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1  Introduction 
The growing pressure to increase the penetration of 

renewable energy sources (RES) results in the emergence 
of microgrid (MG) concept, which is considered as an 
appealing way to integrate distributed generators (DGs), 
energy storage systems (ESS) and loads into small power 
systems[1-3]. An MG has a clearly defined boundary and 
can be connected or isolated from the main grid[4]. The 
isolated operation of MG can ensure its power quality 
independency from utility mains especially under grid 
contingencies. Conversely, when connected to grid, it 
appears like a singular and flexible entity from the 
overhead power system perspective, which makes it a 
valuable building block in the future Smart Grid. 

Motivated by those benefits, the academic 
community has therein found a particularly fertile 
research field and notable progress has been made in 
real-time operation and control of both AC- and 
DC-coupled MGs. Particular attention was devoted to 
elimination of problems that come with paralleling 
multiple power electronic converters in AC systems 
without the use of dedicated communication infras- 
tructure. Largely finding inspiration in early works from 
Chandorkar, Tuladhar, and Coelho[5-7], initially reported 
solutions based on local droop control method showed 
promising performance for small and dense systems[8-10]. 
Nonetheless, limitations of classical droop control in 
practical applications have soon come to light: Its 
suitability only for dispatchable generators, inherent 
voltage/frequency deviations, and inter-dependence of 
control parameters with power sharing accuracy and 
stability, to name a few.  

Low-bandwidth centralized communication system 
(CS) is the widely used solution that links DGs to    
go around these impediments and ensure proper 
operation[11-14]. However, CS is in direct contradiction 
with the new paradigm of DG based power grids, i.e. 
fully distributed and redundant control system that is 
easily expandable and entails “plug-and-play” feature 
for new units and that is not subject to a single point of 

failure. Thus, distributed computing and algorithms have 
been brought to the main research trend recently and 
receive increasing attention from researchers all over the 
world. This research could be categorized into following 
two groups: 

(1) Conventional digital communication system is 
avoided and power lines are used as a communication 
medium, leading to two concepts; power line signaling 
(PLC)[15] and distributed bus signaling (DBS)[16-18]. 

(2) There exist conventional communication links, 
but rather than a centralized data aggregator, a multi- 
agent system(MAS) is used. This case opens the potential 
for a whole new range of added benefits, such as the 
“plug-and-play” capability, enhancement of redundancy 
and reliability, allocation of computational burden to more 
vendors, and reduction of communication costs[19-20]. 

It should be noted that in its standard form, PLC 
relies on dedicated technologies since the frequencies of 
practical communicating signals are at least several kHz 
and power converters on the market are normally not 
suitable for their processing. In addition, PLC is still an 
emerging technology that, due to slow development of 
generally accepted standards[15], today has only some 
restricted applications in utility power systems and 
possibilities of its deployment to MGs would require 
much more extensive examination than that permitted by 
the space available in this article. 

Therefore, the remainder of this paper is focused 
exclusively on disclosing the features of DBS and MAS 
control methods.  

Without the loss of generality, both of them could 
be also combined together to form hybrid arrangements. 
In any case, aspiration to adopt fully distributed 
management strategies can be identified as a fashionable 
and increasingly important trend in MG arena. The most 
relevant features of those strategies are disclosed, 
examined, and analyzed in order to point out benefits 
that they can bring to future industrial MGs and also to 
demonstrate that we are presently in a key moment 
where energy companies will try to transform recent 
theoretical developments into real and competitive 
products. 

Today, the MG market is worth around $5 billion 
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and accounts for more than 4 GW of installed capacity 
around the globe, with more and more new deployment 
projects being carried out[21]. It is interesting to note that 
some of those already embrace distributed control 
approaches in practical real world environments. 
Companies like Morningstar and SMA offer plug’ 
and’play converters that can rapidly form AC or DC 
MGs using different bus signaling methods[22-24]. Due to 
user friendly interface and straightforward commissioning, 
many small-scale industrial MGs have been built relying 
on their basis. From larger-scale distributed deployments, 
a Cell pilot project in Denmark can be singled out as a 
good example. It is based on the idea of dividing low 
voltage distribution system to a number of distributed 
agents, i.e. utility-scale MGs, that communicate with 
each other through high speed fiber optic cables with 
respect to predetermined control hierarchy[25]. Another 
example is a multi-agent system based on intelligent 
local load control, assembled for MG of Kynthos island, 
Greece[26]. 

Relying on successes of these projects and with 
already firmly established theoretical background; it is 
natural to expect that leading companies will continue 
to show interest in deploying distributed solutions in 
order to maintain the competitive market position. In 
that sense, extension and standardization of existing 
bus signaling solutions, as well as breakthrough of 
distributed algorithms to higher control layers seem to 
be a next natural step in development of advanced MG 
technologies.  

2  Fundamentals of a conventional control 
structure for microgrid 
Stemming from the conventional control of large 

power systems, a hierarchical control structure has been 
defined with primary, secondary and tertiary levels 
differentiated[27]: 

(1) Primary control is responsible for individual 
converter power, voltage and frequency regulation. 
Droop control and virtual impedance are often used on 
top of inner voltage and current loops.  

(2) Secondary control’s main function is to perform 
power quality regulations to manage voltage/frequency 
deviations, unbalances and harmonics. Optionally, it 
encompasses synchronization loop between the MG and 
external grid. 

(3) Tertiary control is in charge of regulating power 
exchange with external grid or/and with other MGs. It 
can also include advanced functions related to efficiency 
and economic enhancements which constitute a higher 
management level, commonly referred to as the energy 
management system (EMS)[28-29].  

Fig.1 shows the organization of the control layers 
within the MG. It can be seen that the bandwidth is 
gradually decreased when climbing up the hierarchy. 
Besides, unlike secondary and tertiary, all the functions 
of primary layer are by definition achieved without 
using digital communication technologies. Following 
sections cover one layer at a time and address the 
applications of advanced distributed control techniques 
to each of them. 

 
Fig.1  Hierarchical control concept for microgrids 

3  Decentralized primary control of AC/DC 
microgrids 
Primary control is the basic control level of a MG 

hierarchical control structure. It follows the operational 
command from upper levels and regulates the DG tie 
converters to realize the committed functions. Although 
centralized architectures can be used for primary 
control[30], decentralized and distributed control methods 
are gaining increasing attention for the sake of flexibility 
and plug-and-play functionality[27]. 

On the other hand, some system level regulation 
functions usually require the conventional digital 
communication infrastructure[31-34]. However, with the 
help of DBS concept, some of those functionalities may 
be realized locally, leading to distributed coordination   
of an MG system. Apart from increased flexibility   
and reliability, low implementation cost and inherent 
robustness of DBS make this kind of strategy very 
attractive for cost-sensitive industrial applications. 

3.1  Primary control system and characterization 
of units 

A typical MG configuration is shown in Fig.2, 
consisting of RES, ESS and distributed loads. The 
common challenge for such a system is the management 
of uncertain RES generation and load consumption.   
In order to make full use of renewable energy, RESs are 
usually operated at maximum power point (MPP) 
whenever possible[35-36]. In this regard, ESSs are indis- 
pensable components in order to achieve autonomous 
operation of MGs[37-38], while the limitation of ESS 
energy and power capacity require a reasonable regulation 
strategy to prevent over-charge or over-discharge. 
Reactive power flow and power quality issues are also 
of great importance and to be taken into account. 

Depending on the nature of interconnecting power 
lines, active and reactive power can be more or less 
decoupled[39]. In inductively dominant lines, reactive 
power is related with voltages and cannot be accurately 
distributed due to differences in line impedances that 
lead to diverse voltage drops[40] (similar effect can also 
be found for current sharing in DC MGs[41]). With 
dominantly resistive lines, active power sharing would 
be more problematic. One way or another, droop control 
laws need to be appropriately tuned to achieve proper 
sharing[39]. Since the exact R/X ratio is not known in 
practical applications, virtual impedance (VI) control 
loop has been proposed to fix the impedance seen from 
the interfacing converter[10,42-45]. VI concept can also 
be employed to specify the impedance for selected 
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harmonics, and to control the harmonic power flows in 
that way[46-47]. With this in mind, the sole focus of this 
section was to reveal the features of decentralized active 
power control based on coordination between ESS and 
RES with regard to the energy stored in ESS. 

In addition, it should be noted that MG supple- 
mented with ESS can provide a number of benefits to 
utility mains in grid-connected mode[48-49]. However, 
discussion in this section will remain focused 
exclusively on autonomous mode of operation due to the 
following two reasons: a) control is more challenging in 
islanded mode since there does not exist a stiff source, 
and b) although energy management priorities are 
typically different in the two modes, the same control 
concept can be used to achieve them in both cases. 

Two critical conditions have to be carefully 
addressed: a) light load consumption with high RES 
generation may cause over-charge of ESS; b) heavy load 
consumption with low RES generation may cause 
over-discharge of ESS. Both conditions demand a proper 
coordination of the MG. To avoid building a costly 
digital communication network, power line based 
communication, such as DBS, can be utilized.   

3.2  Distributed bus signaling (DBS) 

DBS coordination control schemes can be generally 
classified into ESS-RES distributed generation control 
(DGC) and ESS-load demand side management (DSM). 
Both schemes can be utilized in either AC or DC MGs 
with a proper design and selection of bus signals. 
Frequency signal is commonly used for AC systems, 
whereas in DC systems the common bus voltage can be 
selected for DBS purpose. Since both AC and DC MGs 
share practically the same energy management priorities 
in the autonomous mode of operation[18], the following 
elaboration focuses on application of DBS method only 
to AC MGs without any loss of generality. 

In both AC and DC MGs, the DBS strategy 
employs ESS as the master unit to regulate bus voltage 
frequency (in AC) or amplitude (in DC) based on its 
SoC condition. High SoC control and low SoC control 
are divided in the coordinated control algorithm for 
taking proper decision according to the practical 
condition. In high SoC condition, DGC dominates the 
control by managing the power from RES and ESS; in 
low SoC condition, DSM dominates the control by    

 
Fig.2  A configuration of decentralized primary control 

managing the load shedding. The detailed algorithms are 
discussed as mfollows, and AC MG is used as the 
exemplary syste 

3.2.1  Distributed generation control (DGC) 

Fig.3 shows the DGC coordination algorithm for 
coordinating ESS and RES. When SoC is within the 
normal operation range (lower than the upper-threshold 
SoC1), the ESS operates in stiff voltage control mode 
(VCM)[50] and keeps the MG frequency at the nominal 
value; in the meantime, each RES unit is under current 
control mode (CCM) using power references generated 
by MPPT[51-53]. This control mode guarantees that the 
RES power is fully utilized when the ESS is within the 
safe SoC range.  

In high SoC conditions, the ESS unit is nearly fully 
charged so that the RES power needs to be curtailed in 
order to avoid over-charge condition. An autonomous 
operation is realized by DBS that the ESS increases the 
bus voltage frequency, RES regulates its power by 
monitoring the frequency signal and curtails its power 
when the frequency goes higher. Fig.3 indicates a 
frequency droop of RES during this range of operation, 
which is similar as synchronous generators with built-in 
inertia. 

Ultimately, the charge power of ESS is reduced to a 
low level such that the bus frequency and system power 
flow are stabilized at an equilibrium point. In addition, if 
a system involves multiple ESS units operating in 
parallel, droop control is still compatible with the 
coordinated control scheme, and can be used between 
ESS units to realize decentralized power sharing 
control[44, 55]. In this way, all the ESS units are like a 
singular entity with a common SoC from the DBS 
perspective, and the MG coordination principle remains 
the same as for a single ESS. 

3.2.2  Demand side management (DSM) 

In low SoC condition while the RES has limited 
power generation, the only solution to keep continuous 
operation of an islanded MG is to perform DSM[58-59]. 
Similarly, ESS also acts as the master unit to manipulate 
the frequency when the SoC is lower than certain limit, 
as that shown in Fig.4. A load shedding process is the  

 
Fig.3  Principle of primary DGC control 

 
Fig.4  Principle of primary DSM control 
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consequence of reducing frequency so that the ESS 
discharge rate is also reduced, and finally an equilibrium 
point is reached when the power is balanced within the 
MG system. 

Furthermore, the load shedding procedure also 
follows a prescribed pattern such that critical loads have 
uninterruptible supply while noncritical ones are also 
classified with certain priorities. The load recovering 
process is also based on the observation of frequency 
increase, for which a relay based control is necessary to 
avoid chattering behavior in the MG system. 

In addition, instead of always applying a fixed 
frequency-SoC slope, adaptive slopes are also potential 
solutions for systems with special operational require- 
ments on load tripping time and coordinated control 
sensitivity. 

4  Secondary control 
As elaborated in the previous sections, droop- 

regulated converters may be combined with other types 
of units such as RES (regulated by local MPPT 
algorithms or virtual inertia emulation) and distributed 
loads. The system voltage and frequency, however, are 
determined by droop characteristics and their steady-state 
deviations from their nominal values are inevitable[13-60]. 
In addition, accurate (active/reactive) power sharing 
cannot be achieved in the most common droop 
mechanisms[65-66]. Taking the idea from large power 
systems, secondary control is typically deployed to 
overcome the limitation of droop mechanism in 
droop-controlled DGs. Using digital communication, 
this control level is able to provide improved 
performance and global controllability for the MG. To 
achieve the global controllability of system, the 
secondary control must be implemented either centralized 
or distributed. 

4.1  Centralized secondary control 

Conventional secondary controller is unique for the 
whole MG, relies heavily on centralized communication 
infrastructure and is, among other functions, imple- 
mented within the MG central controller (MGCC)[60–62]. 
Some other strategies such as power flow control, 
and harmonic/voltage unbalance compensation have 
also been applied to the MGCC under the name 
“secondary”[45,63-65]. Fig.5 shows conventional secondary 
control architecture for a MG consisting of a number of 

 

Fig.5  Scheme of centralized secondary control 

DGs controlled by local primary control and one 
central secondary controller, which collects remotely 
measured variables transferred by means of a low 
bandwidth communication system. Those variables are 
compared with the references in order to calculate 
appropriate compensation signals by secondary controller, 
which sends them through dedicated communication 
channels back to primary control of each unit.  

The centralized approach requires point-to-point 
communication, which adds complexity to the system 
and compromises its reliability due to a single point of 
failure issue. Alternatively, distributed methods can be 
used. Due to their attractive features, they have 
recently drawn a lot of attention in MG research 
community[65-69]. 

4.2  Distributed secondary control 

Distributed secondary control (DSC) as an 
alternative has recently gained popularity since it 
discharges duties of a central controller with less 
communication and computation costs, while improving 
the reliability of the control system. The idea is to 
merge primary and secondary control together into one 
local controller. However, for proper operation, these 
local controllers need to “talk” with their companions, 
as shown in Fig.6. Their conversation is typically 
processed through band-limited neighboring communica- 
tion, resulting in a control system that is in literature 
generally referred to as distributed control[70-72]. 
Bearing in mind the abundance of applications that can 
arise from this kind of control structure, we limit our 
discussion here only to DSC of droop regulated 
converters, while some of more advanced functions are 
elaborated in the next section. 

The basic working principle of DSC is to 
exchange the information through the neighboring 
communication, by utilizing a distributed protocol and 
achieving a consensus, e.g. the average value of 
measured voltages. As opposed to frequency, voltages 
are local variables, implying that their restoration can 
be done either in selected critical buses, or on the total 
average level. In the latter case, DSC can be exploited 
to generate a common signal which is compared with a 
reference and passed through a local PI controller, 
which produces appropriate control signal to be sent to  

 

Fig.6  General scheme of distributed secondary control 
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the primary level for removing associated steady state 
errors. It should be noted that the type of protocol, 
which is essential for making the secondary control 
distributed, influences the feasibility and performance 
of DSC. The preliminary –so called– distributed 
secondary controllers were based on normal averaging 
principle[57,65,78]. In such works, communication between 
DGs has been identified as a key ingredient in achieving 
the control goals while avoiding a centralized control 
architecture. Several distributed control methods 
have been introduced in the literature out of which 
consensus-[73] and gossip-based[72] algorithms have 
recently received significant attention mostly because of 
their implicitness and robustness for distributed 
information exchange over networks. 

4.2.1  Distributed algorithms 

Among the introduced distributed protocols, 
consensus is the most used for secondary control of 
MGs. In consensus-based algorithms, all the nodes of 
the network get activated synchronously at each time 
step and update their current state with respect to local 
information and that gathered from their neighbors.  

These algorithms have a long history in the field 
of computer science and distributed computation as 
well as in many applications involving multi-agent 
systems, where groups of agents need to agree upon 
certain quantities of interest[70-71]. They rely on 
principle of dynamic.  

Averaging of certain signals between only 
neighboring agents. The usage of these algorithms for 
secondary control of both AC and DC MGs has been 
considered recently[66-69]. On the contrary, gossip 
algorithms are asynchronous, meaning that only one 
random node chooses another node (or more) to 
exchange their estimates and update them to the global 
information e.g. the average value at each time steps. 
Gossip algorithms are attractive because they are 
robust to unreliable wireless network conditions, and 
they have no bottleneck or single point of failure[74]. 
Application of these algorithms in MGs have been 
reported recently[20,75]. A gossip algorithm is presented 
in [20] for secondary voltage and frequency control of 
AC MGs which tightly couples the communication and 
control layers. 

Applying these types of algorithms makes the 
secondary control fully distributed, meaning that it 
only requires a sparse communication network spanned 
across the MG. Furthermore, for scalability of 
secondary control, prior knowledge of the system is not 
needed for a new component entering the MG[66, 69].  

4.3  Common functions of distributed secondary 
control 

The main function of distributed secondary 
control is to shift/change the droop characteristics of 
associated inverters so as to perform the restoration of 
voltage (and frequency) levels to nominal values or 

values that ensure proper power sharing among DGs in 
the system.  

4.3.1  Frequency and voltage regulation 

The concept of secondary control, under the name 
of automatic generation control (AGC) or load 
frequency control (LFC), has been used in large power 
systems to address the steady-state frequency drift 
caused by the droop mechanisms. It is conventionally 
implemented via a slow, centralized PI controller with 
low bandwidth communication[76]. Inspired by this idea, 
a centralized integral secondary controller is implemented 
in the MGCC in order to regulate the frequency of the 
MG[3,60]. Corresponding distributed approach is to use 
frequency control locally at selected MG units, so that 
their local controllers slowly add increments to the 
primary level until the network frequency deviation 
gets eliminated[20,66-68]. 

Since system frequency is a global variable across 
the microgrid, droop control itself can share the active 
power among sources. Frequency secondary control 
eliminates the frequency deviation caused by the droop 
control. However, this restoration process may inversely 
affect the proportional power sharing. To avoid this, 
the secondary controller must be designed such that all 
local droop controllers receive identical set-points[68]. 
Fig.7(a) shows the  -P droop characteristics before 
and after the secondary control activated in a microgrid 
with two parallel sources with different power ratings. 
The secondary control output ( ) changes the voltage 
reference of local unit(s) by equally shifting the droop 
lines up (or down), regulating the frequency to the 
nominal value.  

As opposed to the network frequency, voltage 
amplitude is not a global variable. Voltage values will 
normally be distinct at different connection points in 
the MG due to line impedances. In large power systems, 
voltages at generator stations are fixed by local 
automatic voltage regulators (AVR) which act on the 
excitation system[77]. In MG, this type of voltage 
regulation is inherently included into a definition of 
secondary control. Similar phenomena as the frequency 
secondary control has been defined for eliminating 
voltage deviations in microgrid using both centralized 
and distributed architectures[66,69]. This concept is 
illustrated in Fig.7(b), where the secondary control 
effort (ei) is added to the local droop controls to 
remove the voltage deviation. 

For simplicity, a microgrid consists of two parallel 
sources with the same power rates are examined. As 
in practice, the lines connecting the inverters to   
the common bus are considered to have different 
impedances; it is assumed here that X1＞X2. As Fig.7(b) 
depicts, the primary control imposes different voltage 
levels at the inverters’ terminals, i.e., e1≠e2. This is 
because of unequal reactive power injection (q1＜q2), 
due to the line impedance effect. It is shown that in the 
presence of non-negligible line impedances, terminal  
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(a)  -P droop characteristics of a microgrid with two parallel sources 

with different rates (m1＜m2) 

 
(b) E-Q droop characteristics of a microgrid consists of two parallel 
sources with the same power rates (inverter 1 (blue) and inverter 2 

(green)), but different line impedance (X1＞X2) 
Fig.7  Secondary control response vs primary control 
response before (solid lines) and after (dashed lines) 

applying voltage secondary control 

voltages cannot be identical; hindering the reactive 
power sharing process provided by droop control. 
When the voltage secondary controller is applied, 
voltage magnitude at the inverters’ terminals is restored 
to the rated voltage (erated). However, application of this 
controller for voltage regulation may deteriorate the 
sharing of reactive power between inverters, i.e., 
q

2
sq

1
s
＜q2q1. 

4.3.2  Load sharing 

Reactive power sharing is typically not a major 
concern in large power systems due to capacitive 
compensation along the transmission lines and at load 
connection points[77]. On the contrary, it is an important 
issue in parallel converter driven MGs[63, 65-66, 69]. In a 
typical MG, as sources respond to more power demand, 
onboard droop controllers reduce their frequency/ 
voltage to handle load sharing and prevent overload. In 
that sense, precise voltage and frequency measurements 
are essential to achieve the effectiveness of the droop 
mechanisms. Unlike frequency, which is a global 
variable, the voltage varies across the MG due to    
the distribution line impedances. As depicted in     
the previous subsection, these voltage mismatches 
incapacitate the droop mechanism and result in a poor 
voltage regulation and load sharing. Similar effect 
occurs when trying to proportionally share the active 

power of units using P-V droop in AC MGs with highly 
resistive lines. Moreover, in DC MGs current/power 
sharing follows the same phenomenon[57, 69, 78]. 

Distributed power sharing in the secondary control 
loop is a good alternative to share power between the 
MG units. This way, all the units reach a consensus 
according to their power rates and obtain the same 
reference. Proportional power sharing is achieved 
independently from voltage sensing mismatches or line 
impedances in the MG. To this end, one might add 
another secondary control loop[35, 38, 44] or a new term to 
the voltage control module[37,39], where a correction 
term, ei

q, is added to the droop mechanism (see 
Fig.8(a)). 

As another solution, the reactive power module 
can be applied in a way that it changes the droop 
characteristic to manage the reactive power (see 
Fig.8(b)).  

Fig.8 illustrates the E-Q droop characteristics 
before and after applying the reactive power secondary 
controllers. As seen, although the secondary control 
ensures proportional sharing of reactive power, qs, it 
might inversely affect the voltage regulation. One can 
note that the voltage regulation procedure is in a direct 
conflict with sharing the reactive power among 
inverters. Therefore, a trade-off must be made between 
these two control objectives. 

 
(a) Shifting the droop mechanism 

 
(b) Changing the droop mechanism 

Fig.8  E-Q droop characteristics of a microgrid consists of 
two parallel sources with the same power rates (inverter 1 
(blue) and inverter 2 (green)), but different line impedance 

(X1＞X2) before (solid lines) and after (dashed lines) 
applying reactive power secondary control 
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5  Information-sharing-based distributed 
tertiary agent systems 

Tertiary control is located at the top level of a MG 
hierarchical control system, as shown in Figure 9. It is 
envisioned to enhance the “smartness” of the system by 
offering more sophisticated functionalities such as real- 
time monitoring and supervision, power management, 
and energy scheduling, among others[13,79,80]. Typical 
enhancement targets are energy efficiency, power quality, 
system level safety/stability and economy[28,80-90]. 
Naturally, the self-awareness level and thus the 
intelligence of the whole system can be largely 
improved by implementing tertiary control. However, 
this property does not come for free. Centralized 
decision-making (DM) requires information collection 
from all the active units and other critical points, and, as 
a consequence, carries a lot of computational burden on 
itself. This kind of strategy becomes highly impractical 
in case of dispersed and large scale MGs and the 
possibility of distributing the computation to a number 
of local DM entities comes to mind as a natural 
alternative. 

In particular, if one unit is to a certain extent 
aware of actions of other units and how their decision 
influences the system, the activity that brings the 
system closer to optimal state can be made locally. 
There are three technological challenges that need to 
be overcome in order to establish a distributed, 
multi-agent system (MAS) based tertiary control layer 
(seen in Fig.10): distributed information sharing, 
system modelling and design of DM procedure[91-95]. 
Each agent perceives its environment through low 
bandwidth communication links and sensors. Informa- 
tion sharing algorithms, such as consensus algorithm and  

diffusion strategy, can be applied to facilitate the global 
information discovery[73, 88-90, 96-100] based on which 
the tertiary DM procedure can perform optimization 
or scheduling functions[18,97-99]. System model is 
established at each unit locally for predicting the 
environment reaction and assisting the DM process. 
Finally, proper actions are taken to change the status of 
the environment. Controller layer works simply as an 
actuator between agent and environment. 

Based on this scheme, conventional centralized DM 
functions can be performed in a distributed way so as to 
fit into the new paradigm of distributed generation and 
consumption in MGs. 

As explained in previous section, the general 
purpose of information sharing algorithms is to allow a 
set of agents to reach an agreement on a quantity of 
interest by exchanging information through communica- 
tion network[70]. While associated information is limited 
to only a few quantities in case of secondary control, 
tertiary agents may exchange a number of different 
signals with neighboring agents. Consensus algorithms, 
information diffusion strategy and distributed optimiza- 
tion algorithms are potential solutions in this circum- 
stance. The following parts provide example applications 
in two typical categories: distributed tertiary control for 
power flow and voltage regulation; distributed optimiza- 
tion for optimal dispatch. 

5.1  Distributed tertiary control 

The applications of consensus algorithms along 
with existing DM procedures have been explored in MG 
related research perspective regarding coordination and 
restoration issues. The authors in [97] propose a fully 
distributed agent based load restoration algorithm. As 
consensus algorithm is used, the communication links  

 
Fig.9  Distributed agent based hierarchical control system for microgrids  
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Fig.10  Tertiary agent system 

are established only between neighboring nodes. 
The information state vector of each agent includes three 
parameters: the total net power, the indexes of the buses 
and the loads that are ready to be restored. The global 
information is discovered by each agent knowing the 
current state of the generation and consumption in all the 
buses. Local decision for loads restoration can be made 
according to the priority of the loads. Furthermore,    
in order to ensure the fast and stable convergence of the 
consensus algorithm, this paper also proposes a 
distributed adaptive weights setting method and 
compares this method with existing algorithms. This 
approach is demonstrated in the simulation that it can be 
applied to MGs with any kind of topologies while 
guaranties better convergence of the global information 
discovery. Similar approach is applied also in [98] for 
balancing the generation and consumption by coordina- 
ting the operation of doubly-fed induction generators. 

Considering the localized generation, storage and 
consumption feature of future smart grid, wireless 
communication network is generally accepted as high 
flexibility and low cost way for facilitating the control 
and monitoring in MGs. Accordingly, a consensus theory 
based distributed coordination scheme for MG via 
wireless communication is proposed in [99] for coor- 
dinating the generation, storage and consumption. Two 
types of information states are included: status and 
performance. The status information indicates the binary  

state of apparatus, such as fault/normal, available/ 
unavailable, etc. The performance information provides 
the measurement values, for instance power generation, 
energy storage, etc. By using consensus algorithm,   
all the agents discover the status and performance of 
the apparatus in the MGs, and take decisions locally.   
In addition, the practical issues regarding wireless 
communications are also considered, such as the 
communication rates and range. 
Another critical role of tertiary control is to manage the 
power flow between MGs. In order to maximize the 
utilization of RES and relieve the local power stress, the 
power exchange in MG clusters has to be properly 
managed. A fully distributed hierarchical control scheme 
is thus developed in [101] as shown in Fig.11, a local 
tertiary agent and a global tertiary agent are designed to 
coordinate the MG internal power flow and MG cluster 
power flow, respectively. Both local and global agents 
are coordinated with their neighbors through consensus 
algorithm in order to reach agreement on power sharing 
and exchange. The results show satisfactory performance 
on maintaining voltage levels and regulating power 
flows in both microgrid level and cluster level. In [102], 
the reactive power flow is set as the control objective in 
order to minimize the voltage errors in critical nodes in 
an electric power system. In the proposed scheme, each 
DG performs local optimization with respect to its own 
objective function while considering the information 
from neighboring units. The overall control scheme 
enables the microgrid to have a unified voltage profile. 

As described in Section IV, the objective of 
secondary control is to maintain the voltage and 
frequency level, nevertheless, it is also in contradiction 
with tertiary power flow control since the power flow 
and voltage/frequency are correlated. The authors of 
[103] have mathematically designed fully distributed 
secondary and tertiary controllers realizing voltage drifts 
cancellation and optimal power injection maintaining at 
the same time. 

 
Fig.11  A fully distributed two level tertiary control scheme  
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5.2  Distributed optimal dispatch 

Economic operation is the common and ultimate 
goal of energy systems. Efficiency, operational costs and 
market real-time pricing are the major factors in this 
regard asking for a proper dispatch of DGs. 

The authors in [88-90] propose a consensus 
algorithm based distributed hierarchical control for both 
DC and AC MGs. In those cases, the primary power 
sharing control, secondary voltage/frequency restoration 
and power quality compensation, as well as tertiary 
optimization and decision-making are all implemented in 
locally distributed controllers, facilitating the flexible 
operation of DG units. Two study cases are established 
to verify the proposed method. In [90], the optimal load 
power sharing is achieved among several paralleled 
converters with enhanced overall system efficiency. 
Global information like total power consumption and 
number of operating DGs are discovered in each local 
controller by using dynamic consensus algorithm 
assisting the realization of local decision-making. 
Similarly, in [89] the essential information is obtained in 
each local controller for optimization and optimal 
sharing of compensating efforts among DGs in an 
islanded AC MG. 

Apart from pure efficiency consideration, some 
studies also take DG operational costs into consideration. 
Quadratic cost functions are widely accepted as the 
standard form for evaluating DG incremental cost. A 
multi-agent based decentralized hierarchical control 
scheme is presented in [104]. Agents are defined in three 
levels: tertiary level area electric power system agent, 
secondary level microgrid operator agent and primary 
level DG operator agent. Consensus based algorithm is 
implemented to reach an agreement through information 
exchange between neighboring units facilitating the 
local DM according to DG incremental cost. Similar 
cost functions for DG units are also used in [105-108]. 
In [105] and [106], a nonlinear tertiary control algorithm 
is applied, which essentially is based on a derivative 
term of quadratic cost function. The authors of [107] 
propose a fully distributed information diffusion strategy 
to share critical data and achieve minimized operation 
cost of DGs. A distributed Lambda iteration scheme is 
introduced in [108] to coordinate the active power 
dispatch showing improved robustness and fault- 
tolerance in system level control. Another distributed 
algorithm, the alternating direction method of multipliers, 
has also been applied in microgrids for cost minimization, 
such as the cases presented in [109] and [110]. All the 
above mentioned studies are good examples of applying 
distributed computing algorithms in microgrid applica- 
tions, specifically, for coordinating the DGs with regard 
to their operational costs. 

6  Concluding remarks 
MGs have matured from an emerging technology to 

a well-established and marketable solution for power 
supply of remote applications, and also as a valuable 
building block for future Smart Grids. Control structure 
of a MG can be systematically decoupled into several 
layers, with each one of them playing different role. 

Historically, most research efforts in this area have been 
focused on enhancing the performance of the lowest one, 
which covers automatic line-interactive operation of 
multiple paralleled sources. Typically employing a 
droop-control strategy, it is commonly referred to as the 
primary control layer and has fundamental importance 
since its proper operation is not only the prerequisite   
to safely operate the MG, but also for implementation   
of upper layers on top of it. While the root cause     
for realizing a hierarchical control structure was 
enhancement of the overall MG controllability and 
intelligence, conventional solutions implied centralized 
communication architecture, entailing several dis- 
advantages such as high communication cost, single 
point of failure and inflexibility. In order to circumvent 
these obstacles, different kinds of decentralized 
approaches in both laboratory scale and real world MG 
applications have been recently proposed. Starting with 
a brief review of classical MG control structure, this 
article presents several methodologies on how these new 
control strategies may be incorporated within the 
conventional MG framework. The features of most 
prominent methods such as DBS, DSC, and MAS are 
explained and elaborated. Obtained benefits typically 
include decreased deployment cost, modularity, avoidance 
of single point of failure, and others, leading to overall 
better performance. 

Conversely, it is important to recognize that 
application of most decentralized control algorithms lies 
on the border between electrical engineering and 
computer science domain. For that matter, one should 
bear in mind the root differences of common approaches 
used in the two fields. While the primary concern of 
a computer scientist is derivation of rigorous 
mathematical indicators of algorithm’s performance in 
deterministic environment, an on-field electrical 
engineer deals with a system composed of a number of 
non-ideal devices. In that sense, he will regularly face 
application-specific problems, while at the same time 
the response of the system under his consideration will 
not exactly follow the patterns predicted by theory. Not 
diminishing a big value of theoretical analysis which can 
provide useful insights in advantages and limitations of 
given algorithms, successful lab-scale and real-site 
experimental demonstrations are those inevitable steps 
forward which give a key momentum for a certain 
technology to reach an industrial market. Indeed, we are 
presently at the stage where more than a decade of 
immense progress in computer science and automatic 
control is starting to show its face in practical 
applications with more than promising initial results. 
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