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Abstract Dealing with islanded microgrids (MGs), this paper aims at improving

the secondary control process to restrict the fluctuations in both the voltage and

frequency signals. With the aim of retrieving these parameters at the nominal

values, an intelligent control scheme is devised to adjust the corresponding control

parameters. To do so, an on-line self-optimizing control approach is embedded in

the MG’s central controller. In the tuning process, evolutionary-based techniques

such as genetic algorithms provide proper initial adjustment for the parameters.

Subsequently, an artificial neural network (ANN) is triggered to provide accurate

online modification of the control parameters. Specifically, the training capability of

the ANN mechanism along with its extensibility feature avoids the dependency of

the controller on the operating point conditions and accommodates different

changes and uncertainty reflections. Detailed simulation studies are conducted to

investigate the performance of the proposed approach, and the results are discussed

in depth.
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1 Introduction

The recent technological revolution in power systems has stimulated substantial

transitions toward modern, smart, and sustainable grids. Microgrids (MGs), as such

newly emergent small-scale grids, can accommodate various technologies, includ-

ing power electronics devices, renewable energy resources, energy storage, and

demand-response programs. The inclusion of two-way communication between

these ingredients and the MG’s central controller (MGCC) has facilitated the

implementation of well-defined control strategies. Accordingly, efficient control

processes such as active/reactive power control, voltage/frequency regulation, and

energy management loops are implemented in MGCC. In addition to the grid-

connected mode, these small-scale grids are able to operate in off-grid or so-called

islanded mode. In both of these operating modes, the presence of various

technologies, uncertainties in renewable generations, and the physical disturbances

highlight the need for intelligent and robust control structures to ensure the technical

and economical performance (Fathi and Bevrani 2013).

With the aim of providing the required control actions, a hierarchical control

process is proposed by Bevrani et al. (2012a). In this context, the implemented

controller contains two main subcontrollers: microsource controllers (MCs) and

load controllers (LCs). The MCs are local modules, implanted on distributed

generations (DGs), to monitor and control the voltage and frequency signals.

Meanwhile, the control of the controllable load is accomplished by the LC.

Moreover, an emergency controller is introduced to accurately identify possible

contingencies and determine appropriate countermeasures. At higher levels of

automation, the MGCC feeds the distribution management system with the required

data. Thus, safe operation of MG is ensured in grid-connected mode. It also receives

the propagated control commands through the distribution network operator. From

another point of view, three control layers are deployed in MGCC. In this way,

primary/local, supplementary/secondary, and global/tertiary controllers are used. A

brief description of each layer is as follows. The primary controller deals with the

initial steps in voltage and current control requirements, respected for each DG.

Next, the supplementary controller curbs the remaining deviations at zero, and

finally the global controller manages the MG operations to attain techno-economic

cooperation with the main grid (Guerrero et al. 2011). Taking into account the

outlined context, IEEE Standard 1547 compels the implementation of efficient

active and reactive power controllers to undertake a secure operation of MGs. This

standard also concerns the abilities of control mechanisms to provide suitable fre-

quency and voltage stabilities (IEEE 2003). There are various MG control

requirements, but an outfitted secondary voltage and frequency controller is a well-

recognized way to preserve stable operation.

Early research into secondary MG controllers led to classical proportional-

integral (PI) controllers (Khezri et al. 2015; Mishra 2009; De Brabandere et al.

2007). Simplicity and ease of implementation are the main factors in the industrial

success of these controllers. However, they depend on the operating point

conditions, which makes them less reliable and robust. To avoid this dependence,
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some researchers have established online tuning approaches. Extracting a precise

mathematical model for the investigated plant leads to a sophisticated control

mechanism, but obtaining a mathematical model for such systems is a challenging

task (Bevrani et al. 2014; Khezri et al. 2017a). Intelligent learning algorithms

provide appropriate ways to overcome the technical bottlenecks. Online and robust

tuning controllers greatly enhance the secondary voltage and frequency control

missions.

Being directed to the highlighted research line, online and intelligent controllers

are deployed to perform the secondary control processes for islanded MGs (Bevrani

et al. 2012b, c; Khezri et al. 2017b; Shokoohi et al. 2014). In these surveys,

intelligent systems, including fuzzy logic (FL) and particle swarm optimization, are

investigated for optimal tuning of conventional controllers. Artificial neural

networks (ANNs) are applied in a similar manner; the details of ANN-based

controllers are discussed in Shokoohi et al. (2014). In this approach, the parameters

of the PI controller are simultaneously tuned based on online measurements. Such

measurements are readily available given the two-way communication. The

proposed controller gives a better response, but its learning process may be

impacted by imperfect input data. Thus, robust performance is not guaranteed for all

the operating points. The possibility of using an optimization process has been

overlooked in the previous surveys. Moreover, although the implemented control

structures improve either the voltage or the frequency control, the simultaneous

control of these parameters has not been achieved (Bevrani et al. 2012c; Shokoohi

et al. 2014). The proposed approaches are not concerned with simultaneous

improvements in the voltage and frequency deviations. In other words, there is

currently no online intelligent simultaneous voltage and frequency control approach

that is capable of providing robust and finely tuned control.

The present study establishes an efficient control process encompassing inner,

droop, and secondary controllers to improve the MG’s overall performance. The

proposed approach is adopted for the automatic and simultaneous adjustment of

voltage and frequency signals in the MG assembly. As a starting point, the

controller parameters are tuned based on a genetic algorithm (GA) in an offline

fashion. This stage is in fact the first step toward an optimal controller. Next, with

the aim of suppressing possible deviations in the voltage and frequency signals, a

self-tuning online ANN mechanism is developed for the optimal tuning of the

controller parameters. The learning capability of the ANN controller greatly

improves the extensibility features of the proposed control mechanism, and hence a

generalized and independent online controller is achieved. In summary, the main

contributions of the present study are:

• We highlight the importance of optimal online simultaneous secondary control

of voltage and frequency in MGs;

• We develop an initial GA-based approach for partial simultaneous tuning of the

controller;

• We establish a robust and online fine-tuning approach based on the ANN

learning features to handle the loading variations.
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The remainder of this manuscript is organized as follows. Section 2 describes the

proposed control structure. The GA-based offline tuning approach for the controller

parameters is presented in Sect. 3. Then in Sect. 4, the proposed controller is

developed into an online ANN-based MGCC to simultaneously curb the fluctuations

in the voltage and frequency signals. Extensive simulation studies are conducted in

Sect. 5 to analyze the performance of the proposed controller. Section 6 concludes

the paper.

2 Control structures

2.1 Power and inner control loops

Consider an islanded MG as depicted in Fig. 1a. This system has three phases,

including three inverter-interfaced distributed generations (IIDGs) with ratings of

220 V and 50 Hz. Two units of load banks are available in the system (Bevrani and

Shokoohi 2013). For the IIDGs, Fig. 1b demonstrates the corresponding control

structures in which all of the measured signals are represented in a d-q rotating

frame. The power electronics stage is composed of an inverter, a PWM generator,

an output filtering stage, and an interfacing inductor. Given the fast dynamics of

inverters, the DC side voltage is regarded as an ideal source. Thus, its dynamics is

safely passed over (Hatziargyriou et al. 2000).

(a)

(b)
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Fig. 1 a An islanded MG including three IIDGs; b the implemented control mechanism for each IIDG
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There are different controllers adopted as power, voltage, and current control

loops, which are shown in Fig. 2a–c, respectively. Taking into account the droop

mechanisms, namely the P/f and Q/V characteristics, the power controller adjusts

the voltage magnitude and the frequency at the reference points. As shown, m and n

are the conventional frequency and voltage droop coefficients. In order to eliminate

the instantaneous fluctuations, the instantaneous active and reactive power

components are passed through low-pass filters with cut-off frequency xc.

However, these controllers may lose their acceptable performance in some

situations. If the line’s impedance, connecting the IIDG to the load bank, comprises

a significant resistive component, proper control action may be lost (Ahmadi et al.

2015). Since the MGCC observes the whole MG in an online fashion, the secondary

control loops avoid such conditions. If the reference value is set to zero for the

q-axis, the output voltage magnitude includes only the d-axis component. Although

the main issues are discussed here, interested readers are referred to Bevrani (2014)

for detailed information on the MG modeling. As mentioned earlier, the inner

voltage and current controllers are shown in Fig. 2b, c. As can be seen, the reference

points for both the voltage and current magnitudes are tracked based on two PI

controllers. Feedforward components are included to enhance the controller

performance under transient conditions and to compensate for the dynamic

couplings between the d and q axes (Marwali and Keyhani 2004).

2.2 Secondary controllers

The main duty of the secondary controller is to mitigate the steady-state errors that

are not compensated for by the droop controllers. The implemented secondary

Fig. 2 Schematic representation of a power controller, b inner voltage controller, c inner current
controller, and d secondary voltage and frequency controllers
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voltage and frequency controllers are shown in Fig. 2d. Herein, kpf , kif , kpE, and kiE
are the PI controller parameters. As mentioned earlier, the frequency signal is

directly measured and then compared with its nominal value. Then, the signal

released by the corresponding PI controller is suitably supplemented by the power

controller. A similar practice is applied in the voltage control process. Having

selected proper parameters for the PI controllers, we tune them to successfully

minimize the deviations in the voltage signal. The secondary controller concerns the

voltage and frequency deviations on the load side and generates an auxiliary

additive signal to be supplemented on the control set-points of each DG. It should be

noted that the control signals from the secondary control do not change the

reference points and only modify them slightly. In other words, they supplement the

set-points determined through the primary control. Accordingly, to mitigate the load

voltage and frequency deviations, effective measurements are conducted after the

interfacing inductance on the load side. It can be deduced that the secondary

controllers are one of the major control processes in the MG assembly, contributing

to safe operation. However, such impressive effects require careful attention to the

efficient design of the secondary controllers.

3 Offline tuning of control parameters using GA

As clarified, each IIDG requires two inner voltage and current controllers along with

two secondary loops accommodating the voltage and frequency signals. Each

controller contains two control parameters: proportional (kP) and integral (kI)

coefficients. Therefore, there are eight control parameters represented by

½kpv kiv kpc kic kpE kiE kpf kpf �. Various mathematical methods such as robust

and model-based techniques can be used to tune these parameters (Bevrani et al.

2015). However, these approaches require the extraction of a precise mathematical

model for the investigated plant. This is generally a complicated and time-

consuming task. What is more, the changing conditions and different variations of

the power system mean that there is no fixed mathematical model for all system

conditions (Etemadi et al. 2012). The use of evolutionary algorithms such as GAs

alleviates most of these concerns and makes it possible to tune the parameters over a

wider operating range. GAs are flexible enough to operate on numerous strings

simultaneously, where each string represents a different solution to a given problem.

Thus, a careful scan of the search space is performed. The possibility of getting

stuck at a local minimum is greatly decreased, and the results are associated with

higher confidence levels (Tiwari and Vidyarthi 2000). Hence, we use a GA as the

optimization engine. The GA was first explored by Holland (1975) and then by

several researchers including Rechenberg et al. (1973), Schwefel (1977), and Fogel

and Fogel (1994). More details of the GA mechanism can be found in Goldberg and

Holland (1988).

For the sake of simplicity, we set all eight parameters to the same values for all

the IIDGs. When we apply the GA to the investigated system, the search space is

initially limited. Based on knowledge of the control parameter ranges in the
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investigated MG, we define a suitable range to provide proper freedom for the GA

and result in a satisfactory control process. Accordingly, the minimum and

maximum limits for each control parameter are set to 0 and 1000 respectively. The

proposed chromosome is a string including eight genes for the corresponding

parameters. To adjust the voltage and frequency signals at the rated values, we use

the following objective function:

fobject ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

K

i¼1

X

N¼t�ksc

n¼1

Dv2i ðnÞ
" #

þ Kf �
X

N¼t�ksc

n¼1

Df 2i ðnÞ
" #" #

v

u

u

t ð1Þ

where Dvi and Dfi are respectively the voltage and frequency deviations in IIDGi; K

and N are the number of IIDGs and the number of samples in simulation time t,

respectively. As well, a scaling coefficient of ksc (equal to 105) is included to

represent the simulation time. In a low-voltage distribution system, i.e., 220 V and

50 Hz, the upper limits of the voltage and frequency deviations are respectively set

to 5 and 1% of their nominal values. Therefore, the maximum deviations are 11 V

(0.05 9 220) for the voltage and 0.5 Hz (0.01 9 50) for the frequency. It can easily

be observed that the maximum deviation of the voltage signal is 22 times greater

than that of the frequency signal (11/0.5 = 22). Hence, to assign equal weights for

the voltage and frequency deviations, the coefficient Kf is selected as 222 ¼ 484 �
500: To give precise tuning of the control parameters, we apply different loading

states to the examined MG. These states are represented in Table 1. In the interval

t 2 0; 0:5ð Þ s, load banks 1 and 2 are resistive and resistive-inductive, respectively.

After t ¼ 0:5 s and for the next nine steps, active, reactive, and capacitive loads are

deployed. Because sudden changes in the loading conditions could intensify the

system instability, we consider such variations in the numerical studies. Considering

(1) and the corresponding coefficients defined earlier, the GA performs optimal

tuning of the control parameters. Figure 3 gives a flowchart for the proposed

approach. It can be seen that following an initialization stage, the initial control

Table 1 Load change scenarios

Time intervals (s) Load 1 Load 2

0.0–0.5 50 X 100 X ? 200 mH

0.5–1.0 500 X ? 500 mH 100 X ? 200 mH

1.0–1.5 500 X ? 500 mH 50 X ? 100 lH

1.5–2.0 20 X ? 100 lH 50 X ? 100 lH

2.0–2.5 20 X ? 100 lH 50 X ? 100 mH

2.5–3.0 500 X ? 200 mH ? 10 lF 50 X ? 100 mH

3.0–3.5 500 X ? 200 mH ? 10 lF 500 X

3.5–4.0 10 X ? 1 mH ? 20 lF 500 X

4.0–4.5 10 X ? 1 mH ? 20 lF 10 X ? 20 mH ? 100 lF

4.5–5.0 100 X 10 X ? 20 mH ? 100 lF
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parameters are evaluated and their performance is tailored based on the objective

function. Then, the population is sorted to find the minimum voltage and frequency

deviations, based on which crossover and mutation operators are deployed to pro-

duce a new population or generation. Once the termination criterion is reached, the

optimal control parameters are determined.

Figure 4 shows the convergence curve obtained for the investigated system. As

can be seen, the problem converges to its optimal value. Thus, the optimal control

parameters are attained, which are listed in Table 2. Note that since this stage is the

initial offline stage of the proposed approach, a short convergence time is not

important, and longer times could lead to better control parameters.

Read system data

Initialization 

System 
Simulation

Constraints 
control

Objective 
calculation (1)

Sort the possible 
solutions 

minimum voltage and 
frequency deviations  

Stop condition? Optimal control 
variables

Crossover Mutation

New generation 
(solustions) production

Yes

No

Evolution process

][ pv iv pc ic pE iE pf pfk k k k k k k k

Fig. 3 Flowchart of the proposed optimization process based on GA

S. Shokoohi et al.

123

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order



4 Proposed online intelligent tuning of control parameters

As explained earlier, following changes in the loading conditions or generating

units, secondary controllers would be triggered to suppress the voltage and

frequency deviations. The initial stage in tuning the control parameters is performed

based on GA operators in an offline manner. Its performance has been discussed in

the previous sections. However, if the operating point varies greatly, ensuring an

optimal response is a challenging task. To improve the capability of the secondary

controllers, we apply intelligent and evolutionary algorithms to obtain a fine and

online tuning of the control parameters (Bevrani and Hiyama 2011). A brief review

of the available literature reveals that current methods are effective only for voltage

or frequency regulations and not for simultaneous tuning. However, simultaneous

voltage and frequency control is important to ensure the successful and reliable

operation of MGs. We therefore develop an ANN-based controller that is in direct

contact with the GA optimization. Specifically, the ANN is a parallel computational

platform that includes numerous processing components. To fulfill a particular

mission, these components are put into a particular arrangement. Its advantages

include parallel computation, extensibility, and tolerable mechanisms for the

uncertain and noisy processes. In general, two methods are used to update the

0 5 10 15 20 25 30 35 40 45 50
450

500

550

600

650

700

750

800

Best optimization

Generation

Fig. 4 Convergence curve for the investigated system

Table 2 Optimal values of

control parameters
Parameter Optimal value

kpv 0.96

kpc 884.02

kpE 0.02

kpf 0.25

kiv 466.67

kic 3814.88

kiE 1.34

kif 1.95
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weights and the training process: feedforward and feedback. Feedback processes

include supervised, unsupervised, and reinforcement approaches. For more infor-

mation, see Gupta et al. (2004), Hagan et al. (1996).

Because of DG outages or loading variations, the operating point of the MG

varies. Thus, considerable deviations are observed in the voltage and frequency

signals. The initial control parameters that are tuned by the GA require further

corrections to preserve the nominal set-points. If the control action is not effective,

there could be a collapse of the MG voltage and frequency. To avoid this, we use an

ANN-based MGCC, depicted in Fig. 5a, to correct the control parameters. The

proposed ANN controller tunes the control parameters in an online manner and

extends the validity of the proposed approach to a wider range of operating

conditions. A schematic representation of this system is given in Fig. 5b. As can be

seen, the overall voltage and frequency deviations are gathered in the investigated

system. These data are treated as the inputs to the ANN controller, and the

corresponding ANN weights are updated via suitable learning rules. Thus, proper

set-points are generated and transferred to each IIDG. In this way, a safe control

operation is achieved that ensures the stability of the MG voltage and frequency.

Developing a mathematical representation of the ANN is a prerequisite to optimize

the MGCC performance. A neuron is the key building block of each ANN structure,

and it has three main components: the weights, denoted byWj= [w1w2 ���wn], the bias

h, and the activation function f(net). The input data are labeled xj. The relation between
these parameters is given by Eq. (2). In this equation, each input data is considered

with its corresponding weight, and h is augmented to the activation function y(k)

(Sarangapani 2006).

y kð Þ ¼ f
X

n

j¼1

wjxj kð Þ þ h

 !

ð2Þ

Various functions such as logsigmoid, sign, and tansigmoid could be used as

activation functions. In the learning phases of an ANN, the learning mechanism

(e.g., the back-propagation approach) may require the calculation of f 0ðnetÞ, the
derivative of the activation function. If so, the activation function should be

differentiable. Moreover, providing proper initial conditions for an ANN-based

controller is important. The nominal values of the voltage and frequency signals are

set as the desired initial values, represented by Eq. (3).

Xinitial ¼

220

220

50

50

2

6

6

4

3

7

7

5

: ð3Þ

An ANN-based controller has three different layers: input, output, and hidden.

Typically, the number of neurons in the hidden layer is twice the number in the

input. We use 10 neurons for the input layer, based on the expert’s knowledge of the

system. Thus, there are 20 neurons in the hidden layer. The input layer contains

linear-type neurons whereas in the hidden layer, nonlinear neurons are used. The
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nonlinearity feature makes it possible to smoothly update the corresponding

weights. The number of neurons in the output layer is based on the number of

control variables. There are three IIDGs in the investigated MG, as shown in

Fig. 5 a Overall structure of the proposed intelligent MGCC, b detailed representation of the GA-
optimized ANN-based online approach
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Fig. 1a. Each of these IIDGs includes two secondary controllers for voltage and

frequency signals. Each of these controllers contains a proportional and an integral

gain. Thus, the output layer contains 12 linear neurons. W1 represents the weight

vector for the hidden layer whereas W2 is similarly deployed for the output.

Considering the feed-forward mechanism, the input vector is deployed to trigger the

hidden and output layers. As clarified earlier, the main purpose behind the proposed

ANN structure is to reduce the existing deviations in the voltage and frequency

signals and hence improve the MG stability. To this end, the frequency and voltage

outputs are compared against the desired vector, denoted by yd. This vector includes

the nominal values of the voltage and frequency signals. In this study, the

supervised learning approach is used for the feedback process. The learning

approach can be implemented based on the Widrow–Hoff, back-propagation, or

correlation methods; we use back-propagation. Regarding the optimization goal, the

proposed learning process attempts to minimize the error function:

e ¼ 1

2

X

n

i¼1

ðyd � yÞ
2

ð4Þ

In this equation, the measured output variables are represented by the vector y.

Subsequently, the error between the desired set-points and the measured values is

calculated. The error value is then used to update the ANN weights. This process is

carried out based on Eqs. (5) and (6):

W2ðk þ 1Þ ¼ W2ðkÞ þ DW2 ¼ W2ðkÞ þ gdkHj ð5Þ

W1ðk þ 1Þ ¼ W1ðkÞ þ DW1 ¼ W1ðkÞ þ grX ð6Þ

Here, DW1 and DW2 are the weight displacements due to the system error values.

These parameters are computed based on Eqs. (7) and (8), respectively:

DW2 ¼ �g
oe

oW2

oe

oW2

¼ oe

oy

oy

ou

ou

onetk

onetk

oW2

onetk

oW2

¼ f 0ðnetkÞ

onetk

oW2

¼ Hj

oe

oy

oy

ou

ou

onetk
¼ dk

DW2 ¼ gdkHj

ð7Þ
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DW1 ¼ �g
oe

oW1

oe

oW1

¼ oe

oy

oy

ou

ou

onetk

onetk

oHj

oHj

onetj

onetj

oW1

ou

onetk
¼ f 0ðnetkÞ

onetk

oHj

¼ W2

oHj

onetj
¼ f 0ðnetjÞ

onetj

oWj

¼ X

DW1 ¼ gdkf
0ðnetkÞW2f

0ðnetjÞX ¼ grjX

ð8Þ

All of the symbols in Eqs. (7) and (8) can be traced in the schematic

representation of Fig. 5b. Moreover, the learning rate, which is defined as a small

positive value, is denoted by g. In the proposed approach, when the error signal is

below the prespecified threshold, the learning process is successfully terminated.

5 Numerical validations

To assess the performance of the proposed ANN-based GA-optimized online tuning

approach, we carried out extensive numerical studies on the test system illustrated in

Fig. 1a. Although the results are discussed for this specific test system, the proposed

control approach is general and could be applied to other systems. MATLAB/

Simulink is the simulation platform in this study. Multiple loading conditions are

considered in the form of step changes to explore the dynamic response of the

proposed controller. As noted in Table 3, the loading states are t = 0.3, 0.5, 0.7, 0.9,

and 1.1 s. The required data regarding the IIDGs and MG branches are given in

Bevrani and Shokoohi (2013). The expert’s knowledge of the investigated system

Table 3 Load change scenarios

Time duration (s) Load 1 Load 2

0–0.3 100 X ? 200 mH 150 X ? 100 mH ? 30 lF

0.3–0.5 50 X ? 100 mH 100 X ? 10 lF

0.5–0.7 0 0

0.7–0.9 40 X ? 5 lF 10 X ? 50 lF

0.9–1.1 5 X ? 10 mH 200 X ? 10 mH ? 150 lF

1.1–1.3 5 X ? 10 mH 500 X ? 10 lF

Intelligent secondary control in smart microgrids: an on…

123

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order



and its features impacts the selection of the neural network characteristics and the

learning process and determines the selection of the weight vectors. Since the

frequency and voltage signals are typically reported in these studies, they are given

as the simulation results. Meanwhile, it is well understood that the active and

reactive power variations are in line with the frequency and voltage variations,

respectively, and result in similar waveforms. Accordingly, they are not listed in the

simulation results.

Following each step change in the loading conditions, the system voltage and

frequency responses are displayed in Figs. 6 and 7, respectively. In these figures, the

dashed line corresponds to the offline mechanism and the solid one represents the

GA-optimized ANN-based approach. The results show that the extensibility feature

of the proposed ANN leads to a better response in terms of maintaining the MG’s

nominal values. This feature makes the ANN-based MGCC a general and online

controller to accommodate a wider range of operating points with severe

disturbances.

As can be seen, any change in the system operating point gives noticeable

deviations in the voltage and frequency signals. Likewise, it is clear that the offline

approach maintains the voltage and frequency within the permissible ranges,

namely 5% for the voltage and 1% for the frequency. This approach preserves the

system performance in the permissible ranges, but it yields steady-state errors

around the nominal values. Moreover, if the operating point varies sensibly, as in

the cases with large disturbances, this approach is likely to lose its acceptable per-

formance. In Figs. 6 and 7, it is clear that before t = 0.9 s, the offline tuning

approach returns the voltage and frequency to the nominal values. The ANN-based

approach has a superior performance. However, this is not the case for the times

after t = 0.9 s. During these intervals, as the intensity of the step change gets higher,

this approach does not restore the system’s voltage and frequency to the nominal

values. In contrast, the proposed ANN-based approach demonstrates a robust and

reliable operation in maintaining the secondary control missions. As can be seen, the

voltage and frequency signals are regulated better than by the offline method. Thus,

a generalized and robust controller is achieved for the variations in the MG’s

working point.

To accommodate the changes in operating points and to settle the voltage and

frequency signals at the nominal values, the proposed approach manipulates the

control parameters in all IIDGs. The update curves for all these parameters are

shown in Figs. 8, 9 and 10. These figures reveal that the ANN-based MGCC adjusts

the control parameters of all IIDGs such that the minimum fluctuations in the

voltage and frequency profiles are attained.

To analyze the results in more depth, we define two indices as follows:

Iv ¼
PN

n¼1 Dvj j2

N
ð9Þ
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(c) Offline tuning approach
GA-optimized ANN-based online approach

Fig. 6 Voltage profiles for the considered step changes in loading conditions: a IIDG1, b IIDG2, and
c IIDG3
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Fig. 7 Frequency profiles for the considered step changes in loading conditions: a IIDG1, b IIDG2, and
c IIDG3
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If ¼
PN

n¼1 Dfj j2

N
ð10Þ

where Dvj j and Dfj j are the absolute values of the voltage and frequency deviations,

respectively, and N is the total number of samples in the simulation time period. The

performance indices are computed for the simulated scenarios introduced in

Table 3. The results are reported in Table 4. Since the results are similar, we

consider only IIDG1. With respect to this table, it can be deduced that the perfor-

mance indices obtained based on ANN-based online approach are at least ten times

smaller than the reported values for the offline approach. Thus, a more uniform

steady-state operation with a minimized deviation is obtained by the proposed

approach. Moreover, this approach avoids the steady-state errors observed in some
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Fig. 8 Updating the secondary controller’s parameters in IIDG1 following the step changes in loading
conditions
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Fig. 9 Updating the secondary controller’s parameters in IIDG2 following the step changes in loading
conditions
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loading scenarios. Thus, we have demonstrated the superior performance of the

online ANN-based MGCC.

6 Conclusion

We have studied simultaneous secondary control in islanded MGs. When

disturbances occur, the conventional PI controllers lose their ability to provide a

safe operation scheme. Accordingly, the increasing deviations in both the voltage

and frequency signals could steer the MG toward overall instability. On the other

hand, the application of intelligent algorithms such as GA and ANN for the

individual tuning of voltage or frequency does not achieve the goal of simultaneous

tuning. Thus, the MG was shown to be at risk of uncontrolled operation and thus

unstable conditions. In contrast, the proposed approach gives simultaneous control

of secondary voltage and frequency, which greatly improves the system’s

operational indices. The initial tuning of the control parameters was based on a

GA approach. This technique yielded improved performance of the MG, but steady

state errors occurred for severe disturbances. This issue was greatly alleviated by the
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Fig. 10 Updating the secondary controller’s parameters in IIDG3 following the step changes in loading
conditions

Table 4 Performance indices obtained for IIDG1

Performance Index Tuning method

Offline tuning approach GA-optimized ANN-based online approach

Iv 0.4007 0.0018

If 0.00107 0.000109
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proposed ANN approach intended for the online fine-tuning of the control

parameters. We showed that due to the extensibility and learning features of the

GA-optimized ANN-based MGCC, we obtain a working-point-independent con-

troller that greatly minimizes the emergent deviations in the voltage and frequency

profiles. Thus, the steady-state errors were totally suppressed and the system

operated at its nominal conditions, even when large disturbances occurred. Its

ability to accommodate a wider range of operating points makes the proposed

approach suitable for the successful operation of MGs.
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