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    Abstract- To provide inertia support for the grid, virtual 

synchronous generator (VSG) control of inverter-interfaced 

distributed generators (IIDGs) becomes a focus of worldwide 

attention. However, a VSG-based IIDG behaves differently in the 

grid-connected mode, the islanded-single-DG mode, and the 

islanded-multi-DG mode, whereas the mathematical and physical 

interpretations of this phenomenon are not well studied. In this 

paper, we propose a unified modeling method of VSG-based IIDG 

to analyze its different dynamic performance in each operation 

mode. The proposed unified formulas can obtain the state-space 

models of islanded-single-DG mode and islanded-multi-DG mode 

from that of grid-connected mode for any VSG control method. 

With the obtained models, for several different types of VSG 

control in different operation modes, we analyze the distribution 

and sensitivity of the closed-loop poles and investigate the step 

responses both analytically and experimentally. These analyses 

reveal the intrinsic differences and correlations of the dynamics of 

VSG-based IIDG between each operation mode. These intrinsic 

features are valid independent from the applied VSG control 

scheme, thus a test method to evaluate the parameters and 

performance of an unknown IIDG is derived. The findings of this 

paper provide important instructions for engineers to model, 

design and test multi-operation-mode distributed generators. 

 

Index Terms--Distributed power generation, inverters, 

microgrids, power system dynamics, renewable energy sources, 

smart grids, state-space methods, synchronverter, virtual 

synchronous generator.  

LIST OF ABBREVIATIONS 

DCL  damping correction loop 

DG  distributed generator 

DWE  damper windings emulation 

GC  grid-connected 

IIDG  inverter-interfaced distributed generator 

IMDG  islanded-multi-distributed-generator 

ISDG  islanded-single-distributed-generator 

LPF  low-pass filter 

NoD  no dedicated damping 

PLL  phase-locked loop 

SF  state feedback 

SFLPF  state feedback with a low-pass filter 

SG  synchronous generator 

ROCOF  rate of change of frequency 

VSG  virtual synchronous generator 

NOMENCLATURE 

𝟎𝑚×𝑛  𝑚 × 𝑛 zero matrix 

𝑨  State matrix 

𝑩  Control input matrix 

𝑪  Output matrix 

𝐷  Virtual damping factor 

𝑑  Dimension of vector 𝒙𝑎 

𝑬  Disturbance input matrix 

𝐸  Virtual internal electromotive force 

𝑭  Disturbance output matrix 

𝑰𝑚  Identity matrix of size 𝑚. 

𝐽  Equivalent virtual inertia 

𝐽𝐴  Apparent virtual inertia of method A 

𝐾  Synchronizing power coefficient 

𝐾𝑝_𝑝𝑙𝑙
∗   Normalized gain of PI control in PLL 

𝑘𝑝  ω–P Droop coefficient 

𝑘𝑥𝜔, 𝑘𝑥𝑝, 𝑘𝑥𝑖 Feedback gain in SF or SFLPF method 

𝐿𝑙𝑠, 𝐿𝑓 , 𝐿𝑙𝑖𝑛𝑒  Virtual, filter, and line inductance 

𝑀∗  Inertia constant (see (67)) 

𝑛   Number of DGs in IMDG mode 

𝑃0  Active power command 

𝑃𝑑  Damping power 

𝑃𝑖𝑛    Virtual shaft power 

𝑃𝑙𝑜𝑎𝑑   Load active power 

𝑃𝑜𝑢𝑡   Output active power 

𝑃𝑜𝑢𝑡𝑓   Filtered output active power 

𝑆𝑏𝑎𝑠𝑒   Rated power 

𝑇𝑓  Time constant of LPF 

𝑇𝑖_𝑝𝑙𝑙  Time constant of PI control in PLL 

𝒖, 𝑢  Control input vector (or scalar) 

𝑉𝑏𝑎𝑠𝑒   Rated voltage 

𝑉𝑜𝑢𝑡, 𝑉𝑏𝑢𝑠 Inverter output and bus voltage 

𝑤  Disturbance input 

𝑋  Equivalent output reactance 
𝒙  State vector 

𝒙𝑎   Vector of additional state variables 

∆𝑥1_𝑝𝑙𝑙, ∆𝑥2_𝑝𝑙𝑙 State variables of the PLL 

𝒚  Output vector 

∆  Small-signal perturbation 

𝛿, 𝛿0  Power angle and its operating point 

𝜁  Damping ratio 

𝜆  Closed-loop pole (see Table II) 

𝜌𝐴  Ratio of 𝐽𝐴/𝐽 of the method A 

𝜔0  Nominal angular frequency and voltage 

𝜔𝑏𝑢𝑠  Bus angular frequency 

𝜔̂𝑔  Frequency measured by PLL 

𝜔𝑚  Virtual rotor angular frequency 

𝜔𝑛  Natural frequency 

 

Superscripts: 

*  Indicate per unit value 

′, ′′  (See last paragraph of Section III-B) 



Subscripts: 

𝑎𝑖 (i = 1, 2) Parameter 𝑎 of ith DG in IMDG mode 

𝑎(𝑘)  𝑘th element of the vector 𝒂 

𝑎𝑑𝑐𝑙   Parameter 𝑎 of DCL method 

𝒂𝑔, 𝑎𝑔  Matrix  𝒂 (or scalar 𝑎) in GC mode model 

𝒂𝑚, 𝑎𝑚  Matrix  𝒂  (or scalar 𝑎 ) in IMDG mode 

model 

𝒂𝑠, 𝑎𝑠  Matrix  𝒂 (or scalar 𝑎) in ISDG mode model 

𝑎𝑠𝑓  Parameter 𝑎 of SF or SFLPF method 

I.  INTRODUCTION 

  With a successive growth of power generation using 

renewable energy sources, i.e., photovoltaics and wind turbines, 

the penetration rate of inverter-interfaced distributed 

generators (IIDGs) in the power system is in increase at a rapid 

pace. Unlike conventional centralized generation using 

synchronous generators (SGs), inverters do not have a rotating 

mass to provide inertia support for the grid. Therefore, since 

SGs are gradually replaced by inverters, operators of the power 

grid are faced with the issue of lack of inertia, which 

intrinsically leads to a large rate of change of frequency 

(ROCOF) in the grid. As a result, the power system is prone to 

frequency fluctuation, and the design of ROCOF-based relays 

should be reconfigured [1]. 

To address this issue, the concept of the virtual synchronous 

generator (VSG) [2]–[4], or virtual synchronous machine [5], 

or synchronverter [6], [7], has been proposed. It is shown that 

by adding a short term energy storage to emulate kinetic energy 

of a rotating mass and mimicking the swing equation of an SG 

in the control scheme, inverters can also provide inertia support 

for the grid to restrain its frequency fluctuation, in the same 

way as an SG [8], [9]. As the principle of these concepts is 

similar, for convenience sake, all these inverters are referred to 

as VSG in this paper. 

Despite the similar principle, the basic control method of 

VSG is not unique. For instance, although inertia is emulated 

similarly in most VSG control strategies, the damping effect 

can be realized through different approaches. In the literature, 

VSG control possessing no dedicated damping unit (hereinafter 

referred to as the NoD method) is adopted in early studies [6], 

[7], [10], and then improved by dedicated damping methods 

such as the damper windings emulation (DWE) method [11], 

[12], the damping correction loop (DCL) method [13], [14], the 

state feedback (SF) method and its advanced version, the state 

feedback with a low-pass filter (SFLPF) method [15]. By 

assigning the closed-loop poles to desired locations, these 

methods can provide effective damping without affecting the 

inertial feature of VSG [15]. Besides, other damping methods 

are also proposed, i.e., using a conventional power system 

stabilizer [16], increasing output reactance through virtual 

impedance control [17], adding a high-pass filter term of virtual 

rotor frequency [18], and using adaptive inertia and/or damping 

[19]–[21]. Moreover, various inner loop controls can be 

adopted in a VSG. No inner loop [6], [17], double loops in dq 

frames [12], [16] or αβ frames [18], and model predictive 

control [22] are all reasonable choices. 

Owing to its inertia support feature, VSG control is 

considered as a promising solution of inverter-interfaced 

distributed generators (IIDG) [17]. Studies on its applications 

to photovoltaic (PV) systems [23], wind power generation [16] 

using permanent magnet synchronous generators (PMSG) [24], 

[25] or doubly-fed induction generators (DFIG) [26] have been 

reported. Besides, VSG control can be applied to other grid-

tied inverters, such as those in energy storage systems [27], 

[28], in bi-directional battery chargers of electrical vehicles 

(EVs) providing vehicle-to-grid (V2G) services [18], in voltage 

source converters (VSC) of high voltage dc transmission 

(HVDC) system [29]–[33], and in grid-interface dc-ac 

converters of dc microgrids [34]. Generally, the VSG-based dc-

ac converter becomes a standard interface for smart grid 

integration [35]. 

One important advantage of VSG control is its ability to 

make a dispatchable IIDG operation in multi-operation modes, 

e.g., the grid-connected (GC) mode, the islanded-single-DG 

(ISDG) mode, and the islanded-multi-DG (IMDG) mode, and 

to guarantee seamless transfer between these modes without 

any change in the control scheme. This feature is usually called 

grid-forming ability, which is inherited from the droop control 

[8]. Besides, VSG-based IIDG can share the load power 

autonomously between inverters in the IMDG mode [17]. 

However, although with the same control, a grid-forming 

DG behaves differently in each operation mode, and the 

difference becomes more apparent when the inertial feature is 

emulated by the VSG control. Unfortunately, the mathematical 

and physical interpretation of this phenomenon is not well 

studied in the literature. In most previous works, when a new 

VSG control method is proposed, its GC mode operation is 

usually analyzed by means of transfer functions or state-space 

models, e.g., the NoD method in [10], the DWE method in [11], 

the DCL method in [13], [14], and the SF/SFLPF methods in 

[15]. However, the ISDG and IMDG mode operation are not 

studied in these works. The ISDG mode and IMDG mode of 

the DWE method is studied through transfer-function models 

in [8], and state-space model in [17]. However, these models 

are only valid for DWE method and difficult to be applied for 

other types of VSG control. In [40], the above damping 

methods are compared using transfer-function-based analyses 

for GC mode and ISDG mode operation. With this analytical 

method, all transfer function should be derived case by case 

considering the applied control method, the operation mode, 

and the input and the output. Obviously, the analyses and 

discussion in [40] is difficult to be extended to new control 

methods and the IMDG mode operation. Moreover, the 

motivation of [40] is focused on comparing the pros/cons of 

different damping methods, whereas the common features of 

these methods are not studied. Besides, the state-space 

modeling of an islanded microgrid composed of multiple 

droop-control-based IIDGs, i.e. the IMDG mode, has well been 

studied in the literature [36]–[39], and these methods can be 

easily extended to VSG-based IIDG. However, these works are 

also only focused on the IMDG mode models, and none of 

them discussed how to adapt the model to the GC mode. To 

conclude, as there is no modeling method that can easily cover 

all major operation modes of a grid-forming DG, it is difficult 

to find the intrinsic correlations between different operation 

modes, which are independent of the applied VSG control 

method. 

Consequently, to well interpret the different behaviors of 

VSG-based IIDG in each operation mode, a unified modeling 



process to obtain mathematical models of all typical operation 

modes is expected. Moreover, it should be applicable for any 

given grid-forming DG; otherwise, the results and conclusions 

may lose generality. Besides, various VSG control methods are 

proposed in the literature, whereas a generalized test method to 

evaluate different types of VSG is not reported yet. The users 

and the utility may be interested in evaluating the main 

parameters of an unknown type of VSG by a simple field test. 

Motivated by the above issues, we present the following 

novelties to contribute to the body of knowledge. 

1) We propose a unified modeling method to study the active 

power and frequency control loop, which can be applied to 

all DGs operating in multi-operation modes, including 

SGs and IIDGs using existing VSG control methods or 

droop control technique. This method uses unified 

formulas to obtain the state-space models of ISDG mode 

and IMDG mode directly from that of GC mode using the 

proposed formulas, and this helps us to interpret the 

differences of each mode mathematically. It is a 

convenient mathematical tool to model grid-forming DGs 

for all basic operation modes. 

2) With the models obtained through the unified modeling 

method, we present the closed-loop poles and step 

responses analyses of various VSG methods in different 

operation modes, to reveal the intrinsic differences and 

correlations of the dynamics of VSG-based IIDG for each 

operation mode. The results illustrate the movement and 

correlation of dominant poles between different modes and 

their impact on the dynamic performance. These common 

features are valid for most investigated VSG controls, and 

the exceptional conditions are well specified. The revealed 

analytical solutions of the dominant poles and time 

constants in each operation mode help us to understand 

how these dominant poles are determined by the key 

parameters, and thus this facilitates the parameter design 

considering multi-operation modes. Especially in the 

IMDG mode, specific conditions of parameter matching 

and mismatching between multiple DGs are discussed. 

3) We present pole sensitivity analyses to illustrate how the 

closed-loop poles are affected by intentional or 

nonintentional variation of some main parameters. 

4) We verify the step response analyses by experimental 

results, which demonstrate the correctness of the proposed 

unified modeling method and the analyses presented in this 

paper. 

5) Based on the closed-loop poles and step responses 

analyses, we derive a test method to measure the 

parameters and evaluate the performance of an unknown 

IIDG. 

6) Previous works in the literature can be verified and better 

interpreted using the proposed unified modeling method, 

e.g., the analytical comparison between different VSG 

control strategies in [40]. The presented unified modeling 

method is much more efficient to obtain the same 

analytical results. Based on the given analytical method in 

[40], all system transfer functions should be derived one 

by one considering the applied control method, the 

operation mode, and the input and output.. 

The following sections are organized as follows. A typical 

control scheme of VSG-based IIDG and several VSG control 

methods are introduced in Section II. The proposed unified 

modeling method and its mathematical and physical 

interpretation are presented in Section III. In Section IV, 

closed-loop pole analyses of various VSG methods are 

discussed to reveal the intrinsic correlations between different 

operation modes and to study the pole sensitivity. The findings 

in Section IV are further developed in Section V by step 

response analyses, and these responses are also verified by the 

experiment. Based on the observed phenomenon, a test method 

of an unknown VSG is given in Section VI. Finally, this paper 

is concluded in Section VII.  

II. VSG CONTROL OF IIDGS 

A. Overall Control Scheme of a VSG-based IIDG 

Since this paper is focused on a unified modeling method, 

a typical control scheme of a VSG-based IIDG proposed in a 

previous work [15] as shown in Fig. 1 is adopted. It is an RMS-

value-based control scheme without using an additional inner 

voltage or current control loop. Different from VSG control 

schemes with an inner voltage loop, this type of VSG control 

regulates the output voltage through the reactive power control 

loop [6], [17]. Owing to the absence of an inner voltage loop, 

the active power control loop becomes quite simple and robust, 

and bus voltage deviation becomes smaller and insensitive to 

output impedance [17]. Despite the lack of intrinsic current 

limiter, a previous study [41] shows that the virtual-impedance-

based current limiting strategy proposed in [42] is effective for 

this control scheme. However, this control scheme has no 

control effect on harmonic components, e.g. the oscillation of 

LCL filter. Therefore, a dedicated control for harmonic and 

negative sequences proposed in [43] is applied additionally in 

the experiment to cover this disadvantage at the cost of 

increased computational burden in the controller.  
In the power generation part, the “governor and virtual 

inertia” block is the core of VSG control. In the literature, 

various approaches using different damping technologies are 

proposed for this part. Since methods capable to assign closed-

loop poles facilitate a comparative design and are proved to be 

effective [15], several closed-loop pole-assignable methods, 

along with the NoD method, are discussed in this paper, as 

introduced in the following parts of this section.  

In the block “stator impedance adjuster”, virtual impedance 

control is applied. A virtual voltage drop over virtual 

inductance 𝐿𝑙𝑠  is generated to adjust the equivalent output 

reactance 𝑋 of the inverter as shown in (1).  

𝑋 = 𝜔0(𝐿𝑙𝑠 + 𝐿𝑓 + 𝐿𝑙𝑖𝑛𝑒) (1)  

The block “𝑉𝑏𝑢𝑠 Estimator” estimates the bus voltage from 

the measurement of output voltage and current, to provide a 

common reference for the block “𝑄 droop”, in which the droop 

relation between voltage and reactive power is applied [17]. 

B. Varieties of VSG Control Methods 

To emulate the steady-state operation of an SG, its governor 

model is usually emulated in a dispatchable VSG-based IIDG, 

as shown in (2).  

𝑃𝑖𝑛 = 𝑃0 − 𝑘𝑝(𝜔𝑚 − 𝜔0) (2)  

To mimic the dynamics of an SG, swing equation should be 

emulated. If the effect of damper windings is omitted, the 



swing equation of an SG can be expressed as 

𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡 = 𝐽𝜔𝑚

d𝜔𝑚

d𝑡
 (3)  

Combining (2) and (3) yields 

𝑃0 − 𝑃𝑜𝑢𝑡 = 𝐽𝜔0

d𝜔𝑚

d𝑡
+ 𝑘𝑝(𝜔𝑚 − 𝜔0). (4)  

 VSG control emulating (4) in the “governor and virtual 

inertia” block shown in Fig. 2(a) is referred to as the NoD 

method. In fact, conventional droop control with a first-order 

low-pass filter (LPF) is also equivalent to the NoD method [8]. 

In the NoD method, the damping effect is provided by the 

droop coefficient 𝑘𝑝 . However, 𝑘𝑝  should be designed 

regarding the steady-state operating point, usually based on 

frequency tolerance and power rating. Therefore, tuning of 𝑘𝑝 

for the desired damping effect is not available. 

A straightforward approach to generate a dedicated damping 

term is to add the effect of damper windings into (4), as shown 

in (5), which is referred to as the DWE method. 

𝑃0 − 𝑃𝑜𝑢𝑡 = 𝐽𝜔0

d𝜔𝑚

d𝑡
+ 𝑘𝑝(𝜔𝑚 − 𝜔0) + 𝐷(𝜔𝑚 − 𝜔𝑏𝑢𝑠) (5)  

However, 𝜔𝑏𝑢𝑠  is difficult to measure directly, thus it is 

approximated by 𝜔̂𝑔, which is the angular frequency measured 

by a phase-locked loop (PLL) from output voltage 𝑽𝑜𝑢𝑡 [11], 

as shown in Fig. 2(b). In [12], an improved version of this 

method is proposed, in which phase compensation is applied to 

alleviate the influence of the PLL. As comparisons of state-of-

the-art damping methods is not the topic of this paper, only the 

DWE method in [11] is studied in this paper. 

In [13], [14], the DCL method, in which a differential term 

of 𝑃𝑜𝑢𝑡  is used to damp the VSG control as shown in (6)–(7) 

and Fig. 2(c), is proposed. 

𝜔𝑚 =
1

𝑘𝑝 + 𝐽𝑑𝑐𝑙𝜔0𝑠
(𝑃0 + 𝑘𝑝𝜔0 − (1 + 𝐷𝑑𝑐𝑙𝑠)𝑃𝑜𝑢𝑡𝑓) (6)  

𝑃𝑜𝑢𝑡𝑓 =
1

1 + 𝑇𝑓𝑑𝑐𝑙𝑠
𝑃𝑜𝑢𝑡  (7)  

It is noteworthy that an LPF shown in (7) is used to attenuate 

ripples in measured output active power 𝑃𝑜𝑢𝑡 . If this LPF is 

omitted, this method becomes equivalent to the inertial droop 

control proposed in [8] as discussed in [15]. 

The SF method proposed in [15] uses a state feedback term 

to produce damping power, as shown in (8)–(9) and Fig. 2(d). 

𝜔𝑚 = 𝜔0 +
1

𝐽𝑠𝑓𝜔0𝑠
[𝑃0 + 𝑃𝑑 − 𝑘𝑝(𝜔𝑚 − 𝜔0) − 𝑃𝑜𝑢𝑡] (8)  

𝑃𝑑 = −𝑘𝑥𝜔(𝜔𝑚 − 𝜔0) − 𝑘𝑥𝑝𝑃𝑜𝑢𝑡 −
𝑘𝑥𝑖

𝑠
𝑃𝑑 (9)  

It can be further developed by applying an LPF to 𝑃𝑜𝑢𝑡  as 

shown in (10) and Fig. 2(d), and replacing 𝑃𝑜𝑢𝑡  by 𝑃𝑜𝑢𝑡𝑓  in 

(8)–(9). This new control method is referred to as the SFLPF 

method [15]. 

𝑃𝑜𝑢𝑡𝑓 =
1

1 + 𝑇𝑓𝑠𝑓𝑠
𝑃𝑜𝑢𝑡  (10)  

III. PROPOSED UNIFIED MODELING METHOD 

In this section, the proposed unified modeling method is 

presented to study the active power and frequency control loop 

of a grid-forming DG. This method can directly derive the 

state-space models of ISDG and IMDG modes from that of GC 

mode, and it can be applied to SGs and IIDGs with existing 

VSG control or droop control. Hence, the proposed formulas 

can help us to understand general differences and intrinsic 

correlations between various operation modes.  

A. GC Mode Model 

We recommend to establish the unified modeling method 

from the GC mode model, as its state-space model is relatively 

simpler. Moreover, as discussed in Section IV, oscillatory 

poles appear in the GC mode whereas disappear in the ISDG 

mode, thus damping effect should be designed based on the GC 

mode model. 

It is well known in the literature that a DG in the GC mode 

 
Fig. 1 Typical control scheme of a VSG-based IIDG. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 2 Existing approaches in the “Governor and Virtual Inertia” block. (a) NoD 

method; (b) DWE method; (c) DCL method, and (d) SF and SFLPF methods. 
 

 



can be considered as a single DG infinite bus system shown in 

Fig. 3, if the grid is stiff enough. For the case of connected DG 

to a weak grid, the IMDG model in Part C of this section 

provides more accurate result. In the single DG infinite bus 

model, as the bus voltage is dependent on the grid voltage, 

𝜔𝑏𝑢𝑠 should be considered as a disturbance generated by the 

grid.  
It is well-known that the synchronizing power coefficient 𝐾 

of the DG can be expressed as 

𝐾 =
∂𝑃𝑜𝑢𝑡

∂𝛿
≈

𝐸𝑉𝑏𝑢𝑠cos𝛿0

𝑋
≈

𝑉𝑏𝑎𝑠𝑒
2 √1 − 𝑋∗2

𝑋
, (11)  

where  

𝑋∗ = 𝑋𝑆𝑏𝑎𝑠𝑒/𝑉𝑏𝑎𝑠𝑒
2 . (12)  

The derivative of power angle 𝛿 can be represented as 

d𝛿

d𝑡
= 𝜔𝑚 − 𝜔𝑏𝑢𝑠. (13)  

Thus, for each VSG method, the GC mode small-signal 

state-space model as shown in (14) can be derived from (11), 

(13) and respective equations in the “governor and virtual 

inertia” block.  

{
𝒙𝑔̇ = 𝑨𝑔𝒙𝑔 + 𝑩𝑔𝑢𝑔 + 𝑬𝑔𝑤𝑔

𝒚𝑔 = 𝑪𝑔𝒙𝑔
 (14)  

where 

𝑢𝑔 = ∆𝑃0 (15)  

𝑤𝑔 = ∆𝜔𝑏𝑢𝑠 (16)  

𝒚𝑔 = [∆𝜔𝑚 ∆𝑃𝑜𝑢𝑡]
T (17)  

𝒙𝑔 = [∆𝜔𝑚 ∆𝑃𝑜𝑢𝑡 𝒙𝑎
T]T (18)  

where the 𝑑 (𝑑 = 0, 1, 2…) dimension vector 𝒙𝑎 is the vector 

of additional state variables besides ∆𝜔𝑚  and ∆𝑃𝑜𝑢𝑡 . The 𝒙𝑎 

comes from additional terms such as an LPF or an integrator, 

thus it is not related to the basic VSG control. It can also include 

state variables of the turbine model of an SG or inner control 

loops of a multi-loop VSG. In several basic VSG controls, 𝒙𝑎 

may not exist (𝑑 = 0). 

The 𝒙𝑔 , 𝑨𝑔 , 𝑩𝑔 , 𝑬𝑔  and 𝑪𝑔  depend on the control in the 

“governor and virtual inertia” block.  For instance, for the NoD 

method, 

𝒙𝑔 = [∆𝜔𝑚 ∆𝑃𝑜𝑢𝑡]
T (19)  

𝑨𝑔 = [−
𝑘𝑝

𝐽𝜔0

−
1

𝐽𝜔0

𝐾 0

] (20)  

𝑩𝑔 = [
1

𝐽𝜔0

0]
T

 (21)  

𝑬𝑔 = [0 −𝐾]T (22)  

𝑪𝑔 = 𝑰2, (23)  

From (5), ignoring the PLL dynamics, the GC mode model 

of the ideal DWE method can be derived as 

𝑨𝑔 = [−
𝑘𝑝 + 𝐷

𝐽𝜔0

−
1

𝐽𝜔0

𝐾 0

] (24)  

𝑬𝑔 = [
𝐷

𝐽𝜔0

−𝐾]
T

, (25)  

where 𝒙𝒈, 𝑩𝒈 and 𝑪𝒈 are the same as those of the NoD method. 

However, in practice, the fast dynamic response of the PLL 

requires a large loop gain, which makes 𝜔̂𝑔  sensitive to the 

ripples in 𝑽𝑜𝑢𝑡. Therefore, the PLL in DWE method is usually 

tuned to have a moderate response, thus it cannot be neglected. 

If a typical PLL using 𝑑𝑞 transformation and a PI controller is 

applied, the GC mode model of the DWE method becomes 

𝒙𝑔 = [∆𝜔𝑚 ∆𝑃𝑜𝑢𝑡 ∆𝑥1_𝑝𝑙𝑙 ∆𝑥2_𝑝𝑙𝑙]T (26)  

𝑨𝑔 =

[
 
 
 
 
 
 −

𝑘𝑝

𝐽𝜔0

−
1

𝐽𝜔0

𝐷𝐾𝑝_𝑝𝑙𝑙
∗

𝐽

𝐷

𝐽𝜔0𝑇𝑖_𝑝𝑙𝑙

𝐾 0 0 0

0 0 −𝜔0𝐾𝑝_𝑝𝑙𝑙
∗ −

1

𝑇𝑖_𝑝𝑙𝑙

0 0 𝜔0𝐾𝑝_𝑝𝑙𝑙
∗ 0 ]

 
 
 
 
 
 

 (27)  

𝑩𝑔 = [
1

𝐽𝜔0

0 0 0]
T

 (28)  

𝑬𝑔 = [0 −𝐾 1 0]T (29)  

𝑪𝑔 = [𝑰2 𝟎2×2], (30)  

This PLL model is not considered in previous studies [11], [15]. 

Hereinafter, the DWE method ignoring the PLL is referred to 

as the ideal DWE method, and the one including the PLL is 

referred to as the DWE method. 

Similarly, the GC mode model of the DCL method can be 

obtained as 

𝒙𝑔 = [∆𝜔𝑚 ∆𝑃𝑜𝑢𝑡 ∆𝑃𝑜𝑢𝑡𝑓]T (31)  

𝑨𝑔 =

[
 
 
 
 
 −

𝑘𝑝

𝐽𝑑𝑐𝑙𝜔0

0 −
1

𝐽𝑑𝑐𝑙𝜔0

𝐾 0 0
𝐷𝑑𝑐𝑙𝐾

𝑇𝑓𝑑𝑐𝑙

1

𝑇𝑓𝑑𝑐𝑙

−
1

𝑇𝑓𝑑𝑐𝑙 ]
 
 
 
 
 

 (32)  

𝑩𝑔 = [
1

𝐽𝑑𝑐𝑙𝜔0

0 0]
T

 (33)  

𝑬𝑔 = [0 −𝐾 −
𝐷𝑑𝑐𝑙𝐾

𝑇𝑓𝑑𝑐𝑙
]

T

 (34)  

𝑪𝑔 = [𝑰2 𝟎2×1]. (35)  

As the GC mode model of the SF and SFLPF methods are 

already presented in [15], they are omitted in this paper. 

B. ISDG Mode Model 

It is straightforward that a DG operating in the ISDG mode 

can be considered as a single DG single load system as shown 

 
Fig. 3 GC mode model (single DG infinite bus model). 

 

 



in Fig. 4. It is noteworthy that this model can also be extended 

to multiple loads connected to different buses, as discussed in 

Part C of this section. In the single DG single load model, as 

there is no external voltage source, ∆𝜔𝑏𝑢𝑠  is no longer 

independent. Therefore, ∆𝜔𝑏𝑢𝑠 should be eliminated from the 

disturbance input. Equations (11) and (13) yield 

𝑤𝑔 = ∆𝜔𝑏𝑢𝑠 = ∆𝜔𝑚 −
1

𝐾

d∆𝑃𝑜𝑢𝑡

d𝑡
, (36)  

which can be used to eliminate ∆𝜔𝑏𝑢𝑠. However, it should be 

noticed that for all DGs, the row relative to ∆𝑃𝑜𝑢𝑡 in GC mode 

state-space equations is also obtained from (36). Therefore, this 

row should also be eliminated to avoid redundant equations. 

Moreover, in the ISDG mode, as the load power ∆𝑃𝑙𝑜𝑎𝑑 =
∆𝑃𝑜𝑢𝑡  is independent, it should be considered as the 

disturbance 𝑤𝑠. Therefore, the column related to ∆𝑃𝑜𝑢𝑡  in 𝑨𝑔 

becomes associated to 

𝑤𝑠 = ∆𝑃𝑙𝑜𝑎𝑑  (37)  

in the ISDG mode model.  
Consequently, the unified formula to derive the ISDG mode 

model from any giving GC mode model is 

{
𝒙𝑠̇ = 𝑨𝑠𝒙𝑠 + 𝑩𝑠𝑢𝑠 + 𝑬𝑠𝑤𝑠

𝑦𝑠 = 𝑪𝑠𝒙𝑠 + 𝐹𝑠𝑤𝑠
, (38)  

where 

𝑢𝑠 = ∆𝑃0 (39)  

𝑦𝑠 = ∆𝜔𝑚 (40)  

𝒙𝑠 = 𝒙′ +
1

𝐾
𝑬′∆𝑃𝑙𝑜𝑎𝑑  (41)  

𝑨𝑠 = 𝑨′ + [𝑬′ 𝟎(𝑑+1)×𝑑]T (42)  

𝑩𝑠 = 𝑩′ (43)  

𝑬𝑠 = 𝑨′′ −
1

𝐾
𝑨𝑠𝑬

′ (44)  

𝑪𝑠 = [1 𝟎1×𝑑] (45)  

𝐹𝑠 = −
𝐸(1)

′

𝐾
 (46)  

where 𝒙′ , 𝑩′  and 𝑬′  are obtained by eliminating the row 

related to ∆𝑃𝑜𝑢𝑡  from 𝒙𝑔 , 𝑩𝑔  and 𝑬𝑔 , respectively; 𝑨′  is 

obtained by eliminating both the row and column related to 

∆𝑃𝑜𝑢𝑡 from 𝑨𝑔; 𝑨′′ is obtained by eliminating the row related 

to ∆𝑃𝑜𝑢𝑡  from the column vector of 𝑨𝑔 related to ∆𝑃𝑜𝑢𝑡. 

C. IMDG Mode Model  

In this paper, the simplest case of the IMDG mode is 

considered, which is a two DGs single load system as shown in 

Fig. 5. Modeling of this model is quite important as it can help 

us to understand how multi DGs interact in an islanded 

microgrid. Moreover, if DG1 is modeled as a conventional 

power plant, this model becomes a weak-grid-connected model 

of DG2. Furthermore, if DG2 is considered as a cluster of 

IIDGs, this model can also be used to analyze a simplified high-

IIDG-penetration power system.  
It is noteworthy that in the field applications, it is likely that 

the loads are connected to different load buses, as shown in Fig. 

5(b). In this case, the values of equivalent output reactance 𝑋1 

and 𝑋2 should be adjusted according to the concerned load bus, 

as it is shown in the figure. That is to say, for the loading 

transition disturbance at different load buses, we will have 

different numerical model due to different values of 𝑋1 and 𝑋2. 

Nevertheless, the difference can be mitigated by applying 

comparatively large virtual reactance 𝑋𝑙𝑠1 and 𝑋𝑙𝑠2. Similarly, 

the ISDG mode model can also be extended to the case of multi 

load buses. 

Like the ISDG mode model, ∆𝜔𝑏𝑢𝑠  should be eliminated 

from the disturbance input. In the IMDG mode, equation (36) 

becomes  

∆𝜔𝑏𝑢𝑠 = ∆𝜔𝑚1 −
1

𝐾1

∙
d∆𝑃𝑜𝑢𝑡1

d𝑡
= ∆𝜔𝑚2 −

1

𝐾2

∙
d∆𝑃𝑜𝑢𝑡2

d𝑡
 (47)  

It should be noticed that in the IMDG mode,  

∆𝑃𝑙𝑜𝑎𝑑 = ∆𝑃𝑜𝑢𝑡1 + ∆𝑃𝑜𝑢𝑡2. (48)  

Equations (47)–(48) yield 

𝑤𝑔 = ∆𝜔𝑏𝑢𝑠 = −
1

𝐾1 + 𝐾2

∙
d∆𝑃𝑙𝑜𝑎𝑑

d𝑡

+
𝐾1

𝐾1 + 𝐾2

∆𝜔𝑚1 +
𝐾2

𝐾1 + 𝐾2

∆𝜔𝑚2. 

(49)  

Therefore, the IMDG mode model can be obtained by 

eliminating ∆𝜔𝑏𝑢𝑠  in the GC mode model of both DGs and 

adding (47) as an extra state equation, as shown in (50). 

{
𝒙𝑚̇ = 𝑨𝑚𝒙𝑚 + 𝑩𝑚𝒖𝑚 + 𝑬𝑚𝑤𝑚

𝒚𝑚 = 𝑪𝑚𝒙𝑚 + 𝑭𝑚𝑤𝑚
 (50)  

 

 
(a) 

 

 
(b) 

Fig. 5 (a) IMDG mode model (two DGs single load model) and (b) its extension 
considering multi load buses. 

 

 

 
Fig. 4 ISDG mode model (single DG single load model). 

 
 



where 

𝒖𝑚 = [∆𝑃0 1 ∆𝑃0 2]
T (51)  

𝑤𝑚 = ∆𝑃𝑙𝑜𝑎𝑑  (52)  

𝒚𝑚 = [∆𝜔𝑚1 ∆𝜔𝑚2 ∆𝑃𝑜𝑢𝑡1 ∆𝑃𝑜𝑢𝑡2]
T (53)  

𝒙𝑚 =

[
 
 
 
 
 
 𝒙1

′ +
1

𝐾1 + 𝐾2

𝑬1
′ ∆𝑃𝑙𝑜𝑎𝑑

𝒙2
′ +

1

𝐾1 + 𝐾2

𝑬2
′ ∆𝑃𝑙𝑜𝑎𝑑

𝐾2

𝐾1 + 𝐾2

∆𝑃𝑜𝑢𝑡1 −
𝐾1

𝐾1 + 𝐾2

∆𝑃𝑜𝑢𝑡2]
 
 
 
 
 
 

 (54)  

𝑨𝑚 = [

𝑨𝑚11 𝑨𝑚12 𝑨1
′′

𝑨𝑚21 𝑨𝑚22 −𝑨2
′′

𝑨𝑚31 𝑨𝑚32 0
] (55)  

𝑩𝑚 = [

𝑩1
′ 𝟎(𝑑+1)×1

𝟎(𝑑+1)×1 𝑩2
′

0 0

] (56)  

𝑬𝑚 =

[
 
 
 
 
 
 

1

𝐾1 + 𝐾2

(𝐾1𝑨1
′′ − 𝑨𝑚11𝑬1

′ − 𝑨𝑚12𝑬2
′ )

1

𝐾1 + 𝐾2

(𝐾2𝑨2
′′ − 𝑨𝑚21𝑬1

′ − 𝑨𝑚22𝑬2
′ )

−
1

𝐾1 + 𝐾2

(𝑨𝑚31𝑬1
′ + 𝑨𝑚32𝑬2

′ )
]
 
 
 
 
 
 

 (57)  

𝑪𝑚 =

[
 
 
 
 
[1 𝟎1×𝑑] 𝟎1×(𝑑+1) 0

𝟎1×(𝑑+1) [1 𝟎1×𝑑] 0

𝟎1×(𝑑+1) 𝟎1×(𝑑+1) 1

𝟎1×(𝑑+1) 𝟎1×(𝑑+1) −1]
 
 
 
 

 (58)  

𝑭𝑚 =

[
 
 
 
 
 
 
 
 −

1

𝐾1 + 𝐾2

𝐸1(1)
′

−
1

𝐾1 + 𝐾2

𝐸2(1)
′

𝐾1

𝐾1 + 𝐾2

𝐾2

𝐾1 + 𝐾2 ]
 
 
 
 
 
 
 
 

 (59)  

where 

𝑨𝑚11 = 𝑨1
′ + [

𝐾1

𝐾1 + 𝐾2

𝑬1
′ 𝟎(𝑑+1)×𝑑] (60)  

𝑨𝑚12 = [
𝐾2

𝐾1 + 𝐾2

𝑬1
′ 𝟎(𝑑+1)×𝑑] (61)  

𝑨𝑚21 = [
𝐾1

𝐾1 + 𝐾2

𝑬2
′ 𝟎(𝑑+1)×𝑑] (62)  

𝑨𝑚22 = 𝑨2
′ + [

𝐾2

𝐾1 + 𝐾2

𝑬2
′ 𝟎(𝑑+1)×𝑑] (63)  

𝑨𝑚31 = [
𝐾1𝐾2

𝐾1 + 𝐾2

𝟎1×𝑑] (64)  

𝑨𝑚32 = [−
𝐾1𝐾2

𝐾1 + 𝐾2

𝟎1×𝑑] (65)  

D. Remarks 

The proposed formulas can be easily realized in commercial 

mathematical computing software such as MATLAB so that 

the ISDG and IMDG mode models can be generated 

automatically with a given GC mode model. This significantly 

facilitates the modeling and design of multi-operation-mode 

DGs. 

To better interpret the reason why each mode has a different 

model, the realized block diagrams of the state-space models 

of all modes are illustrated in Fig. 6. The most important 

difference is in existence of an infinite bus in the GC mode, 

whose frequency is independent of the state variables, thus 

∆𝜔𝑏𝑢𝑠 should be considered as a disturbance. Contrarily, in the 

islanded modes, bus frequency becomes state-dependent due to 

the absence of infinite bus, thus ∆𝜔𝑏𝑢𝑠  should be removed 

from the disturbances. Meanwhile, as there is no external 

power generation, load power determines the power generation 

of the system, thus ∆𝑃𝑙𝑜𝑎𝑑  becomes a disturbance in these 

modes.  
By comparing the state vector of the described modes shown 

in Fig. 6, we notice that the state variable related to ∆𝑃𝑜𝑢𝑡  in 

the GC mode model is disappeared in the ISDG mode model. 

This reduces the number of state variables from 2 + 𝑑 to 1 +
𝑑. As shown in (36), the differential equation related to the state 

∆𝑃𝑜𝑢𝑡  is used to eliminate ∆𝜔𝑏𝑢𝑠  from the disturbances. 

Therefore, the number of independent differential equations is 

reduced by one, and the new state variables in the ISDG mode 

model become a linear combination of ∆𝑃𝑙𝑜𝑎𝑑(= ∆𝑃𝑜𝑢𝑡) and 

the state variables in the GC mode model. As for the IMDG 

mode model, since the reduction of independent differential 

equations due to the elimination of ∆𝜔𝑏𝑢𝑠 does not need to be 

repeated for each DG, the number of state variables in the 

IMDG mode model is 𝑛(2 + 𝑑) − 1 . Therefore, 𝑛 − 1  new 
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(c) 

Fig. 6 Block diagrams of (a) the GC mode, (b) the ISDG mode and (c) the 

IMDG mode state-space models. 
 

 



state variables are introduced to the IMDG mode model 

compared to individual 𝑛  ISDG mode models. Physically, 

these new 𝑛 − 1  state variables are related to the 

synchronization between the 𝑛 DGs. For the studied case (𝑛 =
2), one additional state variable appears as shown in Fig. 6(c).  

It is noteworthy that the presented models do not include the 

detailed differential equations of the LCL filter(s), and (11) is 

a linearized quasi-static approximation for analyzing relatively 

slow dynamics [44]. Besides, although it is not the case in this 

paper, some VSG control schemes have inner voltage and 

current control loops. Including these complete equations will 

add new state variables in 𝒙𝑎; however, the resulted poles are 

generally much faster than the dominant poles discussed in this 

paper. The latter are generally far below fundamental 

frequency owing to the inertial feature of VSG, as shown in the 

next section. Therefore, for the purpose of this paper, including 

these equations will only complicate the model and introduce 

non-dominant poles, whereas the dominant poles will be 

marginally influenced. Nevertheless, if the proposed modeling 

method is applied to stability study, it is better to include all 

these equations during GC mode modeling to make a more 

complete model. Even in this case, the proposed formulas for 

deriving ISDG and IMDG mode models can still be applied. 

It is also noteworthy that the presented linearized models are 

approximated models of the real nonlinear systems based on 

(11), and some specific methods also introduce additional 

nonlinearities, e.g., the using of PLL in DWE method. These 

nonlinearities affect the accuracy of the analytical prediction; 

nevertheless, as it is discussed later in Section V, the resulted 

errors are generally acceptable. 

IV. CLOSED-LOOP POLE ANALYSES 

A. Distribution and Correlation of Poles in Each Mode 

In this section, the proposed unified modeling method is 

used to analyze the distribution of closed-loop poles of each 

operation mode for different VSG methods, to find the intrinsic 

correlation between operation modes independent from the 

control method. The NoD, ideal DWE, DWE, DCL, SF and 

SFLPF methods are discussed. Their GC mode models are 

presented in Section III-A, and the ISDG mode and IMDG 

mode models are derived through the proposed formulas shown 

in Section III-B and C.  
In order to perform a comparative study, the GC mode 

dominant poles of all methods except the NoD method are 

assigned to the same locations as shown in (66).  

𝜆𝑔1,2 = 𝜔𝑛𝑒𝑗(𝜋±cos−1 𝜁) = √
𝐾

𝐽𝜔0

𝑒𝑗(𝜋±cos−1 0.9) (66)  

Pole assignment of each method is discussed in [40] thus is not 

repeated in this paper. The resulted parameters are shown in 

Table I, which are normalized with individual power ratings to 

facilitate parameter design of DGs as follows. 

𝑀∗ = 𝐽𝜔0
2/𝑆𝑏𝑎𝑠𝑒  (67)  

𝑘𝑝
∗ = 𝑘𝑝𝜔0/𝑆𝑏𝑎𝑠𝑒  (68)  

𝑘𝑥𝜔
∗ = 𝑘𝑥𝜔𝜔0/𝑆𝑏𝑎𝑠𝑒  (69)  

𝐷∗ = 𝐷𝜔0/𝑆𝑏𝑎𝑠𝑒  (70)  

𝜌𝐴 = 𝐽𝐴/𝐽 (71)  

The closed-loop poles of the GC mode, the ISDG mode, and 

the IMDG mode are shown in Figs. 7(a), 7(b), and 7(c), 

respectively. In Fig. 7(a), it is clear that 𝜆𝑔1,2 of the dedicated 

damping methods, which reflect the VSG feature, are placed to 

the desired location shown in (66), whereas those of the NoD 

method have small damping ratio. This indicates that dedicated 

damping methods have much better dynamics than the NoD 

method. It is noteworthy that the DWE, DCL, SF, and SFLPF 

TABLE I 

VSG PARAMETERS 

Common Parameters 

Parameter Value Parameter Value Parameter Value 

𝑉𝑏𝑎𝑠𝑒 200 V 𝜔0 377 rad/s 𝑋∗ 0.3 pu 

𝑆𝑏𝑎𝑠𝑒1 5 kVA 𝑃0
∗ 1 pu 𝑀∗ 8 s 

𝑆𝑏𝑎𝑠𝑒2 2.5 kVA 𝑘𝑝
∗  20 pu 𝜁 0.9 

Parameters of the DWE Method 

𝐷∗ 156 pu 𝐾𝑝_𝑝𝑙𝑙
∗  0.1 pu 𝑇𝑖_𝑝𝑙𝑙 0.5 s 

Parameters of the DCL method 

𝜌𝑑𝑐𝑙 1.18 𝐷𝑑𝑐𝑙  0.139 s 𝑇𝑓𝑑𝑐𝑙 7.69×10-3 s 

Parameters of the SF Method 

𝜌𝑠𝑓 0.130     

𝑘𝑥𝜔
∗  103 pu 𝑘𝑥𝑝 1.00 𝑘𝑥𝑖 14.3 s-1 

Parameters of the SFLPF Method 

𝜌𝑠𝑓𝑙𝑝𝑓 0.0816 𝑇𝑓𝑠𝑓 6.37×10-3 s   

𝑘𝑥𝜔
∗  114 pu 𝑘𝑥𝑝 1.00 𝑘𝑥𝑖 13.9 s-1 

 
TABLE II 

DISTRIBUTION OF CLOSED-LOOP POLES IN FIG. 7 

Method 
GC Mode ISDG Mode 

VSG-Based Additional VSG-Based Additional 

NoD 
𝜆𝑔1(NoD), 

𝜆𝑔2(NoD) 
null 𝜆𝑠1 null 

Ideal DWE 𝜆𝑔1, 𝜆𝑔2 null 𝜆𝑠1 null 

DWE 𝜆𝑔1, 𝜆𝑔2 
𝜆𝑔3(DWE), 

𝜆𝑔4(DWE) 

𝜆𝑠1_1(DWE), 

𝜆𝑠1_2(DWE) 
𝜆𝑠2(DWE)* 

DCL 𝜆𝑔1, 𝜆𝑔2 𝜆𝑔3 𝜆𝑠1 𝜆𝑠2 

SF 𝜆𝑔1, 𝜆𝑔2 𝜆𝑔3 𝜆𝑠1 𝜆𝑠2 

SFLPF 𝜆𝑔1, 𝜆𝑔2 𝜆𝑔3, 𝜆𝑔4(SFLPF) 𝜆𝑠1 
𝜆𝑠2(SFLPF), 

𝜆𝑠3(SFLPF) 

Method 

IMDG Mode 

VSG-Based 
Counterpart in 

GC/ISDG 
Additional 

Counterpart 

in GC/ISDG 

NoD 

𝜆𝑚1, 

𝜆𝑚2(NoD), 

𝜆𝑚3(NoD) 

𝜆𝑠1, 𝜆𝑔1(NoD), 

𝜆𝑔2(NoD) 
null null 

Ideal DWE 𝜆𝑚1, 𝜆𝑚2, 𝜆𝑚3 𝜆𝑠1, 𝜆𝑔1, 𝜆𝑔2 null null 

DWE 

𝜆𝑚1_1(DWE), 

𝜆𝑚1_2(DWE),

𝜆𝑚2, 𝜆𝑚3 

𝜆𝑠1_1(DWE), 

𝜆𝑠1_2(DWE),  

𝜆𝑔1, 𝜆𝑔2 

𝜆𝑚4(DWE), 

𝜆𝑚5(DWE), 

𝜆𝑚6(DWE), 

𝜆𝑔3(DWE), 

𝜆𝑔4(DWE), 

𝜆𝑠2(DWE), 

DCL 𝜆𝑚1, 𝜆𝑚2, 𝜆𝑚3 𝜆𝑠1, 𝜆𝑔1, 𝜆𝑔2 𝜆𝑚4, 𝜆𝑚5 𝜆𝑔3, 𝜆𝑠2 

SF 𝜆𝑚1, 𝜆𝑚2, 𝜆𝑚3 𝜆𝑠1, 𝜆𝑔1, 𝜆𝑔2 𝜆𝑚4, 𝜆𝑚5 𝜆𝑔3, 𝜆𝑠2 

SFLPF 𝜆𝑚1, 𝜆𝑚2, 𝜆𝑚3 𝜆𝑠1, 𝜆𝑔1, 𝜆𝑔2 

𝜆𝑚4, 

𝜆𝑚5(SFLPF), 

𝜆𝑚6(SFLPF), 

𝜆𝑚7(SFLPF) 

𝜆𝑔3, 

𝜆𝑠2(SFLPF), 

𝜆𝑠3(SFLPF), 

𝜆𝑔4(SFLPF) 

*One of the additional poles becomes conjugate with the VSG-based pole. 

 
 



methods have additional poles as listed in Table II. The 

additional poles introduced by 𝒙𝑎 in the DCL, SF, and SFLPF 

methods are non-dominant; however, those in the DWE 

method, introduced by the PLL, are quite close to the origin, 

thus they may affect the dynamics of the DWE method.  
In [15], it is claimed that assuming 𝐾 is fixed, as long as 𝜔𝑛 

of 𝜆𝑔1,2  is kept the same, the equivalent inertia remains 

constant as indicated by (66). However, this conclusion is not 

verified in the ISDG mode or IMDG mode. As it is shown later 

in Section V, the dominant pole in the ISDG mode 𝜆𝑠1 

determines the ROCOF and the time constant of frequency 

transients, thus it is a very important index of inertia support 

ability. In [8], it is pointed out that 𝜆𝑠1 of the NoD method and 

the ideal DWE method is 

𝜆𝑠1 = −𝑘𝑝/(𝐽𝜔0) (72)  

As shown in Fig. 7(b), (72) is verified. However, 𝜆𝑠1  of the 

other methods do not overlap this desired one, implying that 

the equivalent inertia of these methods in the ISDG mode is not 

exactly equal to 𝐽. This is because in the case that additional 

state variables exist, these additional state variables also affect 

the dominant pole when the mode transfer formulas in Section 

III-B are applied. However, as long as the additional poles in 

the GC mode are non-dominant poles, their impact is quite 

slight. Therefore, as shown in Fig. 7(b) and synthesized in 

Table II, 𝜆𝑠1 of the DCL, SF and SFLPF methods are still close 

to the desired one, and their additional poles in the ISDG mode 

remains non-dominant. On the contrary, 𝜆𝑠1  of the DWE 

method is significantly influenced and splits into a pair of 

conjugated poles 𝜆𝑠1_1 , 𝜆𝑠1_2  with an additional pole, which 

results in a slower response with overshoot, as shown in the 

next section. This implies that the presence of the PLL 

deteriorates the performance of the DWE method in the ISDG 

mode. To summary, the equivalent inertia design using the GC 

mode model based on (66) is also valid in the ISDG mode, as 

long as the non-dominant poles of the GC mode model are 

negligible. 

By comparing Figs. 7(a) and 7(b), especially the dominant 

poles 𝜆𝑔1,2 and 𝜆𝑠1, it can be noticed that the dynamics of the 

GC mode and ISDG mode of a multi-operation-mode DG are 

quite different. As long as the non-dominant poles of the GC 

mode model are negligible, no matter which VSG control 

method is applied, the GC mode model is a second-order 

system, and the ISDG mode model is a first-order system, and 

their respective time constants 𝜏𝑔, 𝜏𝑠 can be quite different as 

shown in (73)–(74). The reason for this reduced order is 

discussed previously in Section III-D. 

𝜏𝑔 =
1

|RE(𝜆𝑔1,2)| 
=

1

𝜁
√

𝐽𝜔0

𝐾
 (73)  

𝜏𝑠 = |
1

𝜆𝑠1

| =
𝐽𝜔0

𝑘𝑝

 (74)  

Generally, small 𝜏𝑔 and large 𝜁 are preferred for fast and non-

oscillatory power response in the GC mode, and large 𝜏𝑠  is 

preferred for slow frequency fluctuation in the ISDG mode. 

From (73)–(74), as 𝑘𝑝 cannot be tuned freely, large 𝐽, 𝜁, and 

small 𝑋  are preferable. As shown in Fig. 7(a), large 𝜁  is 

available through a proper closed-loop assignment. It is 

noteworthy that 𝑋 should not be too small, because the output 

impedance of DG is preferred to be inductive in order to ensure 

the power decoupling between active and reactive power.  
In the IMDG mode pole plot shown in Fig. 7(c), the same 

normalized parameters in Table I are applied to both DGs. This 

is referred to as the parameter matching case in this paper. In 

this case, we found that the IMDG mode poles are a simple 

assembly of those of GC mode and ISDG mode. As shown in 

Fig. 7 and concluded in Table II, this important conclusion is 

valid for both dominant and non-dominant poles of all 

discussed methods. For example, the dominant poles of any 

VSG control in the IMDG mode 𝜆𝑚1,2,3 can be obtained from 

the GC mode and the ISDG mode as 

{
𝜆𝑚1 = 𝜆𝑠1

𝜆𝑚2,3 = 𝜆𝑔1,2
. (75)  

This phenomenon can be interpreted as follows. GC mode 

poles illustrate how the DG is synchronized to another voltage 

source (an infinite bus), ISDG mode poles imply how the IIDG 

forms a grid by itself. The IMDG mode is also a self-formed 

grid as the ISDG mode, and meanwhile, a synchronizing effect 

between two DGs also exists. Therefore, it is comprehensible 

that one of the IMDG mode poles shows a self-formed-grid 

  
(a) 

 

  
(b) 

 

  
(c) 

Fig. 7 All closed-loop poles (left side) and zoom-in of dominant poles (right 

side) of (a) the GC mode, (b) the ISDG mode and (c) the IMDG mode. 

 
 



feature and the others illustrate a synchronizing feature.  
This new finding implies that the IMDG mode behaviors 

cover those of GC and ISDG modes, thus both time constants 

𝜏𝑔 and 𝜏𝑠 can be observed in the IMDG mode. Therefore, the 

design and testing of a multi-operation-mode DG can be 

focused on its IMDG mode. Moreover, (75) implies that 

existing equivalent inertia and damping design methods based 

on the GC mode model can be directly applied to the IMDG 

mode. As it is discussed in the next section, small 𝜏𝑔 is still 

preferred for fast power response, and large 𝜏𝑠 is still preferred 

for slow frequency fluctuation. It should be noticed that in the 

parameter mismatching case, the IMDG mode poles are 

determined by both DGs and are affected by parameter 

mismatching, thus they no longer perform as a simple assembly 

of the GC and ISDG modes poles. However, 𝜆𝑚1 and 𝜆𝑚2,3 are 

still related to 𝜆𝑠1  and 𝜆𝑔1,2  of each DG, respectively. 

Although it is difficult to find a generalized correlation like 

(75), a numerical solution can be easily obtained using the 

proposed unified modeling method.  

B. Sensitivity of the Closed-Loop Poles 

In order to investigate how the poles are affected by 

intentional or nonintentional parameter variation, two 

sensitivity studies are performed. As shown in (75), 𝜆𝑚1 and 

𝜆𝑚2  describe almost all important dynamics covering all the 

three operation modes; therefore, the following discussions are 

focused on these two poles. Parameters are the same as those 

in Table I, except that 𝑆𝑏𝑎𝑠𝑒2 is changed to 5 kVA to facilitate 

the interpretation of the parameter mismatching case.  
An intentional variation of of 𝐽1 and 𝐽2 by the manufacturer 

is considered in Fig. 8. In this case, the variation is applied to 

DG1 and DG2 equally, and all control methods are redesigned 

according to (66) to keep 𝜁 of 𝜆𝑔1(= 𝜆𝑚2) constant. Therefore, 

as shown in Fig. 8, 𝜁 of 𝜆𝑚2 is kept unchanged, except that the 

NoD method shows a decreasing 𝜁  because the absence of 

dedicated damping. This variation coincides with the 

expression shown in [15]. Meanwhile, 𝜁 of 𝜆𝑚1 also remains 

unchanged as 𝜆𝑚1 is a real pole except that of the DWE method. 

On the other hand, 𝜔𝑛 of both 𝜆𝑚1 and 𝜆𝑚2 increases while 𝐽1 

and 𝐽2  increase. The observed variation also well coincides 

with (66) and (72). 

In Fig. 9, we consider an unintentional mismatching of 𝑋1 

and 𝑋2 . According to Fig. 5(b), the IMDG mode model is 

affected by the variation of the location of loading disturbance. 

As the manufacturer cannot predict this variation, all the 

control parameters are kept unchanged. The horizontal axis of 

Fig. 9 indicates the % mismatching of 𝑋1 and 𝑋2, e.g., 10 % 

means 𝑋1 is increased by 10 % and 𝑋2 is decreased by 10 %. 

Fig. 9 shows that both 𝜆𝑚1 and 𝜆𝑚2 are barely affected by this 

reactance mismatching, except that 𝜔𝑛  of 𝜆𝑚2  slightly 

decreases while the mismatching increases. This result implies 

that the location of loading disturbance can be neglected in the 

pole analyses. However, as studied in [17], the reactance 

mismatching affects the zeros of the transfer functions from the 

input ∆𝑃𝑙𝑜𝑎𝑑 , thus it still has a considerable impact on the 

dynamic performance of IMDG mode especially during the 

period right after a loading transition, as shown later in Section 

V-C.  

 
Fig. 8 Sensitivity of dominant poles to variation of 𝐽1 and 𝐽2. 

 

 
Fig. 9 Sensitivity of dominant poles to mismatching of 𝑋1 and 𝑋2. 
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Fig. 10 Experimental testbed; (a) overview, and (b) circuit diagram. 

 
 

 



V. STEP RESPONSE ANALYSES AND EXPERIMENTAL 

VERIFICATION 

From the state-space equations of all operation modes 

obtained through the proposed unified formulas, 𝑮𝒄(𝑠)  and 

𝑮𝒅(𝑠) of each operation mode, which are the output transfer 

function matrix from the control inputs and the disturbance 

input, respectively, can be calculated as (76)–(77).  

𝑮𝒄(𝑠) = 𝑪(𝑠𝑰 − 𝑨)−1𝑩 (76)  

𝑮𝒅(𝑠) = 𝑪(𝑠𝑰 − 𝑨)−1𝑬 + 𝑭 (77)  

Thus, it is straightforward to analyze the responses of outputs 

during a given step change of an input.  
Since comparisons of analytical responses and experimental 

results in the GC mode are already studied in [40], in this paper, 

we focus on the ISDG and IMDG modes. Several case studies 

are discussed to understand how the closed-loop poles 

presented in Section IV affect dynamic response. The results 

are verified by experiments using the testbed shown in Fig. 10. 

The control parameters of both DGs are the same as those in 

Table I, if not otherwise specified. In the following studies, to 

focus on the behaviors of active power and frequency, the 

reactive power of the loads is set to about zero. Moreover, to 

clearly investigate the performance of the primary control, the 

secondary control to restore the frequency in an islanded 

microgrid [4] is not considered. Therefore, according to (2), 

steady state frequency deviation occurs as long as the load 

power (= 𝑃𝑖𝑛) is not equal to 𝑃0.  

A. Loading Transition in the ISDG Mode 

In this case, BK1 is closed and both BK2 and BK3 are open, 

and the load changes from 2.17 kW to 4.87 kW. The analytical 

responses and experimental results are shown in Fig. 11. It is 

demonstrated that the analytical responses are verified by the 

experimental results, except for some differences in the first 

milliseconds observed in the DWE method. This is because the 

PLL in the DWE method is also influenced by 𝑽𝑜𝑢𝑡 fluctuation 

caused by the loading transition, which is not considered in 

(26)–(30). Besides, the frequency of  𝑽𝑜𝑢𝑡  does not exactly 

equal to 𝜔𝑏𝑢𝑠  during transients. Moreover, as the PLL is 

nonlinear due to a trigonometric function, it is difficult to 

exactly predict its response using small-signal linearization. 

Similar phenomena can be observed in the analytical responses 

of the DWE method in the following case studies.  
As no oscillation mode appears in this case as shown in Fig. 

7(b), even the NoD method does not show any oscillation. Thus 

the responses shown in Fig. 11 are similar to a first-order 

response, and their time constants are quite close to 𝜏𝑠 shown 

in (74). This implies that the equivalent inertia of each method 

indicated by 𝜆𝑠1  in Fig. 7(b) is almost the same. The only 

exception is the DWE method, which shows a second-order 

response with overshoot. This unexpected performance is 

caused by the PLL which is well predicted by the analytical 

response shown in Fig. 11(a) and the given discussion on Fig. 

7(b). Besides, it can also be observed that the frequency of 

dedicated damping methods drops much faster than the NoD 

method in the first milliseconds. This implies that effective 

damping and the first stage ROCOF are in a trade-off relation. 

Nevertheless, this first stage drop does not affect the time 

constant of frequency fluctuation. 

B. Power Command Change in the IMDG Mode 

In this case, both BK1 and BK2 are closed and BK3 is open, 

and a 7.21 kW load is connected to the bus. The initial power 

command 𝑃0
∗  of both DGs are 1.0 pu, and that of DG1 is 

changed to 0.5 pu at 0 s. The analytical responses and 

experimental results of the parameter matching case are shown 

in Fig. 12. It is noteworthy that for the responses of 𝑃𝑜𝑢𝑡1 and 

𝑃𝑜𝑢𝑡2 in Fig. 12(a), the DCL method overlaps the DWE and 

ideal DWE methods, and the SFLPF method overlaps the SF 

method. Like the previous case, the analytical responses are 

well verified by the experimental results except for the first 

stage of the DWE method. Besides, there is a little difference 

in oscillation frequency and attenuation time constant of the 

NoD method. This is because accurate linearization of (11) 

requires recalculation of 𝐾 based on the operating point of the 

power angle 𝛿, and the latter is affected by the output active 

power. In the presented analytical results, for convenience, 𝐾 

is considered to be fixed based on the rated power as shown in 

(11). Nevertheless, this difference is not significant.  
Fig. 12 shows that the responses of DG frequency are similar 

to that of ISDG mode. This implies that the inertia support 

ability of VSG is mainly dependent on 𝜆𝑚1 . However, the 

oscillation in the NoD method implies that the responses 

related to 𝜆𝑚2,3 are also superposed. On the other hand, 𝜆𝑚2,3 

dominate the responses of DG power to power command 

change. These conclusions are valid for all discussed methods. 

It can be noticed that the SF and SFLPF methods are the best 

solutions among the studied methods, because they have an 

extra zero to optimize transient response [15]. As detailed 

comparisons between damping methods are discussed in [40], 

this topic is not further developed in this paper.  
Similar experiments for the parameter mismatching case are 

also performed. In this study, the parameters of DG2 are kept 

unchanged, whereas DG1 is redesigned to make 𝑀∗= 12 s and 

 

  
(a)                                                                                                                               (b) 

Fig. 11 Step responses during loading transition in the ISDG mode; (a) analytical results, and (b) experimental results. 

 



𝑋∗ = 0.6 pu, and the resulted parameters are shown in Table III. 

Again, as shown in Fig. 13, the analytical responses coincide 

with the experimental results except for the first stage of the 

DWE method. In this case, for all discussed methods, the 

impact of 𝜆𝑚1 also appears in responses of DG power, whereas 

it does not appear in Fig. 12. This is because, in the parameter 

 
(a)                                                                                                                               (b) 

Fig. 12 Step responses during power command change in the IMDG mode (parameter matching case); (a) analytical results, and (b) experimental results. 

 

 
(a)                                                                                                                               (b) 

Fig. 13 Step responses during power command change in the IMDG mode (parameter mismatching case); (a) analytical results, and (b) experimental results. 
 

 

 



matching case, 𝜆𝑚1  is canceled by a zero in the transfer 

functions 
∆𝑃𝑜𝑢𝑡𝑗

∆𝑃0𝑖
 (𝑖, 𝑗 = 1, 2), whereas this cancellation does not 

occur if the parameters are mismatched.  

C. Loading Transition in the IMDG Mode 

The circuit configuration of this case is the same as that of 

Part B, and a loading transition from 4.49 kW to 7.18 kW is 

investigated. As the parameter matching case is already studied 

in [15], [17], the parameter mismatching case is discussed in 

this paper as shown in Fig. 14. This figure shows that the 

analytical results resemble the experimental results, except for 

slight errors due to the approximation of 𝐾  and the PLL of 

DWE method which is discussed previously.  
For all discussed methods in this case, similarly to Figs. 12 

and 13, the responses of DG frequency shown in Fig. 14 depend 

mainly on 𝜆𝑚1, whereas the behaviors related to 𝜆𝑚2,3 are also 

observed. In the responses of DG power, same as Fig. 13, 

transients caused by both 𝜆𝑚1  and 𝜆𝑚2,3  can be observed. It 

can be noticed that the DG with smaller 𝑋 tends to share more 

initial power right after the event, whereas afterward, the DG 

with larger 𝐽  tends to share more transient power. Besides, 

unlike Fig. 12, the SF and SFLPF methods do not respond 

faster than other methods, because the above-mentioned 

additional zero of these methods only affect the transfer 

functions from the inputs ∆𝑃0 𝑖. In the parameter matching case 

as shown in [15], [17],  𝜆𝑚2,3 are cancelled by zeros in transfer 

function 
∆𝜔𝑚𝑖

∆𝑃𝑙𝑜𝑎𝑑
, and both 𝜆𝑚1 and 𝜆𝑚2,3 are cancelled by zeros 

in transfer function 
∆𝑃𝑜𝑢𝑡𝑖

∆𝑃𝑙𝑜𝑎𝑑
. As a result, for all discussed 

methods, the responses of DG frequency become exactly the 

same as the ISDG mode, and the responses of DG power 

become single steps. Owing to the simple and fast dynamic 

responses, generally, parameter matching is preferred in field 

applications.  

VI. TEST METHOD OF AN UNKNOWN VSG 

Based on the given discussions in Sections VI and V, a test 

method to identify an unknown VSG can be derived: First, 

make a loading transition test in the ISDG mode similar to that 

shown in Section V-A, to measure the droop coefficient 𝑘𝑝 and 

the equivalent moment of inertia 𝐽. It is well known that 𝑘𝑝 can 

be measured from the equation 

𝑘𝑝 = −
𝑃𝑜𝑢𝑡(∞) − 𝑃𝑜𝑢𝑡(0

−)

𝜔𝑚(∞) − 𝜔𝑚(0−)
 (78)  

where ∞ indicates the steady state and 0− indicates the initial 

 

 
(a)                                                                                                                               (b) 

Fig. 14 Step responses during loading transition in the IMDG mode (parameter mismatching case); (a) analytical results, and (b) experimental results. 

 

TABLE III 

DG1 PARAMETERS IN THE PARAMETER MISMATCHING CASE 

Common Parameters and Parameters of the DWE Method 

Parameter Value Parameter Value Parameter Value 

𝑋∗ 0.6 pu 𝑀∗ 12 s 𝐷∗ 120 pu 

Parameters of the DCL Method 

𝜌𝑑𝑐𝑙 1.18 𝐷𝑑𝑐𝑙  0.255 s 𝑇𝑓𝑑𝑐𝑙 1.46×10-2 s 

Parameters of the SF Method 

𝜌𝑠𝑓 0.134 𝑘𝑥𝜔
∗  80.1 pu 𝑘𝑥𝑖 7.83 s-1 

Parameters of the SFLPF Method 

𝜌𝑠𝑓𝑙𝑝𝑓 0.126 𝑘𝑥𝜔
∗  84.5 pu 𝑘𝑥𝑖 7.65 s-1 

*Parameters not specified are the same as those in Table I. 

 



state. Afterward, by measuring the transient time constant 𝜏𝑠, 𝐽 
can be calculated through (74). Here, it is better to measure 2𝜏𝑠 

by finding the 86.5% changing point [45], because Fig. 11 

shows that the dedicated damping terms accelerate the response 

before 𝜏𝑠, and this influence almost disappears at 2𝜏𝑠. Table IV 

shows the measured 𝑘𝑝 and 𝐽 using the data of Fig. 11(b). The 

results demonstrate that 1 ‰ and 10 % precision measurements 

are achieved for 𝑘𝑝 and 𝐽, respectively.  
Secondly, apply a step change in power command 𝑃0 in the 

GC mode and record the response of 𝑃𝑜𝑢𝑡 . It is well known that 

the damping ratio 𝜁 of a second-order system can be measured 

from the maximum percent overshoot, and the time constant 𝜏𝑔 

can be measured from the settling time [45], thus the 

synchronizing coefficient 𝐾  can be calculated through (73). 

Furthermore, the output reactance 𝑋 can be obtained from 𝐾 

through (11). However, it is noteworthy that the accuracy of 

the above calculation is quite limited, due to the nonlinearity of 

𝐾 and the approximation error in the identification of second-

order system. Therefore, in field applications, it is more 

practical to directly use the maximum percent overshoot and 

the settling time to evaluate the synchronizing performance. 

This method is quite simple and practical in the field 

applications. As the proposed test method is proved applicable 

for various types of VSG, it may become a favorite candidate 

in a future standard. 

VII. CONCLUSIONS 

In this paper, we propose a unified modeling method to 

obtain the ISDG mode and IMDG mode state-space models 

from that of GC mode. This method can be applied to any 

multi-operation-mode DG, including IIDGs using VSG or 

droop control and conventional SGs. Therefore, the proposed 

modeling method provides a universal mathematical tool for 

designing multi-operation-mode DGs. With the help of the 

proposed method, we give mathematical and physical 

interpretations for the different behaviors of grid-forming DGs 

in different operation modes and perform the closed-loop pole 

analyses and step response analyses for several existing VSG 

control methods. These analyses reveal the intrinsic differences 

and correlations of the dynamics of VSG-based IIDG between 

each operation mode. The sensitivity of poles is evaluated 

considering intentional or unintentional parameter variation. 

Moreover, we verify the step response analyses by 

experimental results and derive a test method to measure the 

parameters and evaluate the performance of an unknown VSG. 

Some important findings presented in these analyses are as 

follows. 

1) The equivalent inertia design using the GC mode model 

based on (66) is also verified in the ISDG mode and the 

IMDG mode, as long as the non-dominant poles of the GC 

mode model are negligible. 

2) For an IIDG, the GC mode is basically a second-order 

system, and its dominant poles mainly determine the 

response of active power. The ISDG mode is basically a 

first-order system, and its dominant pole mainly 

determines the inertia support ability. The GC mode 

system is preferred to be fast and non-oscillatory, and the 

ISDG mode system is preferred to be slow.  

3) In the parameter matching case of the IMDG mode, poles 

are the assembly of those of GC and ISDG modes. 

Moreover, certain dominant poles may be canceled by 

zeros. e.g., 𝜆𝑚1, which represents ISDG mode dynamics, 

is always canceled in DG power responses. Therefore, this 

case is preferable in field applications. 

4) The responses of the parameter mismatching case of the 

IMDG mode cover all dynamic features of IIDGs, as pole 

cancelation does not occur. Therefore, this case may be an 

interesting subject for control design and product testing. 

Transient power sharing in this case depends on the output 

reactance and inertia of the DGs. On the other hand, the 

location of dominant poles are not markedly affected by 

the parameter mismatch. 

5) The droop coefficient and moment of inertia can be 

accurately measured in the ISDG mode, and the oscillation 

feature can be evaluated in the GC mode.  

Our future works are subjected to extending the proposed 

formulas to the case of 𝑛 > 2  and to the voltage–reactive 

power control. 
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