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Abstract: This dcmonstrate  flexible ncural
networks application, as a possible solution, to automatic

load frequency control problem in a deregulated clectric

paper  will

powcr systcm cnvironment.

We consider a typical power system in a competitive,
distributed cnvironment  with opcn  access
organizational structurc. With this new structurc, the
conventional controllers arc incapable of obtaining good
dynamical performance, then, it comes the need for novel

control

control stratcgics to maintain the rcliability and climinates
the frequency crror.

In order to achicvement of all proposcd design
objcctives, we have uscd flexible ncural nctworks with
dynamic ncurons that have widc ranges of variation. A
samplc power system is uscd to illustratc thc design
mcthod. :

I.INTRODUCTION

Any power system has a fundamental control problem of
matching real power generation to load plus losses, a
problem called Load Frequency Control (LFC) or frequency
regulation. The purpose of Load Frequency Control is
tracking of load variation while maintaining system
frequency and tie line power interchanges close to specified
values. Reference {1], give a detailed discussion of LFC.

In this paper, we consider the system as an area that
includes separate generation, transmission and distribution
companies with an open access policy. In this new
structure, each control area has its own generation and
transmission network, and distribution company is
responsible for tracking its own load and honoring tie-line
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power exchange contracts with its neighbors by securing as
much transmission and generation capacity as needed.
Under current organizations, several notable approaches

based on classical, optimal, H”, U-synthesis, conventional
neural networks and other control theorems have already
been proposed [2-13]. [14], discusses several LFC scenarios
and issues in power system operation after deregulation.

This paper will demonstrate Flexible Neural Networks
(NNs) application to automatic LFC in a deregulated electric
power system environment. The application of Artificial
Neural Networks (ANNs) in control of complex system has
been a subject of extensive studies in the past decade.

As we know, the ANNs are based on the biological
nervous systems. Learning algorithms cause the adjustment
of the weights so that the controlled system gives the
desired response. there is a strong relationship between the
training of ANNs and adaptive control. Therefore,
increasing the flexibility of structure induces a more efficient
learning ability in the system, which in turn causes less
iteration and better error To obtain the
improved flexibility, teaching signals and other parameters
of ANN s (such as connection weights) should be related to
each other. ‘

In this paper we use a sigmoid unit function, as a mimic
of the prototype unit, to give a flexible structure to the
neural network. For this purpose, we introduce a hyperbolic
tangential from of the sigmoid unit function, with a
parameter that must be learned, to fulfill the above-
mentioned goal.

Following this introduction, the second section gives a
description of the ANNs with Flexible Sigmoid Functions
(FSFs). The third section demonstrates the design of load

minimization.
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frequency controller, and simulation results are presented in
section 4.

II. NEURAL NETWORKS WITH FLEXIBLE
STRUCTURES

A. The Flexible Sigmoid Function

The basic concepts and definitions of the introduced
Flexible Sigmoid Function (FSF) were also described in [15].
We consider as a sigmoid unit function, the following
hyperbolic tangent function:

1— e—2 xa
f(x,a) = ———5— (1
a(l+e™ )

The shape of this bipolar sigmoid function can be altered
by changing the parameter a, as shown in Fig. 1. It also has
the property

lim f(x,a) =9 @
a—0 Y

So, by making use of the 1'Hospital rule, we have

lim f(x,a)=x 3)
a—0

Thus it is proved that the above function becomes lincar
when a—0, while the function becomes nonlinear for large
values of a [16]. It should be noted here that in this study,
the learning parameters are .included in the update of
connection weights and Sigmoid Function Parameters
(SFPs).

B.Learning Algorithms

The main idea is to present an input pattern, allow the
network to compute the output, and compare this to the
desired signals representing provid ed by the supervisor or
reference signal. Then, the error is utilized to modify
connection weights and SFPs in the network to improve its
performance with minimizing the error.

The learning process of FNNs is to minimize the
following performance function given by:

l n
J:EZ(Ydi"yiM)z @
i

Where Yyg4; represent reference signal, y;M
output units, M denote output-layer and n is the number of
units in the output-layer. It is desirable to find a set of the
parameters in the connection weights and SFPs that
minimizes the J, considering the same input-output relation
between the k-th layer and the (k+1)-th layer. It is useful to
consider how the error varies as a function of any given
connection weights and SFPs in the system. The error
function procedure finds the values of all of the connection
weights and SFPs that minimize the error function using a
gradient descent method. That is, after each pattern has
been presented, the error gradient moves toward its
minimum for that pattern, provided a suitable learning rate.

Learning of SFPs by employing the gradient descent
denoted by Aa;*, can be

represent

method, the increment of a;
obtained as,
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Where M; >0 is a learning rate given by a small positive

constant. Now, in the output-layer M, the partial derivative
of J with respect to ais described as,

Ao ay™
W oy ©
Here, defining
GiM =- ayiM 7
gives
=(yai-yi" . @®

The next step is to calculate a in the hidden-layer k:
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where h, denotes outputs of hidden layer, and defining
aJ
k

ak=— 10
i ayiM » (10)
we have
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Gradually, it follows that
of(h, ' a, kh
k K+ MR K k+1
=2 |1'|+ nah k+1 Wim * (12)

Therefore, the learning update equation for a in the
output and hidden-layers neurons is obtained, respectively,

by

a*(t+h=a )+ norf (h*,a5)+a,4a,5(y)

where f(...) is defined by af(qﬂiM)/a)’iM
layer, af(.,ai" )/ayik in the hidden-layer and o) is a
stabilizing coefficient defined by 0 <oy < 1.

(13)
in the output

Generally, the Jearning algorithm of connection weights
has been studied with different authors. Here, we simply
summarize this algorithm as

kl\l k-1

k»l(t)+n255§yjk-l

(t+h=w +oAw ()
(14)
where
8 =(yg—y;"Of"(h;™) (15)
and
8} =f(h") 38w (16)
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where t denotes t-th update time,
f'(th)=df’(th)/dth , N2> 0 is a learning rate given
by a small positive constant, and O is a stabilizing (or
momentum) coefficient defined by 0 <ai, <1.

111. DESIGN METHODOLOGY

A. A Sample System, [5, 9-10]

Based on the new structure, let us consider a simple
distribution company and its suppliers as shown in Fig. 2.
In this example the distribution comp any (DISCO) buys firm
power from one generation company (GENCO 2) and
enough power from other generation company (GENCO 1)
to supply its load and support the LFC task. Transmission
company (TRANSCO 1) delivers power from GENCO 1.
TRANSCO 1 is also contracted to deliver power associated
with the LFC problem. ’

In the structure proposed the DISCO are to be
responsible for tracking the load and hence performing the
load frequency control task by securing as much
transmission and generation capacity as needed.
Connections of the DISCO to other companies are
considered as disturbances (d1).

For simplicity assume that GENCOs | and 2 have one
generator each. The state space realization of the
distribution area as presented in [9], has the following form:

% = AX + Bu + Dw a7

where,
xT=[af, APy, APy AG-AS, Af, APy, AP;],

wT =[APL d,] v u= AP g

nd,
A : deviation from nominal value
f, : nominal frequency
f, : frequency
& : rotor angle
P,, : turbine (mechanical) power
d; : disturbance (power quantity).
P, : steam valve power
P, : reference set point (control input)
The state-space model is based on equation (17),

however it is augmented to include the rotor angle of
GENCO 1 since one of objectives of LFC problem is to
guarantee that the frequency will return to its nominal value
following a step disturbance. Hence, we use the augmented
system that its state vector becomes:

x' =[Af, APy, APy, A3, —A8, Af, APy, AP, A3]

B. FNN Based Load Frequency Controller

First, in order to problem formulation, let the output
variables be given by the Distribution Company Error (DCE)
and its integral. DCE is defined in this paper analogously to
the traditional ACE (Area Control Error) by:

DCE = AP, + AP, + B Af, + B,Af, (18)
where Bi is the frequency response characteristic of unit i.
Therefore, the output variables are given by:
y=Cx+Gw

where,
c=[g 0018 00 1} g=[1 0]

We now proceed to design a load frequency controller
using the neural networks with back-propagation algorithm
in supervised learning mode. In order to greatest response
and fast activity, we have proposed FNN based load
frequency controller with dynamic neurons that have wide
ranges of variation. Reference [15], gives a detailed
discussion of FNNs. The block diagram of FNN Controller
and sample power system as a plant, is shown in fig. 3.

As shown in fig. 3, we have constructed one multilayer
neural network, which consist of three layers. This network
has nine units in the input-layer, seven units in the hidden-
layer, and one unit in the output-layer. The neural network
acts as a feed forward controller to supply the plant a
correct driving input u(k), which is based on the reference
input signal ¥4 (K), previous plant output signals y(k), y(k-
1), ..., y(k-4) and control output signals u(k), u(k-1), ..., u(k-
3). Y4 (k), is the output variable y(k), when DCE must be
equal to zero. Then the input vector of neural network is:
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I=[ii & .. Jby
=[yg(K) ylh) ... y(k-4) u(k) u(k-1) ... uk-3)]’

hi, ..., lrare outputs of hidden-layer, u(k) is the output of
the output-layer.

As shown in above figure, in the learning process not
only the connection weights, but also, the SFPs are
adjusted. Adjusting the SFPs causes a change in the
shapes of sigmoid functions in turn. The proposed learning
algorithm considerably reduces the number of training
steps, resulting in a much faster training in comparison to
traditional ANNs.

In the following simulations, we will show that the plant
can be controlled by using only three layers for ANN.
Increasing the number of layers dose not significantly
improve the control performance. In fact, the number of
units required is entirely dependent on the system. For the
problem at hand, the FSFs ( bipolar ) are used in hidden and
output-layers, with the form of (1).

The main idea is to modify connection weights and SFPs
in the proposed controlled system to minimizing the DCE
signal and improvement its performance. On the other hand,
it is desirable to find a set of the parameters in the
connection weights and SFPs that minimizes the DCE
signal.

When the Neural Network Controller ( NNC ) is native,
i.e. the network is with random initial weights and SFPs, an
erroneous plant input u(k) may be produced etroneous
output y(k). This output will then be compared with the
reference signal yg(k). The resulting error signal e(k) is
used to train the weights and SFPs in the network using the
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back-propagation algorithm. With repetitive training, the
network will learn how to response correctly to the
reference signal input.

As the number of training increases, the network is
becoming more and more mature, hence the power system
output error wo uld be smaller and smaller.

However, back-propagation of error signal cannot be
directly used to train the NNC. In order to properly adjust
the weights and SFPs of the network using the back-
propagation algorithm, the error in the NNC output
€ (k) =uy(k)—u(k), where ug(k) is the desired driving
input to the plant, should be known. Since only the system
output error e(k)=yy(k) —y(k) is measurable or
available, € (k) can only be determined using the following
expression:

PN {¢9)
e(k) e(k)au(k)
where the partial derivative is the Jacobean of the plant.
Thus, the application of this scheme requires a through
knowledge of the Jacobean of the plant. For simplicity,
insist of (18), we use:
€ (k) = ol A¥0) = Ay(k =)
Au(k)-Au(k-1)

The proposed load frequency controller act as a self-
tuning controller, that, it can learn from experience, in the
sense that connection weights and SFPs are adjusted on-
line; in other words this controller should produce ever-
decreasing tracking errors from sampling by using FNN.

(20)

2n

IV. SIMULATION RESULTS

As an example, consider a distribution company as
depicted in figure 1. Parameters of selected sample power
system and other required data is given in table I, according
to [5,9-10]. It is assumed that the control sampling period is
T=5 ms.

The following figures show the simulation results
following a 10% load increase in the distribution system by
using the conditions given in table 2, and, initial weights
and initial Uniform Random Number (URN) of sigmoid
function unit parameters that are shown as W10 and W20.

Fig. 4 shows the distribution control error (or ACE)
signal and fig. 5 and 6 compare the closed-loop and open-
loop frequency deviations at both GENCOs. At steady state
the frequency is back to its nominal value. These figures
demonstrate the effectiveness of the proposed design. The
simulation results using different input vector, learning
rates and momentum terms are given in [16].

Wi, =107 x
07 97 -78 18 64 -91 57 95 -3
-88 -38 53 -68 69 -5 -43 42 7
09 -74 39 46 -14 -1.1 74 -88 -36

-52 26 3 17 -6 -78 82 52 23
-54 -47 -03 -07 93 -25 45 64 22
-66 45 -18 06 -07 -68 99 36 0
75 -10 -69 43 0 68 1.7 -17 17

W2,=10"x[-1.7 =69 -1.8 9.1 -1.1 7 -9.7],

Initial as=URN[0,1].

Table 1: Data for the simulation

Quantity GENCO! GENCO2
Rating (MW) 1000 800
Constant of Inertia: 5 5
H(sec)

Damping: 0.02 0.015
D(puMW/Hz)

Droop 4 5
characteristic:

R(%)

Generator's: 02 02
T, =2H/f,

Turbine's 05 0.5
Time Constant: T,

Governor's 02 0.1
Time Constant.T,,

Gains: K, K, 1 1
Synchronizing 02 0.1
coefficients: T,

Table 2: Learning rates and momentum terms for proposed FNN

Nn=0.0005
Learning rates 1n,=0.0010
o,=0.050

Momentum terms 0,=0.070

In proposed structure, the training of SFPs causes
change in the shape of individual sigmoid functions
according to input space and reference signal and achieves
betterment convergence compare to traditional ANNs, [12].

Totally, it can be recognized from these simulations that
the learning parameters of connection weights and SFPs
increase the load of learning algorithms with keeping high
capability in the training process. But the proposed
algorithm causes to reduce the sensitivity of ANN to the
parameters such as connection weights while increasing the
sensitivity of ANN to the SFPs.

Simulation results show that Changes in power coming to
the distribution company from GENCO | and GENCO 2,
shows that power is initially coming from both units to
respond to the load increase, which will result in a
frequency drop that is sensed by the speed governors of
both machines. But at steady state the additional power is
coming from GENCO 1 only and GENCO 2 does not
contribute to the LFC problem solution.
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V. CONCLUSION

An approach to load frequency controller for electric
power system for a possible structure in a deregulated
environment is proposed using the flexible neural networks.
The system is modeled as a collection of independent
distribution companies supplied by generation companies
either directly or trough transmission companies. The
distribution companies are responsible for tracking the load
and hence they are in charge of the LFC problem.
Connections between distribution companies and the rest
of the system are taken as disturbances. The methodology
presented here can be extended to larger size systems.

A simple test system is given to demonstrate the
effectiveness and validity of the proposed approach. It has
been shown that the suggested ANN structure of the FNN
load frequency controller gives a better ACE minimization
and a quick convergence to the desired trajectory in
comparison with one based on the traditional ANNSs.
Simultaneous learning of the connection weights and the
sigmoid unit function parameters in the proposed method
causes an increase in the number of adjustable parameters
in comparison with the traditional method.

Based on extensive simulation results, it is verified that
all proposed design objectives are met.
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VII. APPENDIX: FIGURES
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Updatc algarhms
of connection weights and SFPs
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Fig. 4. The area control error (ACE) signal (b)

Fig. 6. Frequency deviation at GENCO 2 following a 10% load
increase, (a) Open-loop system; (b) Closed-loop system
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Fig. 5. Frequency deviation at GENCO 1 following a 10% load
increase, (a) Open-loop system; (b) Closed-loop system
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