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Abstract 

 
A cooperative distributed secondary/primary control paradigm for AC microgrids is proposed. This solution replaces the 

centralized secondary control and the primary-level droop mechanism of each inverter with three separate regulators: voltage, 

reactive power, and active power regulators. A sparse communication network is spanned across the microgrid to facilitate limited 

data exchange among inverter controllers. Each controller processes its local and neighbors’ information to update its voltage 

magnitude and frequency (or, equivalently, phase angle) set points. A voltage estimator finds the average voltage across the 

microgrid, which is then compared to the rated voltage to produce the first voltage correction term. The reactive power regulator at 

each inverter compares its normalized reactive power with those of its neighbors, and the difference is fed to a subsequent PI 

controller that generates the second voltage correction term. The controller adds the voltage correction terms to the microgrid rated 

voltage (provided by the tertiary control) to generate the local voltage magnitude set point. The voltage regulators collectively adjust 

the average voltage of the microgrid at the rated voltage. The voltage regulators allow different set points for different bus voltages 

and, thus, account for the line impedance effects. Moreover, the reactive power regulators adjust the voltage to achieve proportional 

reactive load sharing. The third module, the active power regulator, compares the local normalized active power of each inverter 

with its neighbors’ and uses the difference to update the frequency and, accordingly, the phase angle of that inverter. The global 

dynamic model of the microgrid, including distribution grid, regulator modules, and the communication network, is derived, and 

controller design guidelines are provided. Steady-state performance analysis shows that the proposed controller can accurately 

handle the global voltage regulation and proportional load sharing. An AC microgrid prototype is set up, where the controller 

performance, plug-and-play capability, and resiliency to the failure in the communication links are successfully verified. 

 
Index Terms— AC microgrids, Cooperative control, Distributed control, Droop control, Inverters 
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I. INTRODUCTION 

Microgrids are small-scale power systems that can island from the legacy grid. They have gained popularity in distribution 

systems for their improved efficiency, reliability, and expandability [1]–[6]. DC energy resources, e.g., photovoltaic arrays, 

storage elements, and fuel cells, are commonly connected to the AC microgrid distribution network via voltage-source 

inverters [7], [8]. A three-tier hierarchical control structure is conventionally adopted for the microgrid operation [9], [10]. The 

primary control, usually realized through a droop mechanism, operates on a fast timescale and regulates inverters’ output 

voltage and handles proportional load sharing among inverters [9]. It shares the total load demand among sources in proportion 

to their power ratings and is commonly practiced to avoid overstressing and aging of the sources [7]–[9]. The secondary 

control, in an intermediate timescale, compensates for the voltage and frequency deviations caused by the primary control by 

updating inverter voltage set points [11]–[13]. Ultimately, the tertiary control carries out the scheduled power exchange with 

the main grid over a longer timescale [14], [15].  

Droop mechanism, or its variations [16]–[27], is a common decentralized approach to realize the primary control, although 

alternative methods (e.g., virtual oscillator control [28]–[31]) are emerging. They emulate virtual inertia for AC systems and 

mimic the role of governors in traditional synchronous generators [32]. Despite simplicity, the droop mechanisms suffers from 

1) load-dependent frequency/voltage deviation, 2) poor performance in handling nonlinear loads [33], and 3) poor reactive 

power sharing in presence of unequal bus voltages [34]. Unequal bus voltages are indispensible in practical systems to perform 

the scheduled reactive power flow. Droop techniques cause voltage and frequency deviations and, thus, a supervisory 

secondary control is inevitable to update the set points of the local primary controls [35]–[40]. For example, GPS-coordinated 

time referencing handles frequency synchronization across the microgrid in [33], [38], [39]. Such architecture requires two-

way high bandwidth communication links between the central controller and each inverter. This protocol adversely affects the 

system reliability as failure of any communication link hinders the functionality of the central controller and, thus, the entire 

microgrid. The central controller itself is also a reliability risk since it imposes a single point-of-failure. Scalability is another 

issue for that it adds to the complexity of the communication network and it requires updating the settings of the central 

controller.  

Spatially dispersed inverter-based microgrids naturally lend themselves to distributed control techniques to address their 

synchronization and coordination requirements. Distributed control architectures can discharge duties of a central controller 

while being resilient to faults or unknown system parameters. Distributed synchronization processes necessitate that each agent 

(i.e., the inverter) exchange information with other agents according to some restricted communication protocol [5], [41], [42]. 

These controllers can use a sparse communication network and have less computational complexity at each inverter controller 

[43]. Networked control of parallel inverters in [44], [45] embeds the functionality of the secondary control in all inverters, i.e., 
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it requires a fully connected communication network. The master node in the networked master-slave methods [46]–[48] is still 

a single point-of-failure. Distributed cooperative control is recently introduced for AC [49]–[51] and DC microgrids [52]–[55]. 

Distributed control of AC microgrids are also discussed in [56]–[58] (using a ratio-consensus algorithm), [50] (a multi-

objective approach), and [59]-[62] (using a distributed averaging proportional controller). Majority of such approaches are still 

based on the droop mechanism (and, thus, inherit its shortcoming), require system information (e.g., number of inverters, 

inverter parameters, and total load demand), require frequency measurement, and mainly handle active power sharing and 

frequency regulation (or, only reactive power sharing/voltage control). Recent works of the authors in [50] and [51] investigate 

distribution networks with negligible line impedances and, potentially, can lack satisfactory performance in practical multi-

terminal distribution systems with intricate and lossy transmission networks. They also assign a single source as leader, who 

relays the rated frequency and voltage set points to other sources through a communication network. Moreover, such solutions 

focus on the islanded mode of operation and their extension to grid-connected mode is not straightforward. 

This paper provides a comprehensive distributed cooperative solution that satisfies both the secondary and the primary 

control objectives for an autonomous AC microgrid without relying on the droop mechanism. Herein, each inverter is 

considered as an agent of a multi-agent system (i.e., the microgrid); each inverter exchanges data with a few other neighbor 

inverters and processes the information to update its local voltage set points and synchronize their normalized power and 

frequencies. The proposed controller includes three modules: voltage regulator, reactive power regulator, and active power 

regulator. The salient features of the proposed control method are:  

• Cooperation among inverters on a communication graph provides two voltage correction terms to be added to the rated 

voltage and adjust the local voltage set points of individual inverters.  

• Cooperation among voltage, reactive power, and active power regulators effectively carries out global voltage regulation, 

frequency synchronization, and proportional load sharing, particularly, in practical networks where the transmission/ 

distribution line impedances are not negligible. 

• Normally, the controllers share the total load among sources in proportion to their rated active and reactive powers; 

however, the rated values, embedded in the controller, can be manipulated to achieve any desired load sharing. 

• The voltage regulator seeks to adjust the average voltage across the microgrid, rather than the individual inverter busses, at 

the rated voltage value, and ensures global voltage regulation without the need to run a power flow analysis.  

• The control method does not employ any droop mechanism and does not require any frequency measurement. 

• The proposed scheme does not require prior knowledge of system parameters or the number of inverters. Thus, it features 

scalability, modularity, robustness (independent of loads), and plug-and-play capability. 
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• Only a sparse communication graph is sufficient for the limited message passing among inverters. This is in direct contrast 

with the centralized control approaches that require high-bandwidth bidirectional communication networks, or existing 

networked control techniques that require fully-connected communication graphs. 

The rest of this paper is outlined as follows: Section II discusses the proposed control methodology. Section III provides 

dynamic/static model of the entire microgrid including the physical distribution grid, control modules, and communication 

network, and shows that the controller objectives are also met in the steady state. The controller performance is experimentally 

verified using an AC microgrid prototype in Section IV. Section V concludes the paper.  

II. PROPOSED COOPERATIVE CONTROL FRAMEWORK 

A. Microgrid as a Cyber-physical System 

A distribution network is an electric network that provides the 

physical connection between sources and loads within a microgrid. 

Such a physical system can be equipped with a cyber network to 

exploit different control opportunities. Interaction of the sources 

(i.e., inverter-augmented DC sources) in the cyber domain offers 

cooperative decision making, which features scalability and 

improves reliability. Here, a microgrid is assumed to be cyber-

physical system with a communication network that facilitates data 

exchange among sources for control and monitoring purposes. 

Figure 1(a) illustrates physical and cyber layers of the microgrid. 

Each source broadcasts its information, e.g., voltage and power 

measurements, to a few selected sources, called its neighbors. As 

oppose to the centralized/supervisory control, this communication 

layout forms a sparse network; not all sources need to 

communicate.  

From the control perspective, a multi-agent cyber-physical system can be expressed with a graphical representation with 

active agents (sources) modeled as nodes of the graph and communication links mapped to edges connecting nodes (see Fig. 

1(b)). Communication links may not be reciprocal, forming a directed graph (digraph). Each node and edge inherit the dynamic 

model of the corresponding agent and communication channel, respectively. Information links may exchange data with 

 
Fig. 1.  General layout of an AC microgrid: (a) Sources supplying 
the grid with communication infrastructure spanned across the grid, 
(b) Graphical representation of the cyber-physical system. 
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different gains referred to as the communication weights. For example, if Node j  broadcasts data 
j
x  to Node i through a link 

with designated a weight of 0
ij
a > , then, the information received at node i is 

ij j
a x . Generally, 0

ij
a >   if Node i receives 

data from Node j  and 0
ij
a = , otherwise. Such a graph is usually represented by an associated adjacency matrix 

G
A N N

ij
a ´é ù= Îê úë û   that carries the communication weights, where N  is the number of dispatchable sources. Communication 

weights can be time varying and may include some channel delay; however, this study assumes time-invariant and scalar 

adjacency matrix. i
N  denotes the set of all neighbors of Node i. The in-degree and out-degree matrices { }in indiag

i
d=D  and 

{ }out outdiag
i
d=D  are diagonal matrices with in

i

i ij
j N

d a
Î

= å  and out

j

i ji
i N

d a
Î

= å , respectively. The Laplacian matrix is defined 

as in -
G

L D A , whose eigenvalues determine the global dynamics of the entire system (i.e., the microgrid) [63], [64]. The 

Laplacian matrix is balanced if the in-degree and out-degree matrices are equal; particularly, an undirected (bidirectional) data 

network satisfies this requirement. A direct path from Node i  to Node j  is a sequence of edges that connects the two nodes. A 

digraph is said to have a spanning tree if it contains a root node, from which, there exists at least a direct path to every other 

node. Here, a graph is called to carry the minimum redundancy if it contains enough redundant links that, in the case of any 

single link failure, it remains connected and presents a balanced Laplacian matrix. 

B. Proposed Cooperation Policy 

The proposed method requires a communication graph with the adjacency matrix N N
ij
a ´é ù= Îê úë ûG

A   that 1) has at least a 

spanning tree, 2) can be undirected or directional, yet with a balanced Laplacian matrix, and 3) the graph must carry the 

minimum redundancy. Communication weights, 
ij
a , are design parameters. Each source exchanges a vector of information, 

norm norm, ,
i i i i

e p qé ùY = ê úë û
, with its neighbor sources on the communication graph, where i

e  is the estimation of the averaged 

voltage magnitude across the microgrid, processed at Node i . norm rated

i i i
p p p  and norm rated

i i i
q q q  are the normalized 

active and reactive powers supplied by Source i . i
p  and i

q  are the measured active and reactive powers supplied by Source 

i , respectively, and rated

i
p  and rated

i
q  are the rated active and reactive powers of the same source. The control strategy attempts 

to share the load among sources in proportion to their rated powers. 

Objectives of the secondary/primary controller are 1) global voltage regulation, 2) frequency synchronization, 3) active 

power sharing, and 4) reactive power sharing. Generally, fine adjustment of the voltage magnitude and frequency can satisfy 

all four objectives. Particularly, active and reactive power flow can be managed by tuning the frequency and voltage 

magnitude, respectively. The proposed control method is established on this notion. Figure 2 shows the schematic of the 

control policy for Node i (Source i). The controller consists of three separate modules: the voltage regulator, reactive power 

regulator, and active power regulator.  



 6

The controller at Node i receives information vectors of its neighbors, 
j

Y s, and processes the neighbors’ and local data, i
Y , to 

update its voltage set point. *

i
e  and *

i
w  are the set points of the (line to neutral) voltage magnitude (rms value) and frequency, 

respectively. Accordingly, the Space Vector PWM (SVPWM) module generates the actual voltage set point, *

i
v ,  

       * * *

0

( ) ( ) 2 sin ( )d ,
t

i i i
v t e t w t t

æ ö÷ç ÷ç= ÷ç ÷ç ÷çè ø
ò

 
(1) 

and assigns appropriate switching signals to drive the inverter module [65]. It should be noted that the controller is assumed 

activated at 0t = . As seen in Fig. 2, each inverter is followed by an LCL filter to attenuate undesired (switching and line-

frequency) harmonics. The set point in (1) is the reference voltage for the output terminal of the filtering module or, 

equivalently, the microgrid bus that corresponds to Source i . 

The voltage and reactive power regulator modules adjust the set point of the voltage magnitude by producing two voltage 

correction terms, 1

i
ed  and 2

i
ed , respectively, as 

       1 2

rated
( ) ( ) ( ),
i i i
e t e e t e td d* = + + (2) 

where rated
e  is the rated voltage magnitude of the microgrid. Regardless of the operating mode, i.e., islanded or grid-connected 

modes, the rated voltage can be safely assumed equal for all active nodes (dispatchable sources). The voltage regulator at Node 

i  includes an estimator that finds the global averaged voltage magnitude, i.e., the averaged voltage across the microgrid. This 

 

Fig. 2. Proposed cooperative secondary control for the Source i, of the AC microgrid. Note data exchange with the neighbor nodes. 
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estimation is, then, compared with the rated voltage, rated
e , and the difference is fed to a PI controller, i

G , to generate the first 

voltage correction term, 1

i
ed , and, thus, handle global voltage regulation. Accordingly, the voltage regulators collectively 

adjust the average voltage of the microgrid on the rated value, yet individual bus voltages may slightly deviate from the rated 

value (typically, less than 5%). This deviation is essential in practice to navigate reactive power across the microgrid. 

Therefore, the reactive power regulator at Node i  adjusts an additional (i.e., the second) voltage correction term, 2

i
ed , to 

control the supplied reactive power. This module calculates the neighborhood reactive loading mismatch, i
mq ,        

norm norm( ),
i

i ij j i
j N

mq ba q q
Î

= -å        
 

(3) 

which measures how far is the normalized reactive power of the Source i  from the average of its neighbors’. The coupling 

gain b  is a design parameter. The mismatch in (3) is then fed to a PI controller, i
H , (see Fig. 2) to adjust the second voltage 

correction term, 2

i
ed , and, accordingly, mitigate the mismatch. Performance analysis in Section III-E will show that all the 

mismatch terms, in the steady state, converge to zero and, thus, all normalized reactive powers would synchronize. This 

satisfies the proportional reactive power sharing among sources.  

The active power regulator at Source i  controls its frequency and active power. This module calculates the neighborhood 

active loading mismatch to assign the frequency correction term, i
dw , 

norm norm( ),
i

i ij j i
j N

ca p pdw
Î

= -å        
 

(4) 

where the coupling gain c  is a design parameter. As seen in Fig. 2, this correction term is added to the rated frequency, 
rated

w , 

       *

rated
( ) ( ),
i i
t tw w dw= + (5) 

and, thus, (1) can be written as  

       * *

rated

0

( ) ( ) 2 sin d .
t

i i i
v t e t tw dw t

æ ö÷ç ÷ç= + ÷ç ÷ç ÷çè ø
ò

 
(6) 

Equation (6) helps to define the phase angle set point for Source i , 

       
* norm norm

0

( ) ( )d .
i

t

i ij j i
j N

t c a p pd t
Î

-åò
 

(7) 

According to (6)–(7), the active power regulator module keeps the frequency at the rated value and fine tunes the phase angle 

set point, *

i
d , to reroute the active power across the microgrid and mitigate the neighborhood active loading mismatch. It is 

shown in Section III-E that all phase angles, *

i
d , will converge to their steady-state values and, thus, all frequency correction 

terms, i
dw , decay to zero. Therefore, the microgrid frequency synchronizes to the rated frequency, 

rated
w , without any 

frequency measurement loop, while the controller stabilizes the phase angles, i
d . Indeed, transient variations in the inverter 
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frequency adjust its phase angle and control the active power flow; the frequency will not deviate from the rated value in the 

steady state and normalized active powers will synchronize, which provides the proportional active load sharing.    

The proposed controller is a general solution that can handle load sharing for variety of distribution systems; i.e., 

predominantly inductive, inductive-resistive, or primarily resistive networks. Indeed, the nature of the line impedances defines 

the role of the active and reactive power regulators (see Fig. 2) for load sharing. In particular, a predominantly inductive 

network naturally decouples the load sharing process; the reactive power regulator must handle the reactive load sharing by 

adjusting voltage magnitude while the active power regulator would handle the active load sharing through adjusting the 

frequency (or, equivalently, the phase angle). However, for other types of distribution network, active and reactive power 

flows are entangled to both voltage and phase angle adjustment. For such cases, the load sharing is a collaborative task where 

the two regulators (i.e., both the active and reactive power regulators) would work together to generate the desired set points.   

 The proposed controller, so far, assumes fixed and known power 

rating for dispatchable sources. In a scenario that some sources are 

non-dispatchable, i.e., renewable energy sources with stochastic power 

output, the proposed controller can be augmented with the 

methodology shown in Fig. 3. Supplied power by each stochastic 

source is measured and reported to an auxiliary control unit. This 

module runs optimization scenarios, e.g., Maximum Power Point 

Tracking (MPPT), to decide the desired operating points. It also 

compares the desired generation with the actual supplied power and updates the rated powers, rated

i
p  and rated

i
q , to address any 

mismatch. The proposed control routine in Fig. 2 uses the tuned rated powers to adjust the voltage and frequency set points. 

With the modification in Fig. 3, the stochastic sources will be pushed to exploit their potentials (e.g., to produce maximum 

power) while the controller in Fig. 2 proportionally shares the remaining load demand among dispatchable sources.    

In the islanded mode, the system operational autonomy requires preset (fixed) values for the rated voltage magnitude and 

frequency, rated
e  and rated

w , in all controllers. The voltage and frequency settings typically follow the standard ratings of the 

nearby electricity grid. To further extend operational range of the proposed controller to the grid-connected mode, one can 

consider adjustable voltage magnitude and frequency ratings. To this end, a tertiary controller (highlighted in Fig. 2) fine-tunes 

such ratings. There is a single tertiary controller for the entire microgrid, and it uses the same communication network as the 

secondary controllers, to propagate updated voltage and frequency ratings to all secondary controllers across the microgrid. 

 
Fig. 3. Extension of the proposed controller to non-dispatchable 
(e.g., stochastic) energy sources. 
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Functionality of the tertiary controller is elaborated in Fig. 4. The tertiary control unit runs cost/efficiency optimization to 

determine the desired active and reactive powers to be exchanges between the microgrid and the main grid, *

d
p  and *

d
q , 

respectively. The optimization scenarios can also account for auxiliary services such as frequency regulation or reactive power 

support. It is noteworthy that the power flow between the microgrid and the main grid can be bidirectional and, thus, the 

desired powers *

d
p  and *

d
q  can be either positive or negative. The controller compares the actual powers supplied to the main 

grid, d
p  and d

q , with the desired values and, accordingly, updates voltage and frequency ratings sent to the secondary 

controllers. The steady-state rated voltage assignment, rated
e , may have slight deviation from the standard value, however, the 

steady-state value of the rated frequency, rated
w , will always converge to the standard value (e.g., 60 Hz  in the North 

America). In fact, it is the transient variations in the rated frequency that adjusts the phase angles across the microgrid and 

manages the active power flow.  

C. Voltage Estimation Policy  

Each node has an estimation module that develops the estimation of the averaged voltage magnitude across the microgrid, 

e.g., i
e , for Node i , and exchanges this estimation with its neighbors. The voltage estimation policy is demonstrated in Fig. 5.  

 
Fig. 4. Functionality of the tertiary controller in the grid-connected mode. 
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Accordingly, the estimator at Node i  updates its own output, i
e , by processing the neighbors’ estimates, 

j
e s ( Î

i
j N ), and 

the local voltage measurement, i
e , 

       ( )
0

( ) ( ) ( ) ( ) d .
i

t

i i ij j i
j N

e t e t a e et t t
Î

= + -åò
 

(8) 

This updating policy is commonly referred to as the dynamic 

consensus protocol in the literature [66]. As seen in (8), the 

local measurement, e.g., i
e , is directly fed into the estimation 

protocol. Thus, in case of any voltage variation at Node i , 

the local estimate, i
e , immediately responds. The change in 

i
e  propagates through the communication network and 

affects all other estimations. Assume that T

1 2,
[ , ,..., ]

N
e e e=e  

and T

1 2,
[ , ,..., ]

N
e e e=e  are the measured voltage and the 

estimated average voltage vectors, respectively. E  and E   

are the Laplace transforms of e  and e , respectively. 

Accordingly, global dynamic response of the estimation 

policy is formulated in [53] as 

 

       1

est
( ) ,
N

s s -= + =E I L E H E (9) 

where ´ÎI N N
N  , L , and 

est
H  are the identity, Laplacian, and the estimator transfer-function matrices, respectively. It is 

shown in [53] that if the communication graph has a spanning tree with a balanced Laplacian matrix, L , then, all elements of 

e  converge to a consensus value, which is the true average voltage, i.e., the average of all elements in e . Equivalently, 

       ss ss ss ,= =e Me e 1 (10) 

where N N´ÎM   is the averaging matrix, whose elements are all 1 N . ssx  expresses the steady-state value of the vector 

1́Îx N . x  is a scalar that represents the average of all elements in the vector x . 1N´Î1   is a column vector whose 

elements are all one.  

III. SYSTEM-LEVEL MODELING 

System-level modeling studies the dynamic/static response of the entire microgrid with the proposed controller in effect. 

The system under study encompasses interactive cyber and physical subsystems. The communication graph topology defies the 

 
Fig. 5.  Voltage averaging policy at each node; dynamic consensus protocol.  
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interaction among controllers, functionality of the controllers determines output characteristics of the sources, and, finally, the 

transmission/distribution network rules the physical interaction among sources (and loads). Thus, the system-level study 

involves in mathematical modeling of each of the subsystems and establishment of mathematical coupling between the 

interactive subsystems.  

A. Distribution Network Model 

Dispatchable sources, transmission network, and loads form the physical layer of the microgrid. This layer is shown in Fig. 

1(a), where sources are considered as controllable voltage source inverters. The proposed controller determines the voltage set 

pints (both magnitude, *

i
e , and phase, *

i
d ) for each source (i.e., inverter) by processing the supplied active and reactive powers. 

Such controller acts on the physical layer, which is a multi-input/multi-output plant with the voltage set points as the inputs and 

the supplied active and reactive powers as the outputs. Herein, we express the output variables, i.e., the supplied powers, in 

terms of the input variables, i.e., the voltage set points.  

Figure 1(a) helps to formulate the supplied current of each source. By formulating the supplied current by Source i , 

       
1( )

( ),
N

i ii i ij i j
j i

I Y V Y V V
= ¹

= + -å
 

(11) 

where i
I  and i

V  are the phasor representation of the supplied current and phase voltage of the Source i , respectively. ii
Y  and 

ij
Y  are the local load admittance at Bus i  (Source i ) and the admittance of the transmission line connecting busses i  and j , 

respectively. With no loss of generality, the distribution network is assumed reduced (i.e., by using Kron reduction) such that 

all non-generating busses are removed from the network. Thus, the complex power delivered by the Source i  is, 

       
2 * * *

1 1( )

3 3 3 .
N N

i i i i ij i j ij
j j i

s V I V Y VV Y*

= = ¹

= = -å å
 

(12) 

Assume i i i
V e d=   and 

ij ij ij
Y y q=   where i

e , 
ij
y , i

d , and 
ij
q  are the magnitude of i

V , magnitude of 
ij
Y , phase of i

V , and 

phase of 
ij
Y , respectively. 

ij ij ij
Y g jb= +  is the rectangular representation of the admittance 

ij
Y . One can use (12) to derive the 

active and reactive powers delivered by the Source i  ( i
p  and i

q , respectively), 

       2

1 1( )

3 3 cos( ),
N N

i i ij i j ij i j ij
j j i

p e g e e y d d q
= = ¹

= - - -å å
 

(13) 

       2

1 1( )

3 3 sin( ),
N N

i i ij i j ij i j ij
j j i

q e b e e y d d q
= = ¹

= - - - -å å
 

(14) 

The secondary control typically acts slower than the dynamic of the power network (microgrid), as its objectives are 

voltage and power regulation in the steady state. Accordingly, one can safely neglect the fast dynamic transient responses of 

the microgrid and use the phasor analysis in (13)–(14) to model the power flow. Equations (13)–(14) express nonlinear 
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relationships between the voltages and supplied powers. In time domain, any variable x  can be represented as 
qx x x̂= +  

where qx  and x̂  are the quiescent and small-signal perturbation parts, respectively. Thus, one can write,  

q q

1 1

, ,
1 1

ˆˆ ˆ

ˆˆ ˆ

N N
i i

i i i i j j
j jj j

N N
p p

i e ij j ij j
j j

p p
p p p p e

e

p k e kd

d
d

d

= =

= =

¶ ¶
= + = + +

¶ ¶

 = +

å å

å å
      

 
(15)

 

q q

1 1

, ,
1 1

ˆˆ ˆ

ˆˆ ˆ

N N
i i

i i i i j j
j jj j

N N
q q

i e ij j ij j
j j

q q
q q q q e

e

q k e kd

d
d

d

= =

= =

¶ ¶
= + = + +

¶ ¶

 = +

å å

å å  
(16) 

where the coefficients in (15)–(16) are formulated, 

       

q
q

, q
1

3 ,
N

p i
e ii i ij

ji

p
k e g

e =

= + å
 

(17)
 

q q q

,
3 cos( ),   p

e ij i ij i j ij
k e y j id d q= - - - ¹

 
(18) 

 q q q q q 2

,
1( ) 1

3 sin( ) 3 ,
N N

p
ii i j ij i j ij i i ij

j i j

k e e y q e bd d d q
= ¹ =

= - - = - -å å       (19)
 

q q q q

,
3 sin( ),   p

ij i j ij i j ij
k e e y j id d d q= - - - ¹

 
(20) 

       

q
q

, q
1

3 ,
N

q i
e ii i ij

ji

q
k e b

e =

= - å
 

(21)
 

q q q

,
3 sin( ),   q

e ij i ij i j ij
k e y j id d q=- - - ¹

 
(22) 

 q q q q q 2

,
1( ) 1

3 cos( ) 3 ,
N N

q
ii i j ij i j ij i i ij

j i j

k e e y p e gd d d q
= ¹ =

= - - - = -å å      (23)
 

q q q q

,
3 cos( ),   .q

ij i j ij i j ij
k e e y j id d d q= - - ¹

 
(24) 

Equations (15)–(24) explain how a disturbance in any of the voltage magnitudes, î
e s, or phases, ˆ

i
d s, affects the power flow in 

the entire microgrid. These equations can be represented in the matrix format, 

ˆˆ ˆp p
e d= +p k e k d       (25) ˆˆ ˆq q

e d= +q k e k d (26) 

where 
T

1 2
ˆ ˆ ˆ ˆ, ,...,

N
p p pé ù= ê úë ûp , 

T

1 2
ˆ ˆ ˆ ˆ, ,...,

N
q q qé ù= ê úë ûq , 

T

1 2
ˆ ˆ ˆ ˆ, ,...,

N
e e eé ù= ê úë ûe , and 

T

1 2
ˆ ˆ ˆ ˆ, , ...,

N
d d dé ù= ê úë ûd  are column vectors carrying 

small-signal portions of the active powers, reactive powers, voltage magnitudes, and voltage phases, respectively. 
,

[ ]p p
e e ij

k=k , 

,
[ ]p p

ij
kd d=k , 

,
[ ]q q

e e ij
k=k , and 

,
[ ]q q

ij
kd d=k  are all matrices in N Ń  that contain coefficients in (17)–(24). p

dk  and q
e
k  are 

referred to here as the p d-  and q e-  transfer matrices, respectively. 

B. Dynamic Model of the Control and Cyber Subsystems 

The cyber domain is where the controllers exchange measurements, process information and, update the voltage set points. 

Interactions and functionality of the controllers are shown in Fig. 2. One can see how the voltage and reactive power regulators 

cooperate to adjust the voltage magnitude set points, *

i
e . In the frequency domain,  

      ( ) 1

rated
( ) ,
i i i
G s E E E- = D

 
(27)

 

norm norm 2( ) ( ) ,
i

i ij j i i
j N

H s ba Q Q E
Î

æ ö÷ç ÷ç - =D÷ç ÷ç ÷çè ø
å

 
(28) 

      1 2 *

rated
,

i i i
E E E E+D +D = (29)   

where rated
E , i

E , 1

i
ED , norm

i
Q , 2

i
ED , and *

i
E  are the Laplace transforms of  rated

e , i
e , 1

i
eD , norm

i
q , 2

i
eD , and *

i
e , 

respectively. Equations (27)–(29) can be represented in the matrix format, 
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      ( ) ( ) 1

rated rated est
,- = - =G E E G E H E ED (30) norm 1 2

rated
,b b -- =- =HLQ HLq Q ED (31) 

      1 2 *

rated
,+ + =E E E ED D (32)   

where diag{ }
i
G=G  and diag{ }

i
H=H  are diagonal matrices containing voltage and reactive power controllers, 

respectively. G  and H  are referred to as the voltage-controller and Q -controller matrices, respectively.   

rated

rated
diag{ }

i
q=q  is a diagonal matrix that carries the rated reactive powers of the sources. rated rated

E=E 1 , 

T
1 1 1 1

2
, , ...,
i N
E E Eé ù= D D Dê úë ûED , 

T
2 2 2 2

2
, , ...,
i N
E E Eé ù= D D Dê úë ûED , 

T
* * * *

1 2
, , ...,

N
E E Eé ù= ê úë ûE , and 

T
norm norm norm norm

1 2
, , ...,

N
Q Q Qé ù= ê úë ûQ  are column vectors carrying control variables.  

It is assumed that for 0t <  all sources of the microgrid operate with identical voltage set points, i.e., for all 1 i N£ £ , 

*

ra tedi
e e=  and *

ratedi
w w=  and, thus, rated rated

( ) sin( )
i
v t e tw= . Then, the proposed controller is activated at 0t = . Thus, the 

quiescent value of any variable x , qx , represents its steady-state value for 0t < , i.e., before activating the controller, and the 

small-signal part, x̂ ,  captures the variable response to the controller activation for 0t > . Therefore, one can safely write 

T
1,q 1,q 1,q 1,q

1 2
, , ...,

N
e e ed d dé ù= =ê úë ûe 0d , 

T
2,q 2,q 2,q 2,q

1 2
, , ...,

N
e e ed d dé ù= =ê úë ûe 0d , and q

rated rated
e=e 1  and, accordingly, simplify (30)–(31), 

       ( ) 1

rated est
ˆ ˆ ˆ ,- =G E H E ED

 
(33)

 

q
1 2

rated
ˆ ˆ ,b

s
-

æ ö÷ç ÷ç- + =÷ç ÷÷çè ø

q
HLq Q ED

 
(34) 

where 
T

q q q q

1 2
, , ...,

N
q q qé ù= ê úë ûq  carries the reactive powers supplied by individual sources for 0t < . Since the rated voltage does 

not change before and after activating the controller, rated
ˆ =E 0 . The voltage set points dynamics can now be found by 

substituting (33)–(34) into (32), 

       
q

* 1

est rated
ˆ ˆ ˆ .b

s
-

æ ö÷ç ÷ç= - - + ÷ç ÷÷çè ø

q
E GH E HLq Q

 
(35) 

As seen, (35) has two terms. The first term, est
ˆ-GH E , represents the controller effort to achieve the global voltage regulation, 

and, the second term, ( )1 q

rated
ˆb s-- +HLQ q Q , explains how the controller balances reactive load sharing across the microgrid. 

 Active power regulators (see Fig. 2) adjust the active power flow by tuning the phase angles. The controller at each source, 

e.g., Source i, compares its normalized active power with those of its neighbors and, accordingly, updates the phase angle set 

point as in (7). Controller activation at 0t =  implies that *

rated
( 0)
i
tw w< =  and, thus, q ss( 0) 0

i i
td d= < = . Accordingly, 

       
* norm norm

0

ˆ ( 0) ( ) d .
i

t

i ij j i
j N

t ca p pd t
Î

³ = -åò
 

(36) 

Equivalently, in the frequency domain, 

       
* norm norm1ˆ ( ) ,

i

i ij j i
j N

ca P P
s Î

æ ö÷ç ÷çD = - ÷ç ÷ç ÷çè ø
å

 
(37) 
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where *ˆ
i

D  is the Laplace transform of *̂

i
d . One can write (37) in the matrix format, 

       
q

* 1 1

rated rated
ˆ ˆ ,

c c

s s s
- -

æ ö÷ç ÷ç= - = - + ÷ç ÷÷çè ø

p
Lp P Lp PD

 
(38) 

where 
T

* * * *

1 2
ˆ ˆ ˆˆ , ,...,

N
é ù= D D Dê úë ûD  and rated

rated
diag{ }

i
p=p  is a diagonal matrix that includes the rated active powers of the 

sources. 
T

q q q q

1 2
, , ...,

N
é ù= ê úë ûp p p p  carries the active powers supplied by individual sources before the controller activation, i.e., 

for 0t < . Equation (38) represents the phase angles dynamic response to mitigate and, eventually, eliminate the active load 

sharing mismatch. 

C. Dynamic Model of the Entire Microgrid 

Figure 6 represents the model of the entire microgrid, which is separated into two sub-models; the quiescent model and the 

small-signal model.  The entire system in the small-signal model can be treated as a multi-input/multi-output plant, where 

q sp  and q sq  are the inputs and Ê , P̂ , and Q̂  are the outputs. Equations (35) and (38) show how the controller adjusts the 

voltage set points by processing the load sharing mismatches. Dynamic model of the inverters are studied in [67]–[69]. 

Accordingly, for the inverter driving the Source i, one can write, 

     *ˆ ˆ ,
i i i
GDD = D   (39) *ˆ ˆ ,E

i i i
E G E= (40) 

where E
i
G  and i

G D  are the magnitude and phase transfer functions, respectively. Each inverter accommodates an output filter 

to eliminate the switching harmonics, whose dynamic is included in the transfer functions E
i
G  and i

G D .  Equivalently, in the 

matrix format, 

       
*ˆ ˆ ,D=GD D (41) *ˆ ˆ ,E=E G E (42) 

where diag{ }E E
i
G=G  and diag{ }

i
GD D=G  are diagonal matrices of the inverter transfer functions. By substituting (35) and 

(38) in (25)–(26), and also using (41)–(42), one can formulate the entire system.  

 
Fig. 6. Model of the entire microgrid: (a) Interaction between the physical layer and the control/cyber layer, (b) Quiescent analysis, (c) Small-signal analysis. 
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It is commonly assumed that the transmission/distribution network is predominantly inductive and, thus, active and reactive 

powers are mainly controlled by adjusting the voltage phases and magnitudes, respectively [70]. This assumption implies that 

in (25) and (26), p
e
k 0  and q

dk 0 , respectively, which helps to find the reduced-order dynamic model of the entire system. 

Substituting (41) in (38) and (42) in (35) yields 

       ( )
q1

1

rated
ˆ ˆ ,

c

s s

-
D -

æ ö÷ç ÷ç= - + ÷ç ÷÷çè ø

p
G Lp PD

 
(43) 

    ( )
q1

1

est rated
ˆ ˆ .E b

s

-
-

æ öæ ö ÷ç÷ç ÷ç+ = - +÷ ÷ç ç÷ç ÷è ø ÷çè ø

q
G GH E HLq Q    

 
(44) 

Substituting the reduced form of (25)–(26) in (43)–(44) yields  

q
1

rated
ˆ ,

P s
-=-
p

P T Lp        
 

(45)
 

q
1

rated
ˆ ,

Q s
-=-
q

Q T Lq
 

(46) 

where, P
T  and 

Q
T  are the P –balancing and Q –balancing matrices, and are defied as,   

   ( )
1

1
1

rated
,p

P
s c d

-
-

D -æ ö÷ç + ÷ç ÷çè ø
T k G Lp     

 
(47) 

       ( ) ( )
1

1 1
1 1 1

est rated
.q E q

Q e e
b b

-
- -

- - -æ ö÷ç + + ÷ç ÷çè ø
T k G H H GH k Lq

 
(48) 

Equations (43)–(48) describe dynamic response of the entire microgrid with the proposed controller in effect. Equations (45)–

(46) describe that if the power (either active or reactive) was proportionally shared prior to activating the controller, i.e., 

1 q

rated
n- =p p 1  or 1 q

rated
m- =q q 1 , the power flow would remain intact after the controller activation, i.e., ˆ=p 0 or ˆ=q 0.  

D. Controller Design Guideline 

 Appropriate selection of the control parameters is essential for proper operation of the proposed control methodology. For 

a given microgird, converter transfer function matrices, DG  and EG , rated active and reactive matrices, rated
p  and rated

q , 

respectively, and p d-  and q e-  transfer matrices, p
dk  and q

e
k , respectively, are known. Alternative communication networks 

may be chosen to exchange information; they, however, must satisfy three requirements; it should be a sparse graph with 1) at 

least a spanning tree, 2) balanced Laplacian matrix, and 3) minimum communication redundancy. Communication weights of 

the graph, 
ij
a , and, thus, the Laplacian matrix, L , directly determine the voltage estimator dynamic, est

H . One may tune the 

weights and examine the estimators dynamic through (9) to achieve a fast enough response. More details and insightful 

guidelines for optimal design of communication weights in cooperative systems can be found in [71]. 

Next, the designer may adjust the controller matrices diag{ }
i
G=G  and diag{ }

i
H=H  and the coupling gain b  by 

evaluating (48) to place all poles of 
Q
T  in the Open Left Hand Plane (OLHP). Intuitively, smaller gains help to stabilize the 

entire system while larger gains provide a faster dynamic response. Accordingly, the designer may decide the parameters by 
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making a trade-off between relative stability and settling time. The estimator dynamic should be considerably faster than the 

microgrid dynamics. Therefore, to evaluate (48), one can safely assume est
H M . Moreover, inverter switching frequency 

can be assumed high enough to provide a prompt response to the voltage command, i.e., E
N

G I .  

As can be seen in Fig. 2, two separate modules, i.e., the voltage and the reactive power regulators, adjust the voltage 

magnitude, *

i
e , by generating two voltage correction terms, 1

i
ed  and 2

i
ed , respectively. As discussed in Section II-B, the 

voltage regulator is tasked to maintain average voltage across the microgrid at the rated value. Per such assignment, the voltage 

regulator must act fast to ensure voltage stability/regulation. On the other hand, the reactive power regulator is accountable for 

reactive load sharing in the steady state and its transient performance has less significance. Accordingly, the voltage control 

loops (including voltage estimators, controllers i
G s, and voltage measurement filters) must be designed for a higher 

bandwidth compared to the reactive power control loops (involving controllers i
H s and reactive power measurement filters). 

Typically, voltage measurement filters have a relatively high bandwidth as they only need to remove the switching harmonics. 

On the contrary, besides damping the switching harmonics, the active and reactive measurement units should filter out much 

lower frequency terms of the line-frequency harmonics and other contents caused by load nonlinearity or unbalance. Such 

design requirement slows down the power measurements process and, thus, the overall active/reactive load sharing control 

loops. Accordingly, as a design guideline, it is sufficient to choose the reactive power controllers i
H s to be slightly slower 

than the voltage controllers i
G s; low bandwidth power measurement filters automatically set the frequency response of the 

power regulators to be quite slower than the voltage regulator module.  

Next step in the design procedure considers active power regulators. Equation (45) and (47) provide dynamic response of 

the active load sharing mechanism. Given the fast response of the inverters, one may assume N
DG I , which simplifies (47). 

The designer may sweep the coupling gain  c  and assess the stability and dynamic response through (47) to find an appropriate 

choice for c .  

E. Steady-state Performance Analysis 

 The design guideline in Section III-D assures stable operation of the microgrid; physical variables such as voltages 

(magnitude and phase), system frequency, and supplied active and reactive powers would converge to steady-state values. This 

performance analysis investigates load sharing and voltage regulation quality in the steady state. To this end, assume that the 

system operates in the steady state for 0
t t³ . It should be noted that although the controller stabilizes voltages across the 

microgrid, one cannot simply deduce that the voltage and reactive power mismatches are zero. In other words, the inputs to the 

PI controllers i
G  and i

H  in Fig. 2 may be nonzero in the steady state, yet the two voltage correction terms 1

i
ed  and 2

i
ed
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continuously vary with opposite rates such that sum of the two terms leaves a constant value and, thus, the voltage magnitude 

set point converges to a steady-state value. The following discussion attempts to show that such a scenario never happens; i.e., 

the mismatch inputs to both controllers decay to zero in the steady state, resulting in successful global voltage regulation and 

reactive load sharing. It also explains that the active power mismatch terms would all decay to zero, which provides the desired 

active load sharing while maintaining the rated frequency.  

Voltage regulation and reactive load sharing is first to study. In the steady state, the voltage estimators converge to the true 

average voltage of the microgrid. Equivalently, ss ss ss= =e Me e 1 . Thus, based on the control methodology in Fig. 2, 

one can write 

   
( )
( )

1 1 ss

0 P I 0 rated
2 2 -1 ss

0 P I 0 rated

( ) ( )
,

( ) ( )

t t e

t t b

ìï = + + - -ïïíï = + + - -ïïî

e e G G 1 Me

e e H H Lq q

d d
d d

    
 

(49) 

where 1

0
ed  and 2

0
ed  are column vectors that carry the integrator outputs in i

G s and i
H s at 0

t t= , respectively. Accordingly,  

   

( )

*ss 1 2

rated

1 2 ss -1 ss

rated 0 0 P rated P rated

ss -1 ss

I rated I rated 0

( )

( ) ( ),

e e b

e b t t

= + +

= + + + - -

+ - - -

e e e e

1 e e G e 1 H Lq q

G e 1 H Lq q

d d

 d d     
 

(50) 

where I
G  and P

G  are the diagonal matrices carrying the integral and proportional gains of the voltage-controller matrix G  

such that 
P I

s+ =G G G . Similarly, I
H  and P

H  are the diagonal matrices carrying the integral and proportional gains of 

the Q -controller matrix H . Equation (50) holds for all 0
t t³ , and provides a constant voltage set point vector, *sse . Thus, the 

time-varying part of (50) is zero or, equivalently,  

ss -1 ss

rated rated
( ) ,e - =e U1 Lq q        (51) 

where 1 1

I I
diag{ }

i
b u- -= =U G H  is a diagonal matrix. Multiplying both sides of (51) from the left by 

T1 ,  

 ss T T -1 ss

rated rated
( ) .e - =e 1 U1 1 Lq q       (52) 

Given the balanced Laplacian matrix, 
T =1 L 0 [54], which simplifies (52), 

   ss

rated
1

( ) 0.
N

i
i

e u
=

- =åe     
 

(53) 

Since all entries of the matrix U are positive, (53) yields ss

rated
e = e , which implies that the controllers successfully regulates 

the averaged voltage magnitude of the microgrid, sse , at the rated value, 
rated
e . Moreover, by substituting ss

rated
0e - =e  

in (51), 

   -1 ss

rated
.=Lq q 0     (54) 
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Fig. 7. AC microgrid prototype: (a) Inverter modules, (b) dSAPCE processor 
board (DS1006), (c) Programming and monitoring PC, (d) RL  loads. 

Fig. 8. Schematic of the microgrid prototype; radial electrical connection and 
ring cyber network.   

 

If L  is the Laplacian matrix associated with a graph that contains a spanning tree, the only nonzero solution to =Lx 0  is 

n=x 1 , where n  is any real number [53]. Thus, (54) implies ss

rated
n=q q 1 , which assures that the controller shares the total 

reactive load among the sources in proportion to their ratings.    

Frequency regulation and active load sharing is the next to study. The controller guarantees the convergence of the voltage 

magnitude vector, e , and phase angle vector, d  to steady-state values. Thus, (6)–(7) suggest that all sources would 

synchronize to the rated frequency, rated
w . Moreover, based on (7), stabilizing the phase angles across the microgrid implies 

that all the frequency correction terms in (4) should decay to zero. Equivalently,  

   1 ss

rated
,c - =Lp p 0     (55) 

which offers, ss

rated
m=p p 1 , where m  is a positive real number. Thus, the controller successfully handles the proportional 

active load sharing. 

IV. EXPERIMENTAL VALIDATION  

A 120 / 208 V, 60 Hz  three-phase AC microgrid, shown in Fig. 7, is prototyped in the Intelligent Microgrid Laboratory at 

Aalborg University. System schematic is described in Fig. 8, where four inverter-driven sources are placed in a radial 

connection to supply two loads, 1
Z  and 4

Z . The inverters (sources) have similar topologies but different ratings, i.e., the 

ratings of the inverters 1  and 2  are twice those for the inverters 3  and 4 . Each inverter is augmented with an LCL filter to 

eliminate switching and line-frequency harmonics. RL -circuit model is used for each transmission line. An inductive-resistive 

distribution network is adopted to investigate collaborative interaction of the active and reactive power regulators in load 

sharing. Structure of the cyber network is highlighted in Fig. 8. Alternative cyber networks for a set of four agents in DC 

microgrids are discussed by authors in [53], [54] where the ring structure is shown to be the most effective option and, thus, is 
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considered here. It can be seen that the ring connection provides a sparse network that carries the required minimum 

redundancy, defined in Section II-A, where no single communication link failure would hinder the connectivity of the graph. 

Communication links are bidirectional to feature a balanced Laplacian matrix. A dSPACE processor board (DS1006) models 

the communication channels and implements the control routines. Electrical and control parameters of the microgrid are 

provided in the Appendix.  

A. Performance Assessment 

Figure 9 evaluates performance of the proposed control methodology. Inverters are initially driven with fixed voltage 

command, i.e., 120 V
i
e* =  and * 120  rad/s

i
w p= . It should be noted that no voltage feedback control had been initially in 

action to compensate the voltage drop across the LCL filters and, thus, the resulting bus voltages in Fig. 9(a) are less than the 

desired set point, i.e., 120 V
i
e* = . It can also be seen in Figs. 9(e) and 8(f) that the total load is not shared among sources in 

proportion to their power ratings.  

It can be seen in the Appendix that the voltage controllers i
G s are designed slightly faster than the reactive power 

controllers i
H s. Cut-off frequencies of the power measurement filters are as low as 3 Hz  to damp all undesired low-

frequency harmonics. These design considerations set the dynamic responses of the two voltage and reactive power regulators 

apart enough to dynamically separate the two resulting voltage correction terms, i.e., 1

i
ed  and 2

i
ed . The proposed controller is 

activated at 8 st = . The voltage correction terms have been added to the voltage set points to help with the global voltage 

regulation and reactive load sharing. Figure 9(a) demonstrates that the controllers have boosted the bus voltages across the 

microgrid to satisfy the global voltage regulation; i.e., for 8 st > , the average voltage across the microgrid is successfully 

regulated at the desired 120 V . As seen in Figs. 9(b) and 9(c), the first and the second voltage correction terms respond at two 

different time scales; the first correction term 1

i
ed  (output of the voltage regulator) responds four times faster than the second 

correction term 2

i
ed  (output of the reactive power regulator). Figure 9(b) shows that the controllers have varied the frequency 

set points in transients to adjust individual phase angles and provide the desired active load sharing. This figure supports the 

discussions in Section III-E, where the active power regulator is proven to only enforce transient deviations in frequency and 

that imposes no steady-state deviation. It can be seen that all inverter frequencies synchronize to the rated frequency of 60 Hz  

in the steady state. Figures 9(e) and 9(f) show the filtered power measurements and explain how the controllers have 

effectively rerouted the power flow to provide proportional load sharing. Individual and total reactive and active load demands 

are plotted in Figs. 9(g) and 9(h), respectively. It should be noted that the loads have drawn more power once the controller is 

activated since the voltages are boosted across the entire microgrid. 
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Fig. 9. Performance evaluation of the proposed controller: (a) Bus voltage (phase-to-neutral), (b) Inverter frequency set points, (c) First voltage correction 

term, 1
i
ed , (d) Second voltage correction term, 2

i
ed , (e) Supplied reactive power, (f) Supplied active power, (g) Load reactive power, and (h) Load active 

power. Power ratings of the inverters 1 and 2 are twice those of inverters 3 and 4. 

Next, the controller performance is studied in response to the load change. The load at Bus 4, 4
Z , has been unplugged at 

20 st =  and plugged back in at 35 st = . As seen in Fig. 9, the controller has successfully maintained global voltage 

regulation, frequency synchronization, and proportional load sharing, despite the change in load. It can also be observed in 

Figs. 9(e) and 9(f) that the inverters 3 and 4 respond faster to the load change than the other two inverters as they are in closer 
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vicinity of 4
Z . Soft load change is performed in this study for safety purposes. In fact, the load inductor at Bus 4 features an 

air-gap control knob. Using this control opportunity, at 20 st = , the load inductance is manually increased to its maximum 

value to provide an ultimate current damping feature. Then, the load is physically unplugged. A reverse procedure is followed 

at 35 st =  to plug the load, 4
Z , back in. This soft load change procedure, besides the damping effect of the power 

measurement filters, explains why the supplied powers in Figs. 9(e) and 9(f) and the load demands in Figs. 9(g) and 9(h) show 

a slow and gradual profile rather than sudden changes.  

B. Communication Delay and Channel Bandwidth 

Communication is indispensable to access neighbor data and, thus, to the operation of distributed systems. Accordingly, 

channel non-idealities, e.g., transmission/propagation delay and limited bandwidth, and channel deficiencies such as packet 

loss may compromise the overall system performance. Thus, low delay and high bandwidth communication protocols are of 

paramount value for distributed control structures. For example, WiFi and Ultra Wide Band (UWB) protocols offer bandwidths 

up to 5 GHz and 7.5 GHz, respectively, with delays less than 1 sm . It should be noted that the length of the communication link 

directly affects the channel delay. Channel non-ideality effects on the controller performance has been studied in [72] for 

distributed systems and, particularly, for microgrids in [40], [73], and [74]. It is shown that such non-idealities have a 

negligible impact on the overall system performance if the channel delay is negligible compared to the controller dynamics. 

For the underlying microgrid, results in Fig. 9 clearly show that the controller dynamics are in the orders of hundreds of 

milliseconds (or longer); the system dynamics exhibit different time constants for the voltage, active, and reactive power 

regulation. Therefore, the proposed controller is expected to operate safely with most of the existing communication protocols. 

To further study the effect of communication delay and limited bandwidth, a detailed model of the underlying microgrid is 

simulated in MATLAB/SIMULINK environment. Figure 10 shows the transient load sharing performance in response to the 

step load change for a variety of communication delays and bandwidths. It should be noted that the results in this figure present 

instantaneous active and reactive powers; not the filtered measurements. However, the controller still processes the filtered 

quantities. Comparison of studies in Fig. 10 shows how large delays can compromise system stability (see Fig. 10(c)).  

Analysis of distributed control protocols in [75] demonstrates that large communication delays impose dc errors on the 

voltage estimations and cause drift from a consensus. One can see such effect in Fig. 10, where longer delays introduce larger 

errors in voltage estimations and lead to bus voltages regulated at higher values than the desired rated voltage. This undesired 

voltage increment explains elevated supplied powers in Figs. 10(b) and 10(c) in comparison to Fig. 10(a).  

 



 22

 

Fig. 10. Controller performance with non-ideal communication channel. Supplied active and reactive powers for (a) delay = 1 ms and BW = 100 kHz, (b) 

delay = 50 ms and BW = 10 kHz, and (c) delay = 150 ms and BW = 1 kHz. 

 

Simulation studies ensure immunity of the controller performance to delays as long as 10 ms  and channel bandwidths as low 

as 100 kHz , which makes communication protocols such as WiFi and UWB very suitable for the field implementation.  

C. Plug-and-play Study 

Figure 11 studies the plug-and-play capability of the proposed method. Inverter 3 has intentionally been unplugged at 

10 st = . Although this inverter is turned off instantly, the power measurements exponential decay to zero because of the 

existing low-pass filters.  
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Fig. 11. Plug-and-play study for Inverter 3: (a) Bus voltage (phase-to-neutral), (b) Inverter frequency, (c) Supplied reactive power, and (d) Supplied active 
power.  

It should be noted that a source failure also implies loss of all communication links connected to that particular source. 

Accordingly, when Source 3  fails, it automatically renders the links 2-3 (between Nodes 2 and 3) and 3-4 inoperable. 

However, as seen in Fig. 11, the remaining links still form a connected graph with balanced Laplacian matrix and, thus, the 
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control methodology should remain functional. As seen in Figs. 11(c) and 11(d), the controllers have successfully responded to 

the inverter loss and shared the excess power among the remaining inverters in proportion to their power ratings. After the loss 

of Inverter 3 , the voltage measurement for Bus 3  would be unavailable. Thus, the controllers collectively regulate the new 

average voltage, i.e., the average voltage of the remaining three inverters, at the rated value of 120 V . However, the actual 

average voltage across the microgrid is seen to be slightly less than the rated voltage. As seen in Fig. 11(a), Bus 3  

experiences voltage sag due to the loss of generation. It should be noted that although inverter 3  is disconnected from Bus 3  

the bus voltage is still available. Inverter 3  is plugged back in at 20 st = ; however, the synchronization procedure delays 

inverter engagement. After successful synchronization, the controller is activated at 31 st =  and has shown excellent 

performance in the global voltage regulation and readjusting the load sharing to account for the latest plugged-in inverter. 

D. Failure Resiliency in Cyber Domain 

Resiliency to a single link failure is studied in Fig. 12. The original communication graph is designed to carry a minimum 

redundancy, such that no single communication link failure can compromise the connectivity of the cyber network. As seen in 

Fig. 12, the Link 3-4 has been disabled at 3 st = , yet, it does not have any impact on the voltage regulation or load sharing, as 

the new graph is still connected and has a balanced Laplacian matrix. It should be noted that, by practicing error 

detection/control protocols in the communication modules, any link failure can be immediately detected at the receiving end. 

Accordingly, the receiving-end controller updates its set of neighbors by ruling out the node on the transmitting end of the 

failed link. This reconfiguration ensures that the misleading zero-valued data associated to the failed link (e.g., zero active and 

reactive power measurements) will not be processed by the receiving-end controller and, thus, the system remains functional.  

The controller response to load change is then studied in Fig. 12 with the failed link, where a satisfactory performance is 

reported. In this study, the load at Bus 4 , i.e., 4
Z , has been unplugged and plugged back in at 5 st =  and 17.5 st = , 

respectively. It should be noted that although the link failure does not affect the steady-state performance, it slows down the 

system dynamics as it limits the information flow.  

It should be noted that any reconfiguration in the cyber domain, e.g., communication link failure, affects the Laplacian 

matrix and, thus, the whole system dynamic. However, it will not compromise the steady-state performance of the control 

methodology, so long as the cyber network remains connected and presents a balanced Laplacian matrix. Connectivity of the 

cyber network plays a key role in the functionality of the entire microgrid. Including redundant cyber links, as discussed in 

sections II-A and II-B, ensures network connectivity for the most probable contingencies.  
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Fig. 12. Resiliency to failure in Link 3-4: (a) Bus voltage (phase-to-neutral), (b) Inverter frequency, (c) Supplied reactive power, and (d) Supplied active 
power. 

However, any communication link failure requires immediate attention/maintenance before other links fail. It should be noted 

that it is very unlikely to lose connectivity due to simultaneous failures of several communication links.     

V. CONCLUSION 

A distributed secondary/primary controller is proposed for AC microgrids. The controller embedded on each inverter has 

three modules: the voltage, reactive power, and the active power regulators. The voltage regulator estimates the global average 

voltage across the microgrid. This estimation is then further used to adjust the local voltage set point. The reactive power 

regulator also adjusts the voltage set point by comparing the local normalized reactive power with the neighbors’. The active 

power regulator compares the local normalized active power with the neighbors’ and, accordingly, adjusts the frequency (or, 

phase angle) set point to carry out the proportional active power sharing. This control paradigm does not rely on the droop 

mechanism, yet it is fully distributed, i.e., it uses a sparse communication network for data exchange among inverters. 

Experimental results show that the proposed cooperative control provides a precise global voltage regulation and proportional 

load sharing. Controller performance, plug-and-play capability, and resiliency to a single communication link failure are also 

verified through experiments. 
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APPENDIX 

DC bus voltages that supply the inverter modules are all dc
650 VV = . The filter inductors are identical and 

F1 F2
1.8 mHL L= = , and the intermediate capacitor is F

25 FC m= . The line impedance connecting busses i  and j  can be 

expressed as 
ij ij ij
Z R sL= +  where, 

12 12

23 23

34 34

0.8     3.6 mH

0.4     1.8 mH .

0.7     1.5 mH

R L

R L

R L

ìï = W =ïïï = W =íïïï = W =ïî

       
 

(A.1) 

The control parameters are, 
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rated

1 kW diag{1.6,1.6, 0.8, 0.8}
,

1 kVAr diag{0.6, 0.6, 0.3, 0.3}
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