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Abstract – The electric power industry is in transition from 
large and regulated utilities to an industry that will 
incorporate competitive companies selling unbundled power 
at lower rates. The new structure of electric power systems, 
which includes separate companies with an open access policy 
demands novel control strategies to maintain the stability and 
eliminates the frequency error. Under current organization 
several approaches have already been proposed. 

This paper addresses the design and introduce of reduced 
load frequency controller based on µ-synthesis theorem for a 
possible structure in the new deregulated open access 
environment. We used the singular values of the observability 
matrix of the high order µ-controller for reducing the 
controller order . 
 
 

1. INTRODUCTION 
 

Any power system has a fundamental control problem 
of matching real power generation to load plus losses, a 
problem called Load Frequency Control (LFC) or 
frequency regulation. The purpose of Load Frequency 
Control is tracking of load variation while maintaining 
system frequency and tie line power interchanges close to 
specified values. Reference [1], give a detailed discussion 
of LFC. 

Deregulation structure considers the system as an area 
that includes separate generation, transmission and 
distribution companies with an open access policy. In this 
new structure, each control area has its own generation and 
transmission network, and distribution company is 
responsible for tracking its own load and honoring tie-line 
power exchange contracts with its neighbors by securing as 
much transmission and generation capacity as needed. 

The classical load frequency controllers are designed and 
tuned for the particular operating point of power system. 
Closed-loop stability and acceptable performance is only 
achieved for slight deviation from the nominal operating 
point. That is why the classical controllers can not satisfy 
the new structure objectives. Under current organizations, 
several notable approaches based on optimal, H , µ
-synthesis, neural networks and other control theorems 
have already been proposed [2-15]. 

∞

[16], discusses and compares of several LFC scenarios 
and issues in power system operation after deregulation. 
Also, the authors [9] have proposed a high order µ load 
frequency controller for the scenario presented here. In this 
paper, based on obtained results in [9] we will present a 

robust low-order load frequency controller.  
Because of our tight design objectives with considering 

several simultaneous uncertainties and wide range of input 
disturbances, the order of out coming robust controller by 
using µ-synthesis will be too high.  A wide variety of 
methods for the order reduction have been proposed over 
the last two decades [17-22]. In the opinion of many 
investigators of model reduction, two developments have 
dramatically changed the status of the model reduction 
theory. These are the methods of Moor balanced realization 
[17] and optimal Hankel-norm approximation [18]. The 
main advantage of these two methods is that they address 
the problem of Kalman minimal realization theory. 
Specifically, since the rank of a matrix is a relative number, 
by observability grammians or the Hankel matrix of the 
system can be determined. 

In this paper, a reduced order of High order µ-based load 
frequency controller that is given in [9], is obtained using a 
Kalman observability matrix of the high-order µ controller.    
 
 

2. MODEL DESCRIPTION 
 

Based on the new structure, let us consider a simple 
distribution company and its suppliers as shown in Fig. 1, 
[8-9]. In this example the distribution company (DISCO) 
buys firm power from one generation company (GENCO 2) 
and enough power from other generation company 
(GENCO 1) to supply its load and support the LFC task. 
Transmission company (TRANSCO 1) delivers power 
from GENCO 1. TRANSCO 1 is also contracted to deliver 
power associated with the LFC problem. 

In the structure proposed the DISCO are to be 
responsible for tracking the load and hence performing the 
load frequency control task by securing as much 
transmission and generation capacity as needed. 
Connections of the DISCO to other companies are 
considered as disturbances (d1). 

For simplicity assume that GENCOs 1 and 2 have one 
generator each. The state space realization of the 
distribution area as presented in [8], has the following 
form: 
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 Fig. 1. A distribution company and its suppliers 

 

 
Coefficients of equation (1) are given bellow:  
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and, 

∆  : Deviation from nominal value  

fo  : Nominal frequency  

f i   : Frequency 

δ i   : Rotor angle  

PM : Turbine (mechanical) power 

d i   : Disturbance (power quantity). 

PV  : Steam valve power  

Prefi  : Reference set point (control input) 
 
In order to simulation, system parameters and data are 

given in Table 1, according to [8-9]. 
 
 

TABLE 1 

DATA FOR THE SIMULATION 

Quantity  GENCO 1 GENCO 2 
Rating (MW)  1000 800 
Constant of Inertia: H(sec) 5 5 
Damping: D (pu MW/Hz) 0.02 0.015 
Droop characteristic (%) 4 5 
Generator's:  T 2H /P 0= f 0.2 0.2 

Turbine's Time Constant:  TM
0.5 0.5 

Governor's Time Constant:T  H
0.2 0.1 

Gains:  K ,KM H
1 1 

Synchronizing coefficients:  Ti
0.2 0.1 

 
 

3. µ -BASED CONTROLLER DESIGN, [9] 
 

The first step is formulate the LFC problem as an µ
controller design problem. The state-space model is based 
on equation (1), and, let the output variables be given by 
the Area Control Error (ACE), as given in [9]. 

The objective is to design a controller that will result in 
a stable closed-loop system and minimize the effects of the 
worst disturbances or exogenous inputs on the output 
variables. To meet our objective, we consider the 
closed-loop interconnection system as shown in figure 2. 

Note that there are three uncertainty blocks and 
associated weighting functions. The block  model the 
multiplicative uncertainty while the blocks ∆  and 

 are the fictitious uncertainties added to assure robust 
performance. The robust controller K(s) must be computed 
to meet design objectives. An important issue in regard to 
selection of the weights is the degree to which they can 
guarantee the satisfaction of design objectives. For the 
problem at hand a suitable set of weighting functions is: 
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For more details on  finding of these weighting functions 
refer to [9]. 

  
 

System

WuWp1

∆u

∆p1 ∆p2

Wp2

∆PL

++ u

K

d1

∆P

∆U

e+
−

ref

 
Figure 2: The block diagram for µ-synthesis 

 

Our next task is to isolate the uncertainties from the 
nominal plant model and redraw the system in the standard 
M-∆ block from shown in figure 3. 
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Fig 3  Standard M-∆ block 

 
The block labeled M, consists of the nominal plant, 

controller K(s), the weighting functions and scaling factors. 
Having setup our robust synthesis problem in terms of the 
standard µ-theory, we use the µ-analysis and synthesis 
toolbox, to obtain a solution. The 10th order controller K(s), 
is found at the end of the third D-K iteration yielding the 
value of about 0.9843 on the upper bound on µ. The state 
space realization of the reduced order controller is: 
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4. ORDER REDUCTION 
 

An important issue concerning the structure of the 
resulting compensator is its high order. This is expected in 
view our tight design objectives with considering several 
simultaneous uncertainties and wide range of input 
disturbances. Indeed, most robust controllers obtained via 
this approach display this feature. 

Order reduction techniques have to be used to reduce 
controller’s complexity and make practical implementation 
feasible. There are many methods to aid in reducing the 
order of the systems [17-22]. MATLAB software, provide 
several commands to aid in reducing the order of a system, 
such as, Balanced realization model reduction (sysbl), 
Residualization method (resid), Frequency weighted 
balanced reduction (sfrwtbld) and Relative error model 
reduction (srelbal). 

To dispense with using type of order reduction 
technique, the reduced model should represent the original 
model with sufficient accuracy such that performance 
objectives can be met using the reduced model instead of 
the original one in a given frequency bandwidth. 

In this section a method based on the singular values of 
the observability matrix of the high order µ-controller is 
applied to reduce the size of the controller [15].  in (3), 
is the  state vector of the controller, the size of the 

x̂
1n̂ ×

 



controller is too high. Now a reduced order controller of 
size r  is obtained using Kalman observable 
canonical form. To transform the state space model of the 
controller to a Kalman observable canonical form, singular 
value decomposition of the observability matrix Q of the 
controller is used: 
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where, 
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Equation (4) determines the size of the reduced order 

model of the controller. The matrix V is used as a similarity 
transformation to obtain a Kalman observable canonical 
form whose state variable are: 
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The controller description in the new coordinate system 

is: 
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 2B~
 1B~

B~

; 
22A~    21A~
12A~    11A~

A~

====

==

























 

 
Finally, a reduce order controller whose size is the size 

of , is obtained from equations (5) and (6): 
1
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For the power system of figure 1, the singular values of 

the observability matrix of the original controller are: 
 

{
}0.00011  0.01,  0.04,  0.069,   0.07,    13.098                 

 67.10,  114.01,  1124.21,   6812.49,diagΣ =
 

 
It is seen that the first five singular values are too larger 

than the next singular values. Therefore a fifth order model 
is considered. Based on (7), the result reduced controller 
has the following form: 
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5. SIMULATION RESULTS 
 

Analysis of the reduced order controller shows that the 
upper bound on µ remains less than one. In other word, this 
yield a stable closed-loop system. But reduction of order, 
effects on output response. Figures 4-5 show this fact, 
following a 10% load increase in the distribution system. 
 
 

 
 

Fig ４ Frequency deviation  at GENCO 1; using original controller 
(solid), using reduced controller (dashed) 

 
Figure 6 shows the changes in power coming to the 

 



distribution company from generation companies, 
following a 10% load increase in the distribution system. In 
figure 6, upper curves show the power that coming from 
GENCO 1 and lower curves belong to GENCO 2. 
 

 
Fig 5  Frequency deviation  at GENCO 2; using original controller 

(solid), using reduced controller (dashed) 
 
 

 
Fig 6  Change in power supplied to power system; using original 

controller (solid), using reduced controller (dashed) 
 

 
6. CONCLUTION 

 
This paper presents a robust low-order load frequency 

controller in a deregulated environment to overcome the 
problem of load variation and disturbances. The reduction 
of high-order controller is proposed by using singular value 
decomposition of the its observability matrix. 

A simple test system is given to demonstrate the 
effectiveness of the proposed methodologies.  
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