On the other hand, considering both βIGDT and βCVaR in the decision
making process of the MGO changes its behavior. For instance, re-
garding =β 0.05IGDT , with an increase in βCVaR, the MGO prefers to
utilize more energy from DGs and ILs to sell it to the energy market.
Furthermore, increasing the amount of the discharging power of the
ESs, decreases the purchased power from the energy market. Also, in
the case of =β 0.2IGDT and =β 100CVaR , the MGO has the most risk-
aversion level in its decisions. In fact, the MGO would provide the
minimum amount of the reserve besides the maximum tendency to the
first stage variables (DGs as well as ILs) for energy management of the
MG.

The sensitivity of the ETC and the amount of reserve to both the
risk-aversion parameters is investigated in Fig. 10. As shown in this
figure, with increasing the risk aversion parameter of the IGDT ap-
proach β( )IGDT , the amount of uncertainty radius increases which leads
to decreasing the amount of reserve and the minus ETC. For example,
with the same βIGDT, when βCVaR is equal to 100, the MGO would be
more risk-averse to solve the second-level problem (IGDT approach) in
comparison with the case where βCVaR is equal to 0.5. Also, the max-
imum uncertainty radius for =β 100CVaR and =β 0.5CVaR is 0.737 and
0.734, respectively. Thus, in the lower βCVaR, the amount of reserve is
810.816 kW, while it is 789.761 kW for the higher βCVaR.

The results show that in the proposed hybrid stochastic-IGDT ap-
proach, the MGO has an opportunity to affordably participate in both
the energy and the reserve markets. This means that, specifying both
βIGDT and βCVaR in a high level of risk-aversion, the amount of provided
reserve and the sold power to the grid become 789.761 kW and
830.978 kW with an acceptable ETC of −187.927.

4.2. 40-bus real network

To show the effectiveness of the proposed model for the real net-
works, a low voltage distribution network of Kurdistan Province
Electricity Distribution Company (KPEDC) in Iran is employed in this
sub-section as shown in Fig. 11. The data of this network is given in
Appendix. The other input data is the same as used in the previous sub-
section. The location of PV1, PV2, WT1, and WT2 are considered to be
on buses 31, 23, 16, and 7, respectively. The results of applying the
proposed model on this network are shown in Table 7 and Fig. 12.

As shown in Table 6, the Disco has the same behavior described in
case III to manage the uncertain parameters using the hybrid approach.
It is clear that, the Disco prefers to have more dependency on the first-
stage decisions besides participating more effectively in both the energy
and the reserve markets. When both of the risk-aversion parameters
(βCVaR and βIGDT) increase, the most efficient results (e.g. the accepted
reserve of 797.764 kW and the ETC of −182.282$) would be achieved
to deal with the minimum cost related to the unexpected behavior of
the uncertainties.

According to Fig. 12, with the same βIGDT, when βCVaR equals 0.5 or
100, the maximum uncertainty radius becomes 0.717 and 0.725, re-
spectively. Thus, in the lower βCVaR, the amount of reserve is
818.212 kW, while it is 797.764 kW for the higher βCVaR.

5. Conclusion

A hybrid stochastic-IGDT approach is employed in this paper to
model the uncertainties in the operation problem of the MGO in energy
and reserve markets. For this purpose, the uncertainties of the outputTa
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power of RESs, the demand, and energy and reserve prices are modeled
using a two-stage stochastic approach in which the risk level of the
MGO in decision making is controlled by the CVaR index. After solving
this model (the first-level problem), the amount of reserve and the ETC
are considered as the parameters in the second level problem where the
uncertainty related to the reserve is modeled using the IGDT method.
The results of the proposed model are investigated in a standard test
system in three cases: (1) the stochastic approach, (2) the IGDT ap-
proach, and (3) the hybrid method. Moreover, to show the capability of
the proposed hybrid method of being applied on a real test case, it is
applied in a 40-bus real network. The main conclusions from the results
are as follows:

• The MGO doesn’t control the uncertainty related to the accepted
reserve in the reserve market in the first case while it controls the
effect of the other uncertain parameters on its decisions in the en-
ergy market. In this case, instead of producing the required energy,
the MGO prefers to use the capacity of the resources to provide the
reserve to reach a lower ETC. For example, in =β 100CVaR the MGO
provides 3007 kW reserve to the market with the lowest amount of
ETC, i.e. −234.909$.

• In the second case, the MGO controls the uncertainty related to the
amount of accepted reserve on its decisions. In this case, the MG’s
resources are scheduled to provide more energy in comparison with
the reserve. Moreover, increasing the risk-aversion parameter of the
IGDT increases the radius uncertainty which consequently decreases
the amount of the reserve. Therefore, the MGO provides the
minimum reserve to the market, i.e. 125.014 kW with the highest
ETC, −165.101$.

• In the first and the second case, the MGO prefers to use the resources
to participate more in the reserve and the energy markets,

respectively, which leads to achieving the lowest ETC with the
maximum amount of reserve for the first case and the highest ETC
with the minimum amount of the reserve for the second case. This is
while the results of the third case reveal that the proposed hybrid
stochastic-IGDT approach would provide an opportunity for the
risk-averse MGO to effectively participate in both the energy and the
reserve markets. In fact, a trade-off between the amount of the re-
serve and the ETC is obtained in this case with controlling all the
uncertain parameters. For the most risk-averse MGO, the amount of
the reserve is 789.761 kW with the ETC of −187.927$. Moreover,
the amount of selling energy to the market in the hybrid approach is
830.978 kW which is between that of case I and II with 527.664 kW
and 922.626 kW, respectively. The same behavior of the MG also
occurs in scheduling the resources and participating in the markets
to manage the uncertainties in the real test network.
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Table 7
The line data consisting of resistance and impedance for the real network.

Line R (Ω) Z (Ω) Line R (Ω) Z (Ω) Line R (Ω) Z (Ω)

1–2 0.2412 0.0678 14–15 0.3289 0.1393 25–28 0.5042 0.2136
2–3 0.4734 0.2745 15–16 0.2412 0.0678 28–29 0.6714 0.2844
2–4 0.2412 0.0678 13–17 0.0636 0.0369 29–30 0.6714 0.2844
4–5 0.4734 0.2745 17–18 0.4734 0.2745 30–31 0.6714 0.2844
3–6 1.1936 0.5056 18–19 0.8123 0.3441 1–32 0.7699 0.2224
6–7 0.2104 0.1220 19–20 0.1898 0.1101 32–33 0.6714 0.2844
6–8 0.2104 0.1220 20–21 0.1030 0.0597 33–34 0.0746 0.0316
8–9 0.30297 0.1756 21–22 0.1704 0.0988 33–35 0.4662 0.1975
9–10 0.3834 0.2223 22–23 0.5848 0.2477 35–36 0.5042 0.2136
10–11 0.4423 0.2565 22–24 0.2319 0.1345 36–37 0.4734 0.2745
11–12 0.4734 0.2745 24–25 0.2104 0.1220 36–38 0.5438 0.2303
1–13 0.4734 0.2745 25–26 0.3029 0.1756 38–39 0.6714 0.2844
13–14 0.5042 0.2136 25–27 0.0757 0.0439 39–40 0.6714 0.2844

Table 8
The load proportion of each bus from the whole demand of the real network.

Load % of total MGL Load % of total MGL Load % of total MGL

L1 0.178784 L14 1.191895 L27 0.476758
L2 1.191895 L15 0.476758 L28 0.953516
L3 0.953516 L16 2.145411 L29 3.098927
L4 2.38379 L17 0.715137 L30 5.721097
L5 1.430274 L18 3.575685 L31 1.668653
L6 8.820024 L19 1.907032 L32 0.476758
L7 0.953516 L20 2.38379 L33 1.430274
L8 1.430274 L21 0.953516 L34 1.907032
L9 0.715137 L22 4.290822 L35 1.668653
L10 1.907032 L23 2.562575 L36 13.82598
L11 1.430274 L24 1.430274 L37 2.145411
L12 0.953516 L25 3.814064 L38 0.178784
L13 1.668653 L26 3.814064 L39 13.17053
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Appendix. The required data for the real test system

The resistance and impedance data of the real network lines required for the power flow problem is given in Table 7. Moreover, the load
proportion of each bus from the total load of the network which is extracted from the historical data of KPEDC (http://kurdelectric.ir) is given in
Table 8. Regarding the data of this table, the demand of the MG in each hour which is presented in Fig. 4 is divided among the buses of the real
network.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijepes.2020.105977.
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