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Abstract—This article presents a robust approach for the optimal
offering of joint wind/storage units in day-ahead nodal energy mar-
kets. The problem is formulated as a bilevel optimization problem
wherein the upper level, the joint unit profit is maximized and at the
lower level, the market is cleared by the system operator. The bilevel
optimization problem is effectively formulated as a mathematical
program with equilibrium constraints and converted to a trackable
mixed-integer linear program. Information gap decision theory
(IGDT) is implemented to manage the uncertainties caused by
wind generation and price uncertainty of the system. Two different
strategies are considered for optimal offering by IGDT includ-
ing risk-averse and opportunity seeker strategies. While in the
risk-averse approach conservative offers are submitted to assure
a minimum profit, in the opportunity seeker strategy there is an
optimistic view to uncertainties which can be exploited to increase
the gained profit.

Index Terms—Bilevel optimization, information gap decision
theory (IGDT), joint wind/storage unit, mathematical program
with equilibrium constraints (MPEC), optimal offering strategy.

NOMENCLATURE

A. Sets and Indices
G Set of generator buses.
W Set of wind unit buses.
D Set of load buses.
S Set of storage unit buses.
N Set of all buses.
L Set of lines.
T Set of hours.
t Index for hour.
dis Index for storage discharge.
ch Index for storage charge.
i Subscript for bus.
j Subscript for bus.
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B. Parameters
x Generation unit price offers.
b Demand price offers.
c Wind unit price offers.
γdis Discharge price offer for storage unit.
γch Charge price offer for storage unit.
γW,j Wind generation price offer of the joint unit.
PG,min
i Minimum generation of the unit at bus i.

PG,max
i Maximum generation of the unit at bus i.

PD,min
i Minimum demand of unit at bus i.

PD,max
i Maximum demand of unit at bus i.

PW,max
i Maximum generation of wind unit at bus i.

PWj,max
i Maximum generation of wind generation of the joint

unit at bus i.
PS,min
i,dis Minimum discharge power of storage unit at

bus i.
PS,max
i,dis Maximum discharge power of storage unit at

bus i.
PS,min
i,ch Minimum charge power of storage unit at bus i.

PS,max
i,ch Maximum charge power of storage unit at bus i.

Emin Minimum stored energy.
Emax Maximum stored energy.
Cij Maximum line flow for the line between bus i and

bus j.

C. Variables
PG
i Generation of the unit at bus i.

PD
i Demand of unit at bus i.

PW
i Wind generation at bus i.

PWj
i Wind generation of the joint unit at bus i.

PS
i,dis Storage joint unit discharge power at bus i.

PS
i,ch Storage joint unit charge power at bus i.

sdis Storage joint unit discharge state.
sch Storage joint unit charge state.
E Storage joint state of charge.
δi Angle at bus i.
PPmax

dis (t) Positive auxiliary variable.
PPmin

dis (t) Positive auxiliary variable.
PPmax

ch (t) Positive auxiliary variable.
PPmax

ch (t) Positive auxiliary variable.
λi Locational marginal price.
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I. INTRODUCTION

A FTER the liberalization of electricity markets in several
countries since 1990, high consuming loads have pur-

chased energy through bilateral contracts [1]. Other generation
companies and distribution companies can handle their electric-
ity trading in two different market designs including the pool
model and exchange model. For the pool model, the electricity
trading market is cleared through a pool where the generation
and demand sides submit their offers and optimized decisions are
applied. This model imitates the conventional vertical integrated
system. This market is cleared for day ahead [1]. In addition to
day-ahead markets, intraday markets all also practiced in several
grids where the participants find the chance to modify their offers
and the initial schedule [2]. Finally, for the energy, there is a
real-time market where the generation dispatches and the price
of energy are determined for the operating day. In addition to en-
ergy markets, ancillary service markets are designed to support
the reliable transmission of energy between the producers and
the consumers [3]. Many types of research have been conducted
on clearing day-ahead energy markets considering wind [4] and
energy storage units [5].

In the past decade, there has been a salient growth of installing
and providing power by renewable energy, particularly wind en-
ergy [6]. Also, policies are regulated to encourage investments in
wind farms and facilitate wind generation contribution in power
markets [7]. However, due to the uncertainty of generation by
wind power producers, they cannot participate in power markets
similar to conventional units. Therefore, to take part in electricity
markets, three different approaches, including participating in
short-term markets, joint operation with flexible sources, and
wind prediction with lower errors, are proposed [8]. Energy stor-
age systems are among controllable devices that can be exploited
to mitigate wind generation volatility and interruption. Although
several wind farms and energy storage systems are subsidized
and funded partially or totally by governments, appropriate
strategies have to be developed for private owners to compete in
power markets to maximize their benefit [9]. The joint operation
of a wind farm and a storage system has been studied in [10] for
three different markets consisting of day-ahead, intraday, and
real-time markets. In this article, penalties are considered for
drifting from the prescheduled generation. In [11], a stochastic
programming approach is presented for the optimal offering
of large-scale storage systems in energy and reserve markets.
In [12], a framework for managing imbalances of wind farms
utilizing storage systems with the goal of profit maximization is
provided. In [13], the benefits of price-quantity bidding instead
of quantity only bidding are shown.

In all of the above-mentioned references, the optimal offering
problem is considered as a single-stage optimization problem
without considering the actions of other participants and the
market-clearing procedure. In [9], a linearized model for the
optimal offering of large-scale geographically dispersed storage
systems is presented. In [14], the annual arbitrage of a storage
system is studied in a bilevel optimization model. An equilib-
rium problem with equilibrium constraints (EPEC) is introduced
in [15] for the participation of multiple storage systems in a

day-ahead market. In [16], the authors show that profit max-
imization of a storage unit can be contradictory with social
welfare since the storage system tries to resume price volatility.
Also, the market equilibrium for generation units, wind, and
storage systems is studied in [17].

Few works of literature consider the uncertainties of various
parameters for the bilevel optimal offering of joint wind/storage
systems. In [18], a stochastic bilevel optimal offering approach
is proposed for the participation of a storage system in energy
and reserve markets which considers the net load uncertainty.
Also, a stochastic programming approach is applied in [19] to
handle the uncertainties of a virtual power plant. However, in
this article, the line flow constraints are not considered. Besides,
to utilize stochastic programming, statistical information must
be available to generate the scenarios. Also, by increasing the
number of scenarios to obtain a more accurate solution, the
computational burden increases. Robust optimization has been
used in [20] and [21] for the optimal bidding of virtual power
plants and in [22], for the optimal offering of a compressed air
energy storage system. Nevertheless, the formulation provided
is a single-level optimization model that does not consider the
lower level problem of clearing the energy market. A hybrid
stochastic/IGDT formulation is proposed in [23] for an energy
hub in a day-ahead market. Nonetheless, this article also does
not consider the lower level and deals with the problem as a
single-level optimization problem.

To reliably preserve a system’s robust performance con-
fronting with associated severe uncertainty margins while the
required data are missing or not informative, information gap
decision theory (IGDT) can be proposed as a simple, nonproba-
bilistic, and exact risk-hedging decision-making portfolio. The
cornerstone of the IGDT uncertainty handling paradigm is to
effectively model the discrepancy between what is known and
what is expected to be known. In other words, procuring tractable
robust solutions with reasonable computational efforts without
dependency on the uncertainty distribution or membership func-
tions leads the IGDT to be an attractive risk-aware methodology
that could be utilized by system operators [24], [25]. Accord-
ingly, the movement of the research toward applying the IGDT
as a robust optimizer to the power system studies is uplifting.
For example, the proficiency of the IGDT has been appraised
in the microgrid bidding strategy [26], power system voltage
control [27], hierarchical frequency management in smart grids
[28], storage-based unit commitment [29], and several others in
recent years.

In this article, a bilevel optimal offering approach is presented
for a joint wind farm–storage operating unit. In [30], various
bilevel optimization problems and various approaches for solv-
ing them are reviewed. Various approaches have been introduced
in recent research for solving bilevel optimization problems. In
[31], a nested evolutionary scheme is used to solve a bilevel
optimization problem. In [32], a Karush–Kuhn–Tucker (KKT)
proximity measure is presented as a method for dealing with
bilevel problems. For nonlinear bilevel optimization approaches,
a penalty method with a trust-mechanism region is provided in
[33]. Also, several new optimization models for power system
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problems are presented based on bilevel optimization. In [34],
a bilevel optimization model is defined for the cyber-attack line
overloading problem. Smart building connections to grids are
modeled in [35] based on a bilevel optimization framework.
To obtain a single-level objective, KKT conditions are written
for the lower level optimization problem, which leads to math-
ematical programming with equilibrium constraints (MPEC)
formulation. In the upper level, the profit is maximized ac-
cording to the operational constraints of the storage system
and the wind farm. In the lower level, the market-clearing
problem is solved according to the submitted prices by gen-
eration units, wind farms, and the joint wind generation–storage
unit.

According to the knowledge of the authors, an IGDT
model that considers the uncertainties including wind gener-
ation, prices, and load concurrently is not developed for the
MPEC optimal offering problem of a joint wind/storage unit.
The main contributions of this article can be summarized as
follows.

1) An MPEC modeled is presented for the joint operation of
a wind farm and a storage unit. Various linearization tech-
niques have been implemented to this problem to tackle
different types of nonlinearity and obtain a linearized
formulation.

2) A risk-averse strategy based on IGDT is presented for
assuring a minimum amount of profit when the decision-
maker has a pessimistic view of uncertain parameters
including wind generation and submitted prices. Besides,
an opportunity seeker strategy is also introduced for the
bilevel optimal offering problem.

3) A multivariable IGDT scheme is developed for the si-
multaneous optimization of various uncertain variables
deviation.

The remainder of this article is organized as follows. In
Section II, problem model and formulation of the bilevel optimal
offering of the joint unit are presented. Section III presents the
IGDT method and the implementation to the optimal bidding
problem of the joint unit. Numerical results and simulations
are illustrated in Section IV. Finally, related conclusions are
expressed in Section V.

II. PROBLEM FORMULATION

In this article, strategic offers for a day-ahead market are
submitted to the independent system operator (ISO) by the joint
operating unit in a hierarchical structure. In the upper level,
the joint unit, including wind farm and energy storage system,
submits generation, charge, and discharge offers for each hour to
the lower level, i.e., the ISO or market operator. The ISO not only
receives offers from the joint unit, but also from other generation
units, wind farms, and load aggregators. In the upper level, the
optimization problem is solved to maximize the profit of the
joint generation unit considering operational constraints of the
storage system and limitations of wind generation. The lower
level, which is the economic dispatch procedure, is regarded as
a problem to minimize operating costs.

A. Mathematical Modeling

As mentioned, in the upper level, the profit maximization
problem is solved according to

max
∑

t∈T
λi (t)

(
PWj
i (t) + PS

i,dis (t)− PS
i,ch (t)

)
∀i

∈ S, ∀i ∈ Wj (1)

sch (t) + sdis (t) ≤ 1 (2)

Pmin
ch . sch (t) ≤ Pi,ch (t) ≤ Pmax

ch . sch (t) (3)

Pmin
dis . sdis (t) ≤ Pi,dis (t) ≤ Pmax

dis . sdis (t) (4)

E (t+ 1) = E (t) + Pi,ch (t) .Δt− Pi,dis (t) .Δt (5)

Emin ≤ E (t) ≤ Emax (6)

0 ≤ PWj
i (t) ≤ PWj

max (7)

PPmax
dis (t) ≤ Pmax

dis . sdis (t) (8)

Pmin
dis . sdis (t) ≤ PPmin

dis (t) (9)

PPmax
ch (t) ≤ Pmax

ch . sch (t) (10)

Pmin
dis . sch (t) ≤ PPmin

ch (t) . (11)

In (1), the revenue of the joint generation unit is maximized
according to the price of the bus that the joint unit is installed.
Equation (2) prevents the simultaneous operation of the storage
system in the charge and discharge state. In (3) and (4), the
charge and discharge power are limited. The state of charge of
the storage system is specified by (5) for each hour. Moreover,
the amount of stored energy is limited by (6). Finally, the wind
generation of the joint unit is constricted by (7). Equations (8)–
(11) show the limitations for auxiliary variables that are used in
the lower level problem for the storage system to avoid using
binary variables in the lower level problem.

In addition to operational constraints, in the lower level, the
economic dispatch problem is solved according to the received
offers as indicated in (12)–(20) in the following:

min
∑

t∈T

[
∑

i∈G
xG
i (t) . PG

i (t)−
∑

d∈D
bdi (t) . P

D
i (t)

+
∑

i∈W
cWi (t)PW

i (t) + γWj
i (t)PWj

i (t)

+ γdis (t) . P s
i,dis (t) −γch (t) . P s

i,ch (t)

]
(12)

PG
i (t)− PD

i (t) + PW
i (t) + PWj

i (t) + Pi,dis (t)− Pi,ch (t)

=
∑

j

Hij (δi (t)− δj (t)) : λi (t) (13)

PG,min
i ≤ PG

i (t) ≤ PG,max
i : αG

i,min (t) , α
G
i,max (t) (14)

PD,min
i ≤ PD

i (t) ≤ PD,max
i : αD

i,min (t) , α
D
i,max (t) (15)

PW,min
i ≤ PW

i (t) ≤ PW,max
i : αW

i,min (t) , α
W
i,max (t) (16)
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0 ≤ PWj
i (t) ≤ PWj,max

i : αWj
i,min (t) , α

Wj
i,max (t) (17)

PPmin
dis (t) ≤ PS

i,dis (t) ≤ PPmax
dis (t) : αS,dis

min (t) , αS,dis
max (t)

(18)

PPmin
ch (t) ≤ PS

i,ch (t) ≤ PPmax
ch (t) : αS,ch

min (t) , αS,ch
max (t)

(19)

− Cij ≤ Hij (δi − δj) ≤ Cij : αL
i,j,min (t) , α

L
i,j,max (t) .

(20)

In these relations, (12) minimizes the total operational cost
while (13) shows the power balance for each bus. Relations
(14)–(17) show the up and down limitations for the thermal
units, loads, wind producers, and wind producers of the joint
unit. Equations (18) and (19) show constraints for the dis-
charge/charge operation of the storage unit. Finally, (20) indi-
cates the line flow limits. The dual variable of each of these
constraints is indicated by the colons of each relation.

To obtain a single-level optimization problem, the lower level
optimization problem is replaced by the KKT conditions. The
stationary constraints are as follows:

xG
i (t)− λi (t)− αG

i,min (t) + αG
i,max (t) = 0 (21)

− bdi (t) + λi (t)− αD
i,min (t) + αD

i,max (t) = 0 (22)

cWi (t)− λi (t)− αw
i,min (t) + αw

i,max (t) = 0 (23)

γWj
i (t)− λi (t)− αWj

i,min (t) + αWj
i,max (t) = 0 (24)

γdis (t)− λi (t)− αS,dis
min (t) + αS,dis

max (t) = 0 (25)

− γch (t) + λi (t)− αS,dch
min (t) + αS,dch

max (t) = 0 (26)

−
∑

j>i

Hij

(
αL
i,j,min (t)− αL

i,j,max (t)
)

+
∑

j<i

Hij

(
αL
i,j,min (t)− αL

i,j,max (t)
)
+
∑

j �=i

Hijλi (t)

−
∑

j �=i

Hijλj (t) . (27)

The complimentary constraints are indicated in the following:

0 ≤ αG
i,min (t)⊥

(
PG
i (t)− PG,min

i

)
≥ 0 (28)

0 ≤ αG
i,max (t)⊥

(
PG,max
i − PG

i (t)
)
≥ 0 (29)

0 ≤ αD
i,min (t)⊥

(
PD
i (t)− PD,min

i

)
≥ 0 (30)

0 ≤ αD
i,max (t)⊥

(
PD,max
i − PD

i (t)
)
≥ 0 (31)

0 ≤ αW
i,min (t)⊥

(
PW
i (t)− PW,min

i

)
≥ 0 (32)

0 ≤ αW
i,max (t)⊥

(
PW,max
i − PW

i (t)
)
≥ 0 (33)

0 ≤ αWj
i,min (t)⊥PWj

i (t) ≥ 0 (34)

0 ≤ αWj
i,max (t)⊥

(
PWj,max
i − PWj

i (t)
)
≥ 0 (35)

0 ≤ αS,dis
min (t)⊥ (

PS
i,dis (t)− PPmin

dis (t)
) ≥ 0 (36)

0 ≤ αS,dis
max (t)⊥ (

PPmax
dis (t)− PS

i,dis (t)
) ≥ 0 (37)

0 ≤ αS,ch
min (t)⊥ (

PS
i,ch (t)− PPmin

ch (t)
) ≥ 0 (38)

0 ≤ αS,ch
max (t)⊥ (

PPmax
ch (t)− PS

i,ch (t)
) ≥ 0 (39)

0 ≤ αL
i,j,min (t)⊥ (Hij (δi (t)− δj (t)) + Cij) ≥ 0 (40)

0 ≤ αL
i,j,max (t)⊥ (Cij −Hij (δi (t)− δj (t))) ≥ 0. (41)

The obtained optimization problem is nonlinear due to (1)
and (28)–(41). The linearization approach of relations (28)–
(41) is described in [4] using the big-M approach. For (1),
from (24)–(26) and (36)–([39), the following relation can be
obtained:

λ
(
PWj
i (t) + Pi,dis (t)− Pi,ch (t)

)

= γWj
i (t)PWj

i (t) + γdis (t) . P s
i,dis (t)− γch (t) . P s

i,ch (t)

+ αWj
i,max (t)P

Wj,max
i − αS,dis

min (t)PPmin
dis (t)

+ αS,dis
max (t)PPmax

dis (t)− αS,ch
min (t)PPmin

ch (t)

+ αS,ch
max (t)PPmax

ch (t) (42)

As the objective function is linear and the Slater condi-
tion is valid, strong duality can be written for this objec-
tive function as indicated in (43). From this relation and
(42), the linearized objective function of (1) is equivalent
to (44).

It is worth mentioning that to avoid binary variables in the
lower level problem, auxiliary variables are utilized in (8)–(11).
By using these variables, the charge and discharge power of the
storage system will be restricted according to relations (18) and
(19).

The final optimal joint unit offering problem is composed
of the objective function (44), constraints (2)–(11), constraints
(13)–(27), and linearized relations of (28)–(41)

∑

iεG

xG
i (t)PG

i (t)−
∑

iεD

bdi (t)P
D
i +

∑

iεW

cWi (t)PW
i (t)

+ γdis (t)P s
dis (t)− γch (t)P s

ch (t) + γWj
i (t)PWj

i (t)

=
∑

iεG

(
αG
i,min (t)P

G,min
i − αG

i,max (t)P
G,max
i

)

+
∑

iεD

(
αD
i,min (t)P

D,min
i − αD

i,max (t)P
D,max
i

)

+
∑

iεW

(
αW
min (t)P

W,min
i − αW

max (t)P
W,max
i

)

−
∑

i,jεL

(
αL
i,j,min (t) + αL

i,j,max (t)
)
Cij),

− αWj
i,maxP

Wj,max
i + αS,dis

min PPmin
dis (t)

− αS,dis
max PPmax

dis (t) + αS,ch
min PPmin

ch (t)

− αS,ch
maxPPmax

ch (t) (43)
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Max
∑

t∈T

[
∑

i∈G
(αG

i,min (t)P
G,min
i − αG

i,max (t)P
G,max
i )

+
∑

i∈D

(
αD
i,min (t)P

D,min
i − αD

i,max (t)P
D,max
i

)

+
∑

i∈W

(
αW
i,min (t)P

W,min
i − αW

i,max (t)P
W,max
i

)

−
∑

i,j∈L

(
αL
i,j,min (t) + αL

i,j,max (t)
)
Cij

−
∑

i∈G
xi (t)P

G
i (t) +

∑

i∈D
bi (t)P

D
i

−
∑

i∈W
cWi (t)PW

i (t) ,

]
(44)

III. IGDT FOR OPTIMAL OFFERING

A. IGDT Principles

Numerous approaches have been presented to overcome un-
certainties in power system problems. These problems, e.g.,
probabilistic and stochastic approaches [36]–[39] are dependent
on probabilistic historical data and are not applicable without
accurate probability density functions. Hence, these approaches
are not appropriate when sufficient historical data are not avail-
able [40].

Assume an optimization problem which is formulated as
(45)–(48) where F is the objective function, γ and X are the
uncertain and decision variables. H and G are the inequalities
and equalities, respectively. Sieq, Seq , and Ω are the sets of
inequalities, equalities, and uncertainties

min F (X, γ) (45)

Hi (X, γ) ≤ 0, i ∈ Sieq (46)

Gj (X, γ) = 0, j ∈ Seq (47)

γεΩ. (48)

The set of uncertainties can be defined as

∀γ ε Ω(γ̄, α) =

{
γ :

∣∣∣∣
γ − γ̄

γ

∣∣∣∣ ≤ αIGDT

}
. (49)

In (49), γ̄ is the forecasted amount of uncertain parameter
γ. αIGDT shows the radius that the parameter can drift from
the forecasted value and shows the robustness value for the risk
averse strategy and the opportunity value for the opportunity
seeking strategy.

For the IGDT approach initially, the objective function is
solved according to forecasted uncertain parameters. In the next
stage, the decision-maker can adopt two different strategies,
including risk-averse and opportunity-seeking strategies. In the
next section, each of these strategies is described.

1) Risk-Averse Strategy: In this strategy, the decision-maker
tries to provide solutions to guarantee a specified amount of
profit against a maximum deviation of an uncertain variable from
the forecasted amount.

Fig. 1. Concept of IGDT. (a) Risk-averse strategy. (b) Opportunity-seeking
strategy.

In this strategy, when the specified uncertain parameter is
assumed to be at the extreme point, the most robust and conser-
vative solutions will be obtained. The formulation of this strategy
is as follows:

max αIGDT (50)

Hi (X, γ) ≤ 0, i ∈ Sieq (51)

Gj (X, γ) = 0, j ∈ Seq (52)

F (X, γ) ≥ (1− σ) . F0 (X, γ̄) (53)

γ = (1− αIGDT ) .γ̄. (54)

In (48), σ is the deviation factor. F0(X, γ̄) is the objective
function corresponding to the forecasted values of the uncertain
variables γ̄. To better indicate the concept of the risk-averse
strategy for the IGDT method, Fig. 1(a) is presented. In this
figure, the solid lines are for the forecasted variables and the
dashed circle shows the uncertain parameter variation. Also, the
solid right on the left shows the base profit and the dashed circle
shows the profit affected by the uncertainty. As it is obvious,
for a certain uncertainty budget σ, it is indicated how much the
uncertain parameter αIGDT can decrease (or increase) to assure
the minimum profit.

2) Opportunity-Seeking Strategy: In this strategy, the
decision-maker is optimistic about uncertain variables and tries
to increase the profit more than the base profit which is obtained
according to the forecasted parameters. In a single objective
optimization problem, this strategy can be formulated as follows:

min αIGDT (55)

Hi (X, γ) ≤ 0, i ∈ Sieq (56)

Gj (X, γ) = 0, j ∈ Seq (57)

F (X, γ) ≥ (1 + σ) . F0 (X, γ̄) (58)
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γ = (1 + αIGDT ) . γ̄. (59)

In this formulation, (58) represents the profit increase that the
decision-maker is seeking for the uncertain variables modeled
in (44). Fig. 1(b) shows the concept of this strategy.

B. Implementation of IGDT to Optimal Offering Problem

The uncertain parameters for the optimal offering problem are
assumed to be wind generation of the joint unit, prices offered
by generation units, and the load of the system. To avoid non-
linearities, instead of obtaining robustness and opportuneness
values for different uncertainty budgets, the uncertainty budget
is obtained for different robustness and opportuneness values.

For wind generation uncertainty, the risk-averse strategy for-
mulation is as follows:

max (1− σ) .Profit0 (60)

PWj
i (i, t) ≤ (1− αIGDT )P

Wj,max
i (61)

0 ≤ αWj
i,max (t)⊥

(
(1− αIGDT )P

Wj,max
i − PWj

i (t)
)
≥ 0

(62)

s.t. (2)–(7), (9)–(34), (36)–(41), (43). (63)

In addition, the opportunity seeker strategy formulation for
this case is as follows:

max (1 + σ) .Profit0 (64)

PWj
i (t) ≤ (1 + αIGDT )P

Wj,max
i (65)

0 ≤ αWj
i,max (t)⊥

(
(1 + αIGDT )P

Wj,max
i − PWj

i (t)
)
≥ 0

(66)

s.t. (2)–(7), (9)–(34), (36)–(41), (43). (67)

For the prices offered by generation units, the price will be
multiplied by (1± αIGDT ). However, in the objective function,
this will lead to a nonlinear term (1± αIGDT )P

G
i (t). To avoid

this nonlinear term, for the price and load uncertainty studies,
instead of considering the uncertainty budget as a parameter
and the robustness/opportuneness value as a variable, the un-
certainty budget is assumed as a variable while the robust-
ness/opportuneness value is regarded as a constant parameter.
Hence, for each constant robustness/opportuneness value, the
corresponding uncertainty budget can be obtained. In the formu-
lations for risk-averse and opportunity seeker strategy for price
and load uncertainty, the constant robustness/opportuneness
value αcte is multiplied to the price and load parameters in
relations (2)–(7), (9)–(34), (36)–(41), and (43). For a better
understanding of how the IGDT approach is implemented to
the joint wind/storage optimal offering approach, a flowchart is
provided in Fig. 2 which indicates the process of the proposed
model.

IV. CASE STUDY AND DISCUSSION

In this section, numerical results are presented for evaluating
the performance of the suggested method. A 60-MW wind

Fig. 2. Flowchart for the proposed optimal offering approach.

farm and a 60-MWh (20-MW) storage system participate in the
energy market as a joint unit at bus 15 of the IEEE 30-bus system.
It is assumed that this system consists of nine thermal generation
units at bus 1, 2, 5, 8, 11, 13, 15, 24, and 30. The generator
offers are used from [4]. Also, a wind generation unit with a
size of 40 MW is placed on bus 17. The maximum (minimum)
charge/discharge rate of the storage system is assumed to be
20 MW (5 MW). The discharge (charge) price is assumed to be
$25 ($25) for all hours. Also, the price of the wind farms is
assumed to be $25 at bus 15 and $35 on bus 17 for 24 h. Also,
in this article, it is assumed that loads are parameters and their
values are determined according to the forecasted values. The M
parameter is assumed to be 1× 103 for thermal generation unit
constraints and 1× 107 for other complementary constraints.
The MILP formulation is solved using an hp pavilion with a
2.1-GHz processor with 4 GB RAM using the CPLEX 9.0 solver
in the GAMS environment [41].

The studies are fulfilled for two different strategies assuming
that for the first hour and last hour, the storage system has the
minimum state of charge 10 MWh. For each of the uncertain
variables, two different strategies including risk-averse strategy
and opportunity seeker strategy are studied.

To have a simple case study, initially, the simulations are
presented for the base case where the bilevel optimal offering
problem is solved according to the forecasted parameters of
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Fig. 3. Nodal prices at bus 15 for base case study neglecting uncertainties.

Fig. 4. State of charge of storage system for joint offering (green continuous)
and solo storage system (black dashed).

Fig. 5. Optimal power offer for the joint unit and the alone storage unit.

wind, price, and load, and all uncertainties are ignored. The
total profit for this case is $60 109. The profits of the wind unit
and storage system individually for this case are $57 463 and
$2646, respectively. The nodal price on bus 15 is indicated in
Fig. 3. For this case, the results for the storage system outputs,
including the stored energy and charge and discharge power for
each hour and the power produced by the wind generation unit
for 24 h, are illustrated in Figs. 4 and 5. As the results indicate,
although in the joint offering case the income of the storage
system decreases, the revenue of the wind farm and the revenue
of the total system increases.

In the second case, the bilevel optimal offering problem is
only considered for the energy storage system and the wind farm
is considered as an independent unit. In this case, the storage

TABLE I
IMPACT OF THE PRICE OFFERS

Fig. 6. Robustness value versus joint unit profit for stand-alone wind unit and
joint unit.

unit income increases to $3081 while the income of the wind
generation unit decreases to $57 038. In this case also, the state
of charge of the storage system and the power for each hour are
illustrated in Figs. 4 and 5, respectively.

Compared with nodal prices at bus 15 (indicated in Fig. 3),
it is observed that the storage system is fully charged at hours
when the price of energy is lower and starts discharging during
hours when the price of energy is expensive with the goal of
acquiring the maximum profit.

Also to study the effect of the price offers, Table I is provided,
which includes the wind power price and charge/discharge
power price for the joint unit (all the prices are assumed to be
similar). In addition, this table indicates the revenue obtained by
wind power, storage, total profit, and the total wind generation
for 24 h. As it is obvious, by increasing the offering prices,
the revenue of the system and also the wind power partici-
pation decreases, and the system moves toward the state that
the storage system participates individually in the day-ahead
market.

According to the base case, two different strategies are studied
in the next sections.

A. Wind Generation Uncertainty

1) Risk-Averse Strategy: In this strategy, the owner practices
a conservative approach to guarantee a minimum amount of
profit considering the uncertainty of the wind farm. The ro-
bustness values versus the unit profit are exposed in Fig. 6
for σ = 2%–18% and for two different cases including the
stand-alone operation of the wind farm and the joint operation
case. As it is obvious, the variation of the joint unit profit with
the robustness value is almost linear.
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This figure shows how much profit is guaranteed
(1− σ)Profit0 for a specific amount of wind generation re-
duction according to the forecasted values. For instance, to
assure 84% of the profit at the base case, wind generation
can be decreased to 16% at the joint operation case ($50 484).
In other words, for all hours, the wind generation can decrease
by 16% while 84% of the base case profit is guaranteed.

From Fig. 6, it is observed that the variations of the robustness
value are almost linear. To show the impact of the storage
system on handling uncertainties caused by wind, the optimal
offering problem is solved considering a minimum profit of
$46 801, that is, the obtained profit for the stand-alone wind
generation unit with a robust value of 18%. In this case, the
robustness value increases to 23.5%. Also, while an 18% ro-
bustness value guarantees approximately $46 801 profit for the
stand-alone wind generation unit, operating jointly results in an
approximately $49 924 profit for the same robustness value.

2) Opportunity Seeker Strategy: In this case study, the
decision-maker adopts an optimistic strategy assuming that the
wind generation will be above the predicted values for each hour.
For this case, the opportuneness versus the minimum profit is
depicted in Fig. 6.

Similar to the robustness strategy, there is a linear relation
between the opportuneness value and the minimum acquired
profit. As in the previous case, the effect of the storage system
can be estimated from this figure. For instance, while an 18%
increase in wind generation is required to achieve a minimum
profit of $67 185 in the wind farm stand-alone state, in the joint
operation state, an increase of less than 12.5% is enough to
acquire this amount of profit.

B. Price and Load Uncertainty

In this section, the uncertainty of prices offered by gener-
ation units and load forecasts are studied. To implement the
IGDT method, the proposed approach introduced in the previous
section is utilized to avoid nonlinear terms. Similar to wind
generation uncertainty, results for two different strategies are
presented in this section for each of these uncertainties.

1) Risk-Averse Strategy: Results for adopting the risk-averse
strategy, considering the uncertainty of price, are illustrated in
Fig. 7(a). Like the previous case, the robustness value decreases
almost linearly with decreasing the minimum assured profit. For
an uncertainty budget of 19.3%, even for a 20% reduction of
offering prices by generation units, a profit of $48 081 is certain.

For each of the minimum profit studying cases, the wind farm
offers the maximum forecasted generation and the variation in
results is caused by price and the different charge/discharge
patterns of the storage system. The charge/discharge pattern of
the storage system is depicted in Fig. 7(b) for σ = 18% for both
robust and opportunity strategies.

Fig. 8 indicates the results for the robust strategy for load
forecast variations. As it is obvious, load reduction has a trivial
effect on the obtained profit.

2) Opportunity-Seeking Strategy: In this section, results for
the opportunity-seeking strategy for price offers of generation

Fig. 7. (a) Results for considering price offer uncertainty (submitted by
generation units) for robust and opportunity strategies. (b) State of charge for σ
= 18% robust strategy (green solid) and σ = 18% opportunity strategy (black
dashed) for the risk-averse strategy for price uncertainty.

Fig. 8. Results for considering price offer uncertainty (submitted by generation
units).

units are indicated in Fig. 7(a). As shown in this figure, a
profit near $72 918 can be achieved if the offered prices in-
crease to 18%. The charge/discharge profiles for the extreme
points of both strategies are shown in Fig. 7(b). Similar to
the robust strategy, the increase of load in the opportune-
ness strategy does not affect the gained profit significantly, as
illustrated in Fig. 8.

C. Multivariation Optimal Offering Based on IGDT

In this section, the results are presented when the deviating
factors for wind and price are assumed to deviate simultaneously
for acquiring a minimum amount of profit.

The multidimension robustness value (for wind generation
and price uncertainty) is exposed in Fig. 9. As it is obvious, the
obtained profit (which is a function of the uncertainty budget)
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Fig. 9. Multivariant IGDT for wind and price uncertainty (risk-averse strat-
egy).

Fig. 10. Multivariant IGDT for wind and price uncertainty (opportunity-
seeking strategy).

Fig. 11. State of charge for the multiobjective case wind and price robust
strategy 18% (green continuous) and opportunity strategy 18% (black dashed).

forms a plain of solutions. In this figure, it is indicated that, for
instance, if the wind generation and the offered prices decrease
by 18%, a profit of $41 035 is guaranteed. Further, Fig. 10 shows
the multidimension case for the opportuneness strategy. Similar
to the robust strategy, a plain of solutions are presented for this
case. In this case, for an increase in wind generation and offered
prices for 18%, the total profit increases to $82 762. Fig. 11
shows the state of charge variation for these two mentioned
cases.

V. CONCLUSION

In this article, a bilevel optimal offering approach is proposed
for a joint wind–storage unit. In the upper level, the profit
maximization problem is solved considering the operational
constraints of the wind and storage unit. In the lower level, the

economic dispatch problem is regarded. The bilevel problem
is converted to a single-level optimization problem by imple-
menting the KKT conditions. For the base case (based on the
forecasted parameters), the results show that the total revenue
of the joint unit is more than the state when the wind unit and
storage unit work individually.

By the proposed framework, the decision-maker is able to
study the effect of uncertainties caused by prices offered by
generation units, generation of the joint wind farm, and system
load variations. The results indicate that despite load uncertainty,
the variations of wind generation and price offers can have
a salient impact on the expected revenue of the joint unit on
the offers and the expected profit. By utilizing this model, the
decision-maker can have a control on the variations of uncertain
variables in real time and guarantee a certain amount of profit,
or to consider these uncertainties as an opportunity to gain
additional revenue compared to the expected value. Further, the
decision-maker can study how it can affect the system prices
according to the offers that are submitted by the joint working
unit regarding the lower level optimization problem. Finally, by
using the provided multiobjective model, the effects of wind
and price uncertainties can be studied concurrently to acquire
the best profit according to the chosen strategy.

For future research, the possibility of solving the bilevel opti-
mal offering strategy problem by evolutionary algorithms can be
considered. When utilizing this type of approach, no linearizing
techniques are required. Hence, several binary variables (which
have to be used to obtain a linearized model) can be eliminated,
which decreases the computational burden of the problem. As-
suming other objective functions for the bilevel optimal offering
problem and implementing multiobjective functions can also be
considered for future work.

Furthermore, new bidding strategy approaches are developed
nowadays based on approaches, such as automated negotiation
and reinforcement learning, and their possibilities to be im-
plemented in the strategic bidding problem of a wind/storage
unit can be studied and the results can be compared with the
bilevel offering approach in terms of the obtained profit and
computational time. Developing the proposed model in this
article for the joint offer of wind farms with electric vehicle
charge stations can be another possibility for future research.
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