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ABSTRACT 

This paper addresses a control strategy to design a PI-
based load-frequency control (LFC) in face of 
communication delays. First the PI-based LFC design is 
transferred to a static output feedback (SOF) control 
design and then to obtain the optimal PI gains, a multi 
constraint minimization problem is solved using the ∞H  
control technique. 

A multi-area power system example is given to 
illustrate the proposed control methodology and the results 
are compared with the delay less system-based ∞H  
control design.  
 
Keywords: ∞H control, LFC, time-delay systems, static 
output feedback control, LMI. 
 

1.  INTRODUCTION 
 

Currently in many countries, power electric systems are 
restructured. Operating the power system in a new 
environment will certainly be more complex than in the 
past due to the considerable degree of interconnection, 
and to the presence of technical constraints to be 
considered together with the traditional requirements of 
system reliability. 

In a deregulated environment, load-frequency control 
(LFC) acquires a fundamental role to enable power 
exchanges and to provide better conditions for the 
electricity trading. Since the LFC system is faced by new 
uncertainties in the liberalized electricity market, the 
modeling of these uncertainties and simulation of dynamic 
behavior of new structure is very important. A major 
challenge in new environment is to integrate computing, 
communication and control into appropriate levels of 
system operation and control. An effective power system 
market highly needs to an open communication 
infrastructure to support the increasing decentralized 
property of control processes.  

It is well known in control systems that time delays can 
degrade a system’s performance and even cause system 

instability [1-3]. In light of this fact, in near future the 
communication delays as one of important uncertainties in 
LFC synthesis and analysis due to expanding physical 
setups, functionality, complexity of power system 
structure and changing the “Control area” concept is to 
become a significant problem [4]. 

Recently, several papers are published to address the 
LFC modeling/synthesis in presence of communication 
delays [5-7].  [5] is focused on the communication 
network requirement for a third party LFC service. A 
compensation method for communication time delay in 
the LFC systems is addressed in [6] and a control design 
method based on linear matrix inequalities is proposed for 
LFC system with communication delays in [7].  

This paper proposes a new control methodology to 
design a decentralized LFC in face of multi-delayed 
signals. First the LFC problem is reduced to a static output 
feedback control synthesis for a multiple delays system, 
and then the control parameters are easily carried out 
using robust ∞H  control technique. 

The main goal is to keep the fundamental LFC 
concepts and well-tested simple PI control structure to 
develop new LFC synthesis. In comparison of [7], 
simplicity of control structure, using a more complete 
model for delayed LFC system and no need to additional 
controller can be considered as advantages of the 
proposed methodology. This approach is applied to a 3-
control area power system example.  

 

2.  CONTROL METHODOLOGY 
 
Preliminary 
Consider a class of time-delay systems of the form 
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Here nx ℜ∈  is the state, nu ℜ∈  is the control input, 

nw ℜ∈  is the input disturbance, nz ℜ∈  is the controlled 
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output, ny ℜ∈  is the measured output, n
2C ℜ∈  is the 

constant matrix such that the pair ) ,( 2CA  is detectable. d 
and h represent the delay amounts in the state and the 
input respectively. nnA ×ℜ∈  and mnB ×ℜ∈  represent the 
nominal system without delay such that the pair ) ,( BA  is 
stabilizable. nn

dA ×ℜ∈ , mn
hB ×ℜ∈ , qnF ×ℜ∈  are 

known matrices and )(tψ  is a continuous vector-valued 
initial function. 

The following theorem adopts ∞H  theory in the 
control synthesis for time-delay systems and establishes 
the conditions under which the state feedback control law 
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stabilizes (1) and guarantees the ∞H  norm bound γ  of the 
closed-loop transfer function z wT , namely γ<

∞z wT ; 
0>γ . 

 
Theorem 1, [1]: The state feedback controller K 
asymptotically stabilizes the time-delay system (1) and 

γ<
∞z wT  for 0hd ≥ , if there exist 

matrices nnT PP0 ×ℜ∈=<  , nn
1

T
1 QQ0 ×ℜ∈=<  , 

nn
2

T
2 QQ0 ×ℜ∈=<   satisfying the LMI 

 

0

I-000PF
0I00C
00Q0KPB
000QPA

PFCPBKPAQQPAPA

2

T
1

2h

1d

T
1

T
h

TT
d21

T
cc

<























−
−

+++

γ

 
 (3) 

 
where 
 

BKAAc +=      (4) 
 

  
Proposed Strategy 
In this work, by augmenting the control area description to 
include the area control error (ACE) as a measured output 

signal and its integral, the PI-based LFC problem is 
transferred to a static output feedback (SOF) control 
problem [8, 9].  
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Pk  and Ik  are constant real numbers (PI parameters). 

The main merit of this transformation is in possibility of 
using the well-known SOF control techniques to calculate 
the fixed gains, and once the SOF gain vector is obtained, 
the PI gains are ready in hand and no additional 
computation is needed. 

Now, the control problem is that of designing a SOF 
control for the time-delay system (1) of the form of Eq. 
(5). k is a static gain to be determined.  Following theorem 
provides an LMI based  ∞H  solution: 

 
Theorem 2: The SOF controller k asymptotically stabilizes 
the system (1) and  γ<

∞z wT  for 0hd ≥ ,  if there exist 
matrixes nnT YY0 ×ℜ∈=<  , nn

t
T

t QQ0 ×ℜ∈=<  and 
nn

s
T

s QQ0 ×ℜ∈=<   satisfying the matrix inequality (7). 
 
Proof: The controller (5) can be considered as a replica of 
the state-feedback controller (2): 
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Based on theorem 1, there exists a memory less feedback 
controller with constant gain 
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such that the closed-loop system is asymptotically stable 
and  γ<

∞z wT  for 0hd ≥ , . According to Eq. (4), for 
the closed-loop system we have 
 

2c BkCAA +=     (10) 

 
The stabilizing controller satisfies inequality (3). 

Therefore, using Eq. (10) we can write 
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Premultiplying and postmultiplying (11) by 1P−  and 
letting YP 1 =− , assuming t1 QYYQ = , s2 QYYQ =  and 
using the following inequality [10]: 
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(11) can be reduced to 
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In the light of the Schur complement method, (13) can be 
arranged conveniently to yield the block form (7) as 
desired. 

□ 
Theorem 2 shows that to determine the SOF controller k, 

one has to solve the following minimization problem: 
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The matrix inequality (7) points to an iterative approach to 
solve k, tQ  and sQ  namely, if Y is fixed, then it reduces 
to an LMI problem in the unknown k, tQ  and sQ . The 
LMI problem is convex and can be solved efficiently 
using the LMI Control Toolbox [11], if a feasible solution 
exists. One may use a simple optimization algorithm 
similar to that is given in [8]. 
 
Remark 1: It is shown that the necessary condition for the 
existence of solution is that the nominal transfer function 
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Is strictly positive real (SPR) [12]. To approach the 
solution for some positive real cases, it is possible to use a 
reasonable approximation to close those systems to SPR 

ones.  
 
Remark 2: It is significant to note that because of using 
simple constant gains, pertaining to SOF synthesis for 
dynamical systems in presence of strong constraints and 
tight objectives are few and restrictive. Under such 
conditions, the minimization problem (14) may be not 
approach to a strictly feasible solution. 
 

3.  TIME DELAY POWER SYSTEM 

 
The traditional LFC model [4, 13] is modified to include 
communication delays. These delays are considered on 
three communication links. The delays on the measured 
frequency and power tie-line flow from RTUs to control 
center and the produced rise/lower signal from control 
center to individual generation units.  

The modified LFC model is given in Fig. 1. The 
given labels and notations are: 

 
if∆ : frequency deviation,  
ciP∆ : governor load setpoint,  
tiP∆ : turbine power,  

itieP −∆ : net tie-line power flow,  
iM : equivalent inertia constant,  

iD : equivalent damping coefficient,  
ijT : tie-line synchronizing coefficient for area i & j,  
iβ : frequency bias, 
kR : drooping characteristic, 

iACE : area control error (ACE), 
kiα : ACE participation factors. 

 
 Following a load disturbance within the control area, 

the frequency of the area experiences a transient change 
and the feedback mechanism comes into play and 
generates appropriate control signal to make generation 
follow the load. The balance between connected control 
areas is achieved by detecting the frequency and tie line 
power deviation via communication line to generate the 
ACE signal used by PI controller. The control signal is 
submitted to the participated Gencos via other link, based 
on their participation factors. 

According to (1), the open-loop state space model for 
the LFC system of control area “i” can be obtained as 
follows: 
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The state variables are considered as those given in [9, 13] 
and 
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Fig. 1.  LFC system with communication delays 
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where, 
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Other parameters and matrix factors are the same as given 
in [9]. 

 

4.  APPLICATION TO A 3-CONTROL AREA 

 
To illustrate the effectiveness of the proposed control 
strategy, the PI-based LFC design in a 3-control area 
power system, shown in Fig. 2, is considered as an 
example. Each control area includes three generation 
companies (Gencos) with 9th order.  

The power system data and parameters are considered 
the same as in [13]. It is assumed that the maximum 
frequency, tie-line and control signal delays for each 
control area are as follows: 

 

 3 2, 1,i       ;        s1h    , s1d ii === 5.  

 

 
 

Fig. 2.  Three control area power system 
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Based on the given simple stability condition in [14], 

the open loop system (16) with real matrices is stable if 
 

0AA dii <+)(µ     (22) 

 
where 
 

)( max
2
1)( i

T
ij

j
i AAA += λµ    (23) 

 
Here, jλ  denotes the jth eigenvalue of )( i

T
i AA + . In 

light of above stability rule, we note that for the example 
at hand, the control areas are unstable: 

 

04736.10)( >=+ d11 AAµ  

 

02615.12)( >=+ d22 AAµ  

 

02285.10)( >=+ d33 AAµ  

 
According to synthesis methodology described in 

section 3, a set of three decentralized robust PI controllers 
are obtained. For comparisons, a robust PI controller is 
designed for nominal system (without delays) of each 
control area using the ∞H -SOF control technique [8].  

 

5.   SIMULATION RESULTS 

 
In order to demonstrate the effectiveness of the proposed 
strategy, some simulations were carried out. Fig. 3 shows 
the closed-loop response (frequency deviation, area 
control error and control action signals) in presence of 
delays 

 
 3 2, 1,i       ;        s0.5h    , s0.5d ii ===  

 
Following a 0.1 pu step load disturbance at 5s in each 

control area. Both types of designed controllers act to 
return the frequency and ACE signals to scheduled values, 
however the applied delays degrade the system 
performance for nominal (delay less) system based ∞H  
control design. 

Increasing the delays will degrade the conventional 
LFC system performance seriously. F.g 4 shows the 
frequency deviation for control areas in face of following 
delays in communication channels: 

 
 3 2, 1,i       ;        s2h    , s1.5d ii ===  

 
 It shows that the conventional ∞H  controllers are 

not capable to hold the stability of closed-loop system. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
 

Fig. 3.  System response for  s0.5h    , s0.5d ii ==  . Solid 
(proposed design), dotted (conventional design): a) frequency 
deviation, b) ACE and c) control effort 
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Fig. 4.  System response for  s2h    , s1.5d ii == . Solid 
(proposed design), dotted (conventional design) 

 

6.   CONCLUSION 
 

An ∞H - SOF control design is proposed to synthesis of 
PI based LFC system with multiple communication delays. 
The proposed method was applied to a 3-control area 
power system and the results are compared with delay less 
system based ∞H control design. The simulations 
demonstrate the viability of the proposed method.  
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