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Abstract—In this paper, the stability of voltage source
converter-based autonomous AC microgrids (MGs), which are
interconnected through back-to-back converters (BTBCs), is an-
alyzed. The small-signal stability analysis is based on a detailed,
comprehensive and generalized small-signal modeling of the AC
interconnected MGs (IMGs), which is possible for any number
of MGs and interconnections. The large-signal stability of the
IMGs is investigated for the case of the initial BTBC DC voltage
as a part of paper contribution. A new margin/criterion is
determined for the initial DC voltage in different situations of
the BTBC operation. According to the proposed criterion, a
fundamental difference between very weak MGs and conven-
tional strong grids in the BTBC voltage stability is addressed.
Using eigenvalue analysis and participation matrix, the main
participating state variables and corresponding parameters in
the dominant critical modes are recognized for an equilibrium
point. Sensitivity analysis involves changing initial values of the
state variables, parameters, and forcing functions to study their
different values and find acceptable ranges of the parameters.
Particularly, the considerable contribution of the BTBC in the
critical modes is found out by analyzing the initial DC voltage,
DC voltage controller and PLLs. In order to observe possible
unstable situations and verify the transient studies, real-time
simulations are provided for two and three MGs interconnected
through BTBCs using OPAL-RT digital simulator. The IMGs
can be robustly stable only by specifying the stabilizing ranges
of the sensitive parameters to the critical modes and selecting
their appropriate values.

Index Terms—Back-to-back converters, dominant critical
modes, interconnected AC microgrids, large-signal stability, sen-
sitivity analysis, small-signal stability.

I. INTRODUCTION

M ICROGRIDS have demonstrated the ability to securely
operate a set of distributed energy resources (DERs)

and increase the renewable energy penetration in the conven-
tional power systems [1]–[3]. They have also improved the
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supply reliability for the end-use loads in the islanded mode
[4], [5]. Furthermore, microgrids (MGs) can be interconnected
together to more improve reliability, resiliency, flexibility,
sustainability and provide supporting inertia [1], [6]–[8]. AC
interconnected microgrids (IMGs) can be constructed either
from a number of autonomous MGs for the sake of MG short-
age compensation [9]–[13], or from a distribution network due
to critical conditions [6], [8], [14]–[16].

Although circuit breakers are usually used for interlinking
AC IMGs [8], [11], [14], [15], back-to-back converters (BT-
BCs) are more flexible interfaces, which result in a separate
frequency control of MGs [10], [13], [17]–[20]. Generally
speaking, the control and operation of BTBC-IMGs are similar
to the multi-area power systems inter-tied through high-voltage
DC [20]–[22]. Both systems similarly lead to frequency sta-
bility improvement due to eliminating inter-area frequency
interactions. However, the voltage strength of the two systems
is different. In each area of the conventional power system,
many synchronous generators participate in the load supply
and inertia support. Furthermore, common load changes are
less than 5% of the total supplied load [23]. Therefore, AC
voltage of each area is stiff. On the contrary, MG’s DERs
are mostly inertia-less voltage source converter (VSC)-based
units and have a considerable contribution in the load supply.
In addition, load steps can be larger than 20% of the total
MG load [6]. Hence, each DER outage or load change has a
remarkable impact on the MG voltage/frequency, which means
a weak grid. Broadly, the AC system weakness is expressed
by the short circuit ratio (SCR), which is the ratio of the AC
system three-phase short-circuit MVA to the exchanged DC
power. The SCR of very weak grids is less than 2 [24]. The
transient stability of interlinked weak grids via BTBCs has
been investigated [25]–[27]. In such power systems, the BTBC
power transfer limit is considered as a stability criterion.

Transient stability of the power system can be analyzed
in four general methods, including time-domain, graphical,
direct and automatic learning methods [28]. The graphical
methods consists of equal-area criterion and phase portrait
mostly used in one-machine systems [29]. The direct method
employs Lyapunov functions, which is more applicable for
low/reduced-order systems [8], [30]. The automatic learning
methods benefit from intelligent algorithms such as artificial
neural networks to assess transient stability [31]. Usual time-
domain assessment criteria are the critical clearing time (CCT)
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and the power transfer limit (PTL) [25], [26], [32]. In general,
the time-domain methods have been used for MG/IMG tran-
sient stability analysis [32], [33], however Lyapunov function
[8], bifurcation theory [34], and unsymmetrical fault analysis
[35] have been utilized rarely. Another common transient
stability assessment method is sensitivity analysis, which is
realized by changing the equilibrium point, i.e. parameters or
initial values, based on the linearized state space model for
systems with low nonlinearity degree, and the nonlinear model
for even highly nonlinear systems [28].

The small-signal and transient stabilities of IMGs via circuit
breakers (CB-IMGs) have been analyzed in the literature [8],
[11], [12], [14], [15], [36]–[39]. An eigen-analysis method is
presented in order to determine the suitable range of control
parameters for IMG’s DERs and to guarantee the IMG stability
employing the sensitivity analysis [36]. In [37], the impact of
rating/number of DERs and loads, as well as the autonomous
MG topology on the IMG stability is investigated. Similar
stability analysis is performed to study the impact of different
interconnecting points within a distribution network on the
IMG formation [14]. Parameter stability margins are also
calculated using sensitivity analysis. In a more general method,
a parametric criterion for IMG stability is achieved by applying
Lyapunov stability on the simplified droop-based IMG model
[8], [38]. In contrast, a detailed small-signal model of PV-
based IMGs is proposed considering the dynamics of the
PV controllers and DC sides [12]. Then, sensitivity analysis
is employed to find acceptable parameter ranges affecting
the dominant critical modes (DCMs). In [11], authors have
presented a two-layer, four-level distributed control strategy
for IMGs, then its impact on the small-signal stability is
analyzed. Similar work has been presented for a distributed
voltage control and power management of IMGs [15]. Authors
have simplified the MG model with primary and secondary
controllers and have studied their impacts on the IMG small-
signal stability.

Stability analysis of BTBC-IMGs is evaluated in [10], [39],
[40]. In [10], A specific configuration of MGs is considered
in which any autonomous MG has a STATCOM/ESS unit
to coordinate its generation with BTBC power exchange. A
robust distributed controller is presented for such BTBC-IMGs
to damp the oscillatory modes due to interaction of local DER
controllers and make the system robust against the parametric
uncertainties. A common structure of two autonomous AC
MGs interconnected by a BTBC is considered to prove IMG
frequency support [40]. Then, time-domain frequency stability
analysis is conducted, which shows the frequency indepen-
dence for BTBC-IMGs during faults. In [39], multiple MGs
connected to a strong grid are studied, where the main IMG
challenges, e.g. power exchanging do not reveal.

This paper presents the stability assessment for AC BTBC-
IMGs in the absence of a stiff grid, including both small-signal
and transient stability analyses. Following features draw a clear
distinction between this paper and existing works.

• A detailed and comprehensive modeling method is used
for IMGs, which can be generalized for any number of
MGs. Details of the comprehensive modeling is presented
in the Part I of the paper [41].
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Fig. 1. General structure of interconnected AC MGs through back-to-back
converters, DC and AC interlinking lines.

• In the deployed small-signal and transient stability as-
sessments for the IMGs, BTBCs are included as flexible
interlinking devices, unlike the existing works in the
literature [8], [10]–[12], [14], [15], [36], [37]. The corre-
sponding challenges are introduced using analysis tools,
e.g. sensitivity analysis to be more taken into account in
future studies including stability analysis and controller
design.

• A transient stability assessment for the BTBC DC volt-
age, during enabling BTBC to exchange power, is devel-
oped based on the energy concept. Minimum stabilizing
DC voltage criterion (MSDVC) for BTBC-included weak
power grids/MGs is proposed as a criterion of time-
domain methods. Different aspects of this issue are in-
vestigated, e.g. the impact of BTBC power flow direction
on the transient stability.

• MSDVC is a powerful transient stability margin for the
case of enabling BTBC to exchange power as the large-
signal disturbance. However, the common PTL criterion
for HVDC/BTBC [25], [26], [32] is used in the case
of faults as the large-signal disturbances. Nevertheless,
an initial PTL is introduced, which is strongly corre-
lated with MSDVC. Considering the MSDVC allows the
BTBC to exchange any power level less than the power
rating without instability. Whereas, the initial PTL leads
to the same result with a different method.

• Similar to [25]–[27], [42], the role of grid strength on
the BTBC stability is discussed. However, in this paper,
fully VSC-based very weak IMGs are taken into account,
which causes a different phenomenon with respect to
strong multi-area power systems, i.e. initial DC voltage
transient instability for BTBCs.

The rest of the paper is organized as follows: a summary of
the proposed IMG modeling method, depicted in Part I [41],
is addressed in Section II. Section III presents the transient
stability analysis for the BTBC DC-link voltage. Verifying
simulation results for small-signal and transient stability anal-
yses are reported in Section IV, including sensitivity analysis
and time-domain outputs, respectively. Section V concludes
the paper.

II. SMALL-SIGNAL MODELING OF INTERCONNECTED
MICROGRIDS

A general configuration of AC IMGs comprised of au-
tonomous MGs, AC and DC interlinking lines (ILs), and
interconnecting BTBCs is shown in Fig. 1. In the proposed
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Fig. 2. General structure of autonomous AC MGs, including power part, and
primary control modules.

modeling presented in Part I [41], each main module is
modeled separately using a state space representation as:

Ẋk
M = Ak

MX
k
M +Bk

MU
k
M , (1)

Y k
M = Ck

MX
k
M +Dk

MU
k
M , (2)

where Xk
M is the state vector of the k’th IMG module i.e.

Xk
M ⊆

{
X1

MG, ..., X
n
MG, ..., X

ij
IL, ..., X

ij
B , ...

}
, (3)

Uk
M is the input vector of k’th module determined based on

all electrical/control interconnections from other modules. Y k
M

is all required connections to other modules. The matrices can
be calculated for each module according to its components.

A. Microgrid Modeling

Fig. 2 shows a general structure for autonomous AC MGs.
The power part of the typical MGn consists of m DERs, m AC
lines as power network and a lumped RL load. The DERs are
assumed as ideal averaging modeled VSCs series with RLC
filters. The power network is modeled by series RL branches,
which for weak grids X/R < 1 or X/R ≈ 1.

For the sake of individual control of MGs, a primary
control level is considered, including ω−P and v−Q droop
characteristics, and voltage and current controllers. The droop
loops try to share the active/reactive powers among DERs
and stabilize the frequency/voltage during disturbances. The
voltage control regulates the output DER voltage. The current
control is employed to limit the output current of each DER
to the converter rating. Due to this necessary duty, MGs are
generally very weak grids having an SCR<2.

In the modeling method, all mentioned MG components are
modeled independently by a state space representation. Then,
one can find the overall MG model by interconnecting these
partial models exploiting Robust Control Toolbox in MAT-
LAB [41]. Therefore, IMGs with any number and different
structures of MGs can be modeled.

B. Modeling of AC/DC interlinking Lines

AC interlinking lines are considered as series RL branches
as shown in Fig. 1 due to their low/medium lengths and DC
lines are assumed to be resistive branches. Based on the BTBC
position, two AC lines, each one between a MG and the BTBC,
and one DC line between the BTBC’s VSCs can be considered.
The AC lines are modeled as separate IMG modules, however,
the resistive DC line is included in the BTBC model.

C. Back-to-Back Converter Modeling

In order to exchange power between two AC MGs using a
BTBC, a power controller and a DC voltage controller should
be employed for the BTBC in addition to the individual MG
controllers. As shown in Fig. 3, the power controller receives
P ij
ref /Qij

ref from the global control level in coordination with
both sender and receiver MGs, and tries to exchange it
by controlling the VSCi current. The DC voltage controller
stabilizes the DC side voltage V j

dc by regulating the VSCj

current. Moreover, it should pass the scheduled power forced
by VSCi through VSCj . Two phase-locked loops (PLLs) are
needed to synchronize the AC sides with the MGs.

The detailed dynamic models of the BTBC modules are
obtained individually, then the overall BTBC model can be
obtained by interconnecting all sub-models [41].

D. Overall model of Interconnected Microgrids

By modeling IMG modules separately, comprising MGs,
BTBCs and interlinking lines, modeling of various IMG
structures with any number of MGs is possible. The proposed
modeling method based on sub-models and their intercon-
nections leads to a comprehensive and generalized model for
BTBC-IMGs. The IMG state space can be represented as:

ẊIMG = AIMGXIMG, (4)

where XIMG is the overall state vector as

XIMG = [

MGs︷ ︸︸ ︷
X1

MG ... Xn
MG

ILs︷ ︸︸ ︷
... Xij

IL ...

BTBCs︷ ︸︸ ︷
... Xij

B ...]T ,

AIMG can be computed for interconnecting the desired num-
ber of MGs, interlinking lines and BTBCs using appropriate
functions in Robust Control Toolbox [41].

III. TRANSIENT STABILITY OF BACK-TO-BACK
CONVERTER DC VOLTAGE

According to the results of eigenvalue analysis and partic-
ipation matrix presented in Part I [41], BTBC DC voltage
and its controller are much effective on the IMG small-signal
stability. In this section, we want to theoretically prove that
this impact is also on the transient stability. Here, large power
flow changes are considered as large-signal disturbances.

A. Energy-based Transient Stability Analysis

During each power exchange, the DC voltage V j
dc should

be settled on the reference V j
dc,ref in order to form acceptable

AC voltages on the BTBC’s AC sides (see Fig. 3). Note that
tracking the voltage reference should also be in a limited
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Fig. 3. Conventional PI controller-based power flow control of interlinking
back-to-back converters, comprising power and DC voltage controllers.

time interval ∆Tstab in which the AC voltages are stable.
It is due to the weak MGs voltages and their bad effect on
the BTBC performance, which is explained in Section III-C.
Otherwise, the BTBC AC voltages will be unstable due to the
level difference with MGs voltages (e.g. V i

PCC and V i
fc for

VSCi in Fig. 3). In addition, the assumption of V j
dc0 < V j

dc,ref

is usually reasonable due to partial capacitor discharges when
the BTBC is off. Thus the minimum required energy Wmin

dc to
stabilize the DC voltage before AC voltage instability is as:

Wmin
dc,j =

1

2
Cj

dc(V
j
dc,ref

2
− V j

dc0

2
) (5)

where V j
dc0 is the initial DC voltage before power flow

change and (5) is based on the well-known capacitor energy
relationship. According to the DC voltage controller duty, the
VSCj tries to provide Wmin

dc by drawing power from the
MGj in ∆Tdc. One can give the power-energy relationship
as follows:

Wdc,j =

∫
∆Tdc

Pdc,j(t)dt, (6)

where ∆Tdc is the DC capacitor charging time interval and
Pdc,j is the net charging power. As mentioned, in order
to preserve stability, the ∆Tdc should be limited to utmost
∆Tstab, which is a small time before instability. Therefore,
it is easy to recognize ∆Tdc << 1 and the average required
power can be calculated as:

Pdc,j =
Wdc,j

∆Tdc
. (7)

By replacing Wdc,j by its minimum value Wmin
dc,j and ∆Tdc

by its maximum amount ∆Tstab, (7) appears as follows:

Pdc0,j ≥
Wmin

dc,j

∆Tstab
, (8)

where 0 in subscript indicate the average power required
during ∆Tdc. By substituting (5) in (8), one can find

P j
dc0 ≥ 1

2∆Tstab
Cj

dc(V
j
dc,ref

2
− V j

dc0

2
). (9)

Then, the V j
dc0 can be achieved as follows:

V j
dc0 ≥

√
V j

dc,ref

2
−

2∆TstabP
j
dc0

Cj
dc

. (10)

This relationship is MSDVC, which shows that the BTBC and
generally the IMG system can have a stable operation after
enabling the BTBC, if V j

dc0 is greater than or equal to a certain
value related to V j

dc,ref ,∆Tstab, C
j
dc, and P j

dc0.

B. MSDVC: Analysis and Discussion

Although the V j
dc,ref in MSDVC (10) is a constant value,

other correlated components can change the value of V j
dc0 as

discussed below. The latest subsection deals with a compar-
ison among MSDVC, CCT, and PTL as common transient
assessment tools.

1) Time Interval ∆Tstab: The DC-link capacitor voltage
has ripples with twice frequency of the AC side [43]. The
V j
dc should be stabilized in the first ripples after the event.

Otherwise, the AC side voltage disturbance increases and
causes instability. In fact, during the stable time interval
∆Tstab, the VSCj output voltage Ej

C0 should increase to be
approximately equal to vjfc, which is equal to vjPCC before
power exchange. In other words, the stability condition is as

Ej
C0

∣∣∣
t≤∆Tstab

= vjPCC , (11)

where Ej
C0 and V j

PCC can be obtained as follows [41]:

Ej
C0 =

1

2
mj

0V
j
dc0, (12a)

vjPCC = vmo − (Rm
li + jLm

li ω)imo , (12b)

where mj
0 is the input control signal of PWMj during ∆Tstab.

(12a) is true for three-phase full-bridge converters and (12b)
is obtained according to DERm in MGj in steady state (see
Fig. 2). Note that vjPCC is an acceptable value less that the
nominal AC voltage due to the voltage drop of the DER lines
and V-Q droop coefficients.

In stability condition (11), mj
0 is only variable that can

be manipulated to accelerate the increment of Ej
C0 to be

stable. mj
0 is a function of ∆Tstab, which can be found easily

according to the DC voltage controller block diagram in Fig.
3. It is obvious that increasing both proportional and integral
gains of both current and vjdc controllers can accelerate the
increase of Ej

C0. However, such a gain increase is not practical.
Because, the gains are limited to the small-signal stability,
which is shown in the sensitivity analysis results. Therefore,
∆Tstab is hard to be controlled due to lack of independent
controller. In fact, it is affected by the current and vjdc
controllers, which should be limited for other control/stability
objectives. Moreover, according to (12b), MG voltages and
currents are as the disturbances for finding ∆Tstab. Hence, it
is also hard to be calculated. Finally, ∆Tstab cannot be selected
neither as a transient stability criteria nor an accessible variable
to find easily its impact on MSDVC.
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2) Capacitance of the Cj
dc: It is based on the ability to

regulate the DC voltage under transient disturbances. Larger
values of Cj

dc leads to more required energy to charge it,
but the settled voltage is robust against larger disturbances.
Therefore, lower values of Cj

dc are appropriate in terms of
MSDVC. However, the capacitance cannot be selected just
based on MSDVC.

3) Injected Power to the DC Link (P j
dc0): According to

MSDVC, the larger P j
dc0 permits the smaller values of V j

dc0

to stabilize the DC link voltage. In other words, the P j
dc0

increment results in a larger transient stability margin for
BTBC-IMGs. According to the active power balance of BTBC
DC and AC sides and neglecting switching losses, P j

dc0 can
be given as follows using Part I relationships [41]:

P j
dc0 = P line

dc0 − Pji0 = −(P i
dc0 + Pij0) − Pji0, (13)

where P line
dc0 is the DC line power, P i

dc0 is the initial VSCi

capacitor power, and Pij0 and Pji0 are the VSCi and VSCj

initial active powers in the AC side, respectively as shown in
Fig. 3, which can be calculated as follows:

Pij0 = Ei
C0i

ij
IL0 =

1

2
mi

0V
i
dc0i

ij
IL0 (14a)

Pji0 = Ej
C0i

ji
IL0 =

1

2
mj

0V
j
dc0i

ji
IL0 (14b)

where iiijIL0 and iijiIL0 are the initial three-phase currents of
VSCi and VSCj . Regarding (13), (14a), and (14b), following
points can be extracted.

i) Terms P i
dc0 and Pij0 in (13) are as the disturbances

in controlling V j
dc0. It is reasonable to consider same value

and initial condition for both Ci
dc and Ci

dcdue to same VSCs
and same nominal AC voltages. Therefore, Ci

dc needs same
initial power, i.e. P i

dc0 = P j
dc0. As a result, Ci

dc cannot be an
appropriate contributor in providing P j

dc0. However, Pij0 can
be an effective contributor with a dual behaviour according to
the power flow direction, which is illustrated in Section III-D.

ii) Another important point is the presence of V j
dc0 in Pji0

(14(b)). Although mj
0 is only controllable signal to increase

V j
dc0, in an instability situation, the term V j

dc0 can resonate the
instability.

iii) Equations (14a) and (14b), and also mi and mj shown
in Fig. 3 express the nonlinear behaviour of the BTBC-IMGs
at the beginning of power exchange. Furthermore, they show
the complexity and hardness of analytical calculation due
to nonlinear relationships and many contributing variables.
Hence, the problem of initial BTBC DC voltage in intercon-
nected weak MGs can be listed below the transient stability
assessment, which MSDVC is presented for and considered as
an appropriate analysis method. Note that enabling BTBC to
flow power between MGs is as the large-signal disturbance.

4) MSDVC Comparison with Common Transient Stability
Criteria: Generally, the transient stability analysis has been
presented for fault occurrence as the common large-signal
disturbance. Two common assessment criteria are CCT and
PTL. For a fault and given operating condition, CCT is defined
as the maximum fault duration, while the power system is
still transiently stable [44]. PTL is the maximum power flow
through an interface device, e.g. an BTBC, while the power

system is still transiently stable. CCT is usually used for AC
power flow through AC lines. However, transient stability
of DC power exchange through HVDC/BTBC is analyzed
by PTL [26]. According to the third point of the previous
subsection and definitions of CCT and PTL, it is easy to find
their different applications with respect to MSDVC. CCT and
PTL have been used to assess the transient stability after a fault
occurrence. However, MSDVC is useful to assess the transient
stability after a BTBC connection to exchange power.

A relationship can be exist between PTL and MSDVC. In
the case of MSDVC application, the initial DC voltage of
BTBC is calculated for a given acceptable level of power
exchange (P ij

ref ), which is realized by Pij0 in (13) and then
(10). One can adapt the initial PTL Pij0 based on a given V j

dc0,
which in turn, changes P ij

ref . In this case, the initial PTL will
be the transient stability criterion instead of MSDVC.

In (13), Pij0 is the initial power exchange to find the initial
PTL and Pji0 is a combined impact of the V j

dc controller output
(udc) and −P ij

ref , which is applied by mj
0. One can find mj

0

according to the DC voltage controller block diagram shown
in Fig. 3 and calculate Pji0 through (14b). Regarding several
multiplications, it is obvious that Pji0 is a nonlinear function
of the current controller inputs udc and −P ij

ref as follows:

Pji0 = fNL(udc − P ij
ref ), (15)

where NL in the subscript of f indicates its nonlinearity. By
substituting (13) and (15) in (9) and rearranging, the initial
PTL can be achieved as:

Pijo ≤ 1

2∆Tstab
Cj

dc(V
j
dc,ref

2
− V j

dc0

2
)

+ P i
dc0 − fNL(udc − P ij

ref ). (16)

This relation proves an initial PTL for which the BTBC-IMGs
remain transiently stable for a given V j

dc0.
Note that both MSDVC and initial PTL try to maintain

transient stability during BTBC connection. In the case of
using MSDVC, the BTBC can be connected with each given
power exchange just by pre-charging the DC capacitor to the
required DC voltage, and then enabling the BTBC to exchange
power. Whereas, by using initial PTL, the initial BTBC power
reference is firstly set to be acceptable based on (16) for
the given initial DC voltage. After capacitor full-charge, the
reference can be modified to the desired value.

C. Grid Strength Impact

It is notable to mention that there is a considerable dif-
ference in the case of P j

dc0 value between weak VSC-based
IMGs and strong conventional power grids. After connecting
the VSCj to the MGj in order to exchange power, the charging
power begins to flow from the MGj into the VSCj . According
to Fig. 3, this power can be calculated as:

Sj
ac0 =

∣∣∣∣∣vjfc,0(
vjfc,0 − Ej

C0

Rj
fc + jXj

fc

)

∗∣∣∣∣∣ , (17)

In the most severe case i.e. V j
dc0 = 0, the Sj

ac0 equals to the
short circuit level of the power system at the PCC (Spcc

SC,j).
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TABLE I. BACK-TO-BACK CONVERTER POWER EXCHANGE IMPACT ON
MSDVC

Situation P j
dc0 V j

dc0

Stability
margin

Power flow from MGj to MGi Sj
n − Si

dc0 Increase Low
Power flow from MGi to MGj Sj

n + Si
dc0 Decrease High

DC voltage stabilization
before power exchange Sj

n Base case Medium

Nevertheless, it equals to the MGj rating (Sj
n) for weak VSC-

based IMGs due to the current-limiting function employed
on the DER current controllers. Since Spcc

SC,j >> Sj
n, the

stabilizing initial DC voltage for conventional power systems
can be much smaller than VSC-based IMG’s one according
to the MSDVC. As an important result, the transient stability
of initial DC voltage for conventional power systems is less
challenging than weak VSC-based IMGs.

D. Power Flow Direction of Back-to-back Converter

Another important point is the impact of the VSCi power
direction on the MSDVC. Table I shows different situations
for the BTBC power flow and their impacts on the MSDVC.
In the worst case, where the power should be sent from the
MGj to the MGi, the net injected power to the DC link is
decreased to Sj

n − Si
dc0. Thus the stability margin of the V j

dc0

is decreased based on the MSDVC. In other words, the V j
dc0

should be more close to the V j
dc,ref in order to be stabilize after

the transient. In contrast, the net injected power to the DC link
is increased to Sj

n + Si
dc0 in the case of power transfer from

the MGi to the MGj . Hence, the stability margin is increased.
A third case in Table I is related to enabling the VSCj before
the power exchange. This BTBC operation strategy leads to a
medium stability margin in accordance with previous cases.

The transient stability analysis presented in the form of
MSDVC is a necessary primary step for designing the DC
voltage controller of BTBCs in weak BTBC-IMGs considering
the initial DC voltage challenge. The designer can focus on
each participant variable, including ∆Tdc, Cj

dc, and P j
dc0 to

improve the stability. As a simple solution, the DC voltage
can be stabilized by enabling Vdc controller before power
exchange. Another solution is to design a robust DC voltage
controller, which can be stable for a range of initial DC
voltages as the uncertainty. Note that the control design is
outside the paper scope and can be done in future works.

IV. SIMULATION RESULTS

In this paper, two case studies such as an IMG consisting of
two autonomous AC MGs interconnected through one BTBC
(Case study 1) and an IMG consisting of three autonomous
AC MGs interconnected through three BTBCs (Case study 2),
shown in 4, are simulated in both Editor/MATLAB and OPAL-
RT digital simulator. The details of the real-time OPAL-RT
simulator are expressed in Part I [41]. Each MG structure is
as shown in Fig. 2. The information of the simulated BTBC-
IMGs are presented in Table II, except the interlinking line
impedances displayed in Fig. 4. The state matrix AIMG is
calculated numerically for both IMGs. A2IMG is a 81 × 81
matrix and A3IMG is a 159 × 159 matrix.

TABLE II. POWER AND CONTROL DATA OF CASE STUDIES 1 AND 2

Parameters Symbol Value
General features
Nominal phase voltage vn 326 V
DC link voltage vdc 780 V
Nominal frequency ωn 100π rad/s
Back-to-back converters
DC capacitor Cdc 600 µF
DC resistance Rdc 0.1 Ω

CC proportional gain KCC
p 20

CC Integral gain KCC
p 300

Proportional gain of
Vdc controller KDV C

p 5

Integral gain of
Vdc controller KDV C

i 1787

RLC filter for all converters
Series inductance Lf/Lfc 1.08/2 mH
Series resistance Rf/Rfc 0.05/1 Ω
Shunt capacitance Cf/Cfc 10 µF
Microgrids
MG rated power SMG 3354 VA
Microgrid number 1 2 3
Active load (W) 1500 1800 900
Reactive load (VA) 750 900 450
DERs 1 2 1 2 1 2
Line ind. (mH) Lli 10.6 5 5 2.5 8.5 4.2
Line res. (Ω) Rli 1.6 0.8 1.2 0.6 1.5 0.7
ω − P droop
gain (rad/kW.s) mp 1.6 0.8 1.6 0.8 1.6 0.8

V −Q droop
gain (10V/kVAr) nq 6.5 3.2 6.5 3.2 6.5 3.2

KP KI

PI voltage controller 0.05 20
PI current controller 30 500

(a) (b)
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Fig. 4. The structure of the simulated interconnected MGs: (a) Case study 1:
two autonomous AC MGs interconnected through one BTBC, (b) Case study
2: three autonomous AC MGs interconnected through three BTBCs.

Several analyses and simulations are carried out to identify
the dynamic behavior of BTBC-IMGs and assess their sta-
bility. Using eigenvalue analysis and participation matrix, the
impact of each module on the dynamic IMG modes have been
specified in Part I [41]. Specially, remarkable contributions of
the BTBC parameters e.g. DC voltage controller in the DCMs
are identified. Here, sensitivity analysis, as a complementary
tool for small-signal stability analysis, is applied on the
main participants in the DCMs to find the critical values
and acceptable ranges of parameters. Moreover, time-domain
simulations verify the theoretical transient stability analysis in
Section III and the sensitivity analysis results in Section IV-A.

A. Sensitivity Analysis

1) DC Side and Voltage Controller of Back-to-back Con-
verter: Table III shows the participation factors for the DC
side and its controller in the Case study 1. The non-dominant
mode is only impacted by the DC side parameters. However,
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Fig. 5. Sensitivity analysis output for the BTBC voltage controller parameters:
0.1 < KDV C

p < 200, 1 < KDV C
i < 4000, and RLdc = 0.

TABLE III. PARTICIPATION MATRIX FOR BTBC DC SIDE

Dynamic modes
State variable λ23 = −16667 λ70 = j1.05 λ71 = −j1.05

∆Xdc1 0.5 0.249 0.249
∆Xdc2 0.5 0.249 0.249

∆XDV C 0 0.499 0.499
Other 0 <0.003 <0.003

the DCMs are related to both power and control parts of the
DC link. Fig. 5 indicates the trajectory of the λ70,71 for chang-
ing the DC voltage controller parameters as 0.1 < KDV C

p <
200 and 1 < KDV C

i < 4000. As a general result, increasing
the KDV C

p results in a low stability improvement, and an
increase in KDV C

i leads to reduced oscillation damping. In
order to maintain stability, the KDV C

p must be chosen larger
in relation to a larger KDV C

i . For instance, in the case of
KDV C

i = 1778, the dominant frequency modes are stable just
for KDV C

p > 7.7. Note that the DCMs are not very sensitive
to the DC side elements. However, all resistive elements, e.g.
RLdc improve the stability.

2) PLLs of Back-to-back Converter: Fig. 6 shows the loci
of BTBC PLL-affected eigenvalues for changing parameters
as 0.01 < KPLL

p < 1 and 0.1 < KPLL
i < 5 in the Case

study 1. In accordance with the two oscillatory modes one can
conclude: i) when the KPLL

p increases, the stability boundary
improves. However, it decreases the oscillation damping for
all values of KPLL

i . ii) Very low values of KPLL
p cause

instability. iii) The KPLL
i increment causes instability for

low KPLL
p values. For the stable non-oscillatory mode, the

damping improves by decreasing KPLL
p and/or increasing

KPLL
i . In order to satisfy a degree of robust stability and

a specified value of the oscillation damping (ζ = 0.1 [12]),
acceptable ranges of the PLL parameters can be found, e.g. for
Case study 1 as 0.2 ≤ KPLL

p ≤ 0.7 and 0.5 ≤ KPLL
i ≤ 2.

3) ω − P droop characteristic: The mp changes by DER
rating (SDER) variation at a constant ∆ωmax, which in turn
is related to MG rated power (SMG). Fig. 7 shows the DCM
trajectories for 335.4 VA < SMG2 < 33.5 kVA and ∆ωmax =
1.57 rad/s. SMG2 <420 VA causes a severe instability based
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Fig. 6. Sensitivity analysis output for phase-locked loop parameters: 0.01 <
KPLL

p < 1 and 0.1 < KPLL
i < 5.
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Fig. 7. Sensitivity analysis output for MG2 rating as 335.4 VA < SMG2 <
33.5 kVA, ∆Vmax = 32.6 V and ∆ωmax = 1.57 rad/s.

on λ1,2 and SMG2 <3051 VA (mMG2
p1 > 1.73 rad/kW.s or

mMG2
p2 > 0.86 rad/kW.s) causes a very slow instability based

on λ3,4. The droop gain upper limits are already demonstrated
for autonomous MGs [45] and CB-IMGs [12], [14].

4) Initial DC Voltage (V 2
dc0): The V 2

dc0 should be provided
by a supplementary controller e.g. using a parallel battery with
Cdc2, which will be bypassed after precharging. Fig. 8 shows
the sensitivity analysis outputs for 100 V< V 2

dc0 <800 V in the
Case study 1. According to Fig. 8(a), some medium-frequency
modes λ16−21 improve the stability by increasing the V 2

dc0.
In addition, improved IMG stability margin can be seen in
Fig. 8(b) in accordance with λ10−15 by increasing the V 2

dc0.
Although, the λ8,9 decrease the system damping. Fig. 8(c)
shows the DCMs λ3−7, where are maintained stable for all
values of the V 2

dc0. Nevertheless, the DCMs λ1,2 can be stable
only for V 2

dc0 > 750 V as shown in Fig. 8(d).
This instability is due to the DC voltage controller inability

in charging the Cdc2 before disturbing the AC sides. In fact,
the MSDVC is exceeded. It is noteworthy that the sensitivity
analysis outputs in Fig. 8 is not only useful to show the
impact of the V 2

dc0, but also convenient to generally express
the participation of the BTBC DC voltage in the IMG stability.

5) Comparison Between Two and Three Interconnected
Microgrids: Fig. 9 shows the sensitivity analysis results for
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Fig. 8. Sensitivity analysis output for 100 V< V 0
dc2 <800 V in different

frequency ranges: (a) large frequencies, (b) medium frequencies, (c) stable
low frequency modes, (d) unstable low-frequency modes for V 0

dc2 > 750.

changing KPLL
i of BTBC12 from 0.1 to 5. In both Case

studies 1 and 2, λ1,2 behave similarly. In the Case study 2,
λ4,5 and λ6,7, related to BTBC13 and BTBC23 respectively,
have a low tendency to be unstable. The λ8−10 are independent
from changing the KPLL

i completely and other, λ11−14 and
their conjugated modes, have a negligible sensitivity to it.
Therefore, by changing an effective parameter of one of
BTBCs on the DCMs, a considerable interaction cannot be
observed among BTBCs themselves and the MGs. In addition,
the number of IMGs cannot affect this interaction.

6) Number of Interconnected Microgrids: By increasing the
number of IMGs, the structure of the AC passive elements
changes and the number of on-mission control instruments
increases. According to the eigenvalue analysis and participa-
tion matrix results presented in Part I [41], for the case of two
IMGs, the AC passive elements e.g. RLC filters, do not have
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Fig. 9. Sensitivity analysis output when the BTBC12’s KPLL
i varies from

0.1 to 5 for Case study 1 (points), and Case study 2 (circles).

a considerable impact on the DCMs. In addition, parametric
changes of the control modules have approximately the same
impact on the different number of IMGs. Fig. 9 shows this
fact for the Case studies 1 and 2. It can be realized simply
for more IMGs using the proposed modeling method. As a
pleasant result, the dominant modes are not sensitive to the
number of IMGs. On the other hand, increment of on-mission
control instruments specially BTBCs leads to an increase in the
number of DCMs, which in turn, decreases the IMG security.

B. Time-Domain Simulations

1) Frequency Instability for Case Study 1: Fig. 10 shows
some outputs of the Case study 1, where the MGs are
isolated until t = 0.5 s. They are connected hereafter with
KPLL2

i = 0.5 to exchange 800 W from MG2 to MG1, which
results in a stable operation. The KPLL2

i is increased to 2.5 at
t = 2 s. According to Fig. 10(a), DER and PLL frequencies
indicate a slow instability due to exciting correlated DCMs
to the BTBC12 PLL shown in Fig. 6. The instability can be
observed in the other measured frequencies with a smaller
amplitude, although its amplitude is larger in the fMG2

PLL itself.
The impact of frequency instability on the DC link voltage can
be seen in Fig. 10(b), which in turn, spreads the instability to
MG1. Fig. 10(c) and 10(d) show MG2 support for MG1 until
t = 2 s, then the instability appears. As a result, the obtained
ranges for the parameters, e.g. KPLL2

i presented in Section
IV-A is necessary to maintain IMG stability.

2) Voltage Instability for Case Study 2: In this scenario, the
MGs are isolated at the beginning. The MG1 load increases
at t = 0.5 s from 60% to 100% of the rated MG1 load. MG2

sends 600 W and 300 VAr to MG1 at t = 1 s via BTBC12

while v12
dc0 = 750 V. MG3 wants to send 600 W and 300 VAr

to MG1 at t = 2 s via BTBC13 in order to fully compensate the
MG1 overload, but with v13

dc0 = 700 V. Since v13
dc0 is lower than

the threshold as 750 V indicated in Fig. 8(d), the v13
dc cannot

track the reference and goes to a very low value as indicated
in Fig. 11(a). The impact of the DC voltage instability on the
active and reactive powers of DERs can be observed in Figs.
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Fig. 10. Case study 1: (a) DER and phase-locked loop frequencies, (b)
BTBC12 DC voltage, (c) DER’s active powers, (d) DER’s reactive powers.

11(b) and 11(c). Such a transient voltage instability indicates
the necessity of preserving the MSDVC for BTBC-IMGs.

3) Power Flow Direction: As mentioned in Section III-D,
the initial DC voltage stability or MSDVC correlates with
the BTBC power flow direction. In this scenario, the same
power P ref

12 = 855 W is considered to flow from MG2 to
MG1 in Situation 1 and from MG1 to MG2 in Situation 2. In
order to calculate the Vdc0 stability margin, it is assumed that
Rdc = 0 Ω and ∆Tdc = 0.01 s. Then, employing (10) and
using information in Table II, V S1

dc0 ≥ 752.9 V for Situation
1 and V S2

dc0 ≥ 733.7 V for Situation 2. Therefore, when the
power flows from MG2 to MG1 as 855 W, the MSDVC equals
to 752.9 V, while it is decreased to 733.7 V in Situation 2.
For example, Vdc0 = 740 V can stabilize the two IMGs in
Situation 2 (see Figs. 12(a) and 12(c)), but it cannot stabilize
them in Situation 1 (see Figs. 12(a) and 12(b)). In Fig. 12, the
two MGs are isolated until t = 1 s. They are interconnected in
the both Situations 1 and 2 at t = 1 s. The transient stability
is satisfied for Situation 2 due to a stabilizing V S2

dc0 = 740 V,
whereas it cannot be achieved in Situation 1 due to MSDVC
violation for the V S1

dc0 = 740 V. Therefore, the worse power
direction must be considered for calculating MSDVC in order
to stabilize IMGs under each power flow direction.

4) Pre-charging Before Power Flow: As mentioned in
Section III-D , pre-charging the DC capacitor before power
flow (base case in Table I) can be as a simple solution for
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Fig. 11. Case study 2: (a) DC voltage of back-to-back converters, (b) active
powers of DERs, (c) reactive powers of DERs.
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transient stability improvement in the case of enabling BTBC.
Similar to the previous Section, the same power P ref

12 = 855
W is considered to be flown from MG2 to MG1 (Situation 1)
and from MG1 to MG2 (Situation 2) with same Vdc0 = 740
V. In contrast, the DC capacitor is charged before enabling
power flow in [1 2] s for the both Situations. Then, power
is flowing in [2 3] s. Fig. 13 shows the transient stability
for the both Situations in comparison to Fig. 12, which the
dc capacitor is not initially charged. Therefore, pre-charging
the DC capacitor has a considerable improvement in the
transient stability. Another important observation is decoupling
the dynamics of the DC capacitor charge and the power flow.
In both Figs. 13(a) and 13(b), the same dynamics can be seen
for the capacitor charging in Situations 1 and 2 during [1 2] s
and for the power flow symmetrically during [2 3] s.

5) Initial Power Transfer Limit: Here, initial PTL (IPTL)
is considered as the transient stability criterion instead of MS-
DVC. In the all Scenarios, which applied as power exchange
from MG2 to MG1 on Case study 1, the MGs are isolated
before t = 1 s, and then they are interconnected with different
Vdc0 and P ij

ref . For Vdc0 = 730 V, IPTL1 is obtained as
370 W by increasing P ij

ref and checking for the stability. In
the first Scenario, P ij

ref = 114 W, which is less that IPTL1.
Hence, the DC voltage is transiently stable (Fig. 14(a), blue
color), and the active power is settled on the reference after the
oscillations (Fig. 14(b), blue color). In the second Scenario,
P ij
ref = 399 W, which is a little larger than IPTL1. Therefore,

the DC voltage will be unstable and the power cannot be stably
exchanged (red color). For the same power reference, Vdc0 is
increased to 740 V in the third Scenario. The corresponding
IPTL2 to this new Vdc0 is found as 712 W. Since P ij

ref = 399
W is less than IPTL2, the stability is preserved in this Scenario
(black color). Finally, in order to validate IPTL2, P ij

ref = 798
W>IPTL2 is considered. The instability can be seen in Fig.
14 (green color). As a result, IPTL can be another criterion of
BTBC enabling transient stability, which has a close relation

V
d
c 

(V
)

P
 (

k
W

)

(a)

(b)

Time (s)

Time (s)

Isolated MGs Interconnected MGs

0 0.5 1 1.5 2 2.5 3

200

300

400

500

600

700

800

 

 

V
dc0

=730 V, P
ref

=114 W

V
dc0

=730 V, P
ref

=399 W

V
dc0

=740 V, P
ref

=399 W

V
dc0

=740 V, P
ref

=798 W

V
dc0

ref
= 780 V

1 1.5 2 2.5 3
760

780

800

0 0.5 1 1.5 2 2.5 3
-800

-600

-400

-200

0

200

400

600

800

 

 

IPTL
740 V

 = 712 WIPTL
730 V

 = 370 W

V
dc0

=730 V, P
ref

= 114 W

V
dc0

=730 V, P
ref

= 399 W

V
dc0

=740 V, P
ref

= 399 W

V
dc0

=740 V, P
ref

= 798 W

 P
ref

= 114 W

 P
ref

= 399 W

 P
ref

= 798 W

IPTL
730 V

 = 370 W

IPTL
740 V

 = 712 W

Fig. 14. Initial power transfer limit (IPTL) for two initial DC voltages as 730
V and 740 V (Case study 1): (a) BTBC12 DC voltage, (b) active power flow.

with the initial dc voltage or MSDVC.

V. CONCLUSION

This paper has investigated the stability analysis of fully
power-electronics based IMGs comprising VSC-based DERs
and power exchanger back-to-back converters. Such IMGs are
identified based on the dynamic modes, specially the critical
modes. In addition to droop gains, the back-to-back converters
parameters are introduced as important participants in the
dominant critical modes. According to the sensitivity analysis
results, the DC voltage controller parameters, synchronizing
PLL parameters and initial DC link voltage are able to
destabilize IMGs. In contrast, the passive elements, including
interlinking lines and both AC and DC sides of the back-to-
back converters do not have a considerable contribution in
the critical modes. Thus, the critical mode trajectories do not
change remarkably by increasing the number of MGs and their
interconnections. Nevertheless, the overall IMG security is
reduced owing to the increased number of critical modes.The
proposed transient stability assessment for initial DC voltage
of the back-to-back converter proves a minimum stabilizing
value as the stability margin, which is correlated severely to
the power flow direction. As an important result, the back-to-
back converters-based IMGs can be operated stable in different
situations only by selecting appropriate parameter ranges.
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