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Abstract: This research work addresses a new robust control strategy to synthesis 

of robust proportional-integral-derivative (PID) based power system stabilizers 

(PSS). The PID based PSS design problem is reduced to find an optimal gain 

vector via an H∞ static output feedback control (H∞-SOF) technique, and the 

solution is easily carried out using a developed iterative linear matrix inequalities 

algorithm. To illustrate the developed approach a real-time experiment has been 

performed for a longitudinal four-machine infinite-bus system on the Analog 

Power System Simulator at the Research Laboratory of the Kyushu Electric 

Power Co. The results of the proposed control strategy are compared with full 

order H∞ and conventional PSS designs. The robust PSS is shown to maintain the 

robust performance and minimize the effect of disturbances properly. 
 

Keywords:  Power system stabilizer, PID, Static output feedback control, LMI, robust 

performance.  
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1 Introduction 

 

The proportional-integral-derivative (PID) controller, because of its functional simplicity, is widely 

used in industrial applications. However, their parameters are often tuned using experiences or trial and 

error methods. Unfortunately, it has been quite difficult to tune properly the gains of PID controllers 

because many industrial systems are often burdened with problems such as structure complexity, 

uncertainties and nonlinearities.  

Over the years, many different parameter tuning methods have been presented for PID controllers. A 

survey up to 2002 is given in Ref. [1-2]. Most of these methods present modifications of the frequency 

response method introduced by Ziegler and Nichols [3]. Some efforts have also been made to find 

analytical approaches to tune the parameters [4-6]. Several tuning methodology based on robust and 

optimal control techniques are introduced to design of PI/PID controllers [7-11]. 

In parallel with other industries, the PID controllers are commonly used in power systems control and 

operation. However, because of expanding physical steps, functionality and complexity of power 

systems, it is very difficult to maintain a desired performance for a wide range of operation using 

conventionally tuned PID based power system controllers. Although the most of recent addressed 

approaches introduce high-order control structure which have been proposed based on new contributions 

in modern control systems, because of complexity of control structure, numerous unknown design 

parameters and neglecting real constraints, they are not well suited to meet the design objectives in a real 

multi-machine power system.  

Recently, some techniques have been proposed for tuning of PID based power system stabilisers 

(PSSs). Several self-tuning PID-PSSs were presented for improving the dynamic stability of single or 

multimachine power systems [12-14]. In [15-17], state space eigenvalue analysis is carried out to 

determine the stable operating gain regions for PI and PID controllers to stabilise of power systems. The 

IEEE working group publications [18-19] summarise generally accepted PID controller tuning 

guidelines in terms of generator parameters with margins for stability. Some fuzzy logic based PID-

PSSs were proposed in [20-22].  [23, 24] used genetic algorithm (GA) to set the PID gains of a power 
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system stabiliser.  

In the present work, the PID based PSS design problem is transferred to an H∞ static output feedback 

(H∞-SOF) control problem. The main merit of this transformation is in possibility of using the well-

known SOF control techniques to calculate the fixed gains, and once the SOF gain vector is obtained, 

the PID gains are ready in hand and no additional computation is needed. 

In a given PID-based control system i, the measured output signal (for example the speed 

deviation iω ) performs the input signal for the controller and we can write 

 

dt
dkkku i

DiiIiiPii
ωωω ++= ∫ .         (1) 

 
where Pik , Iik  and Dik  are constant real numbers. In order to change (1) to a simple SOF control 

as iii yKu = , we can rewrite it as follows 

 
T

i
iiDiIiPii dt

dkkku ⎥⎦
⎤

⎢⎣
⎡= ∫

ωωω]      [          (2) 

 
Therefore, by augmenting the power system description to include the iω , it’s integral and derivative as a 

new measured output vector ( iy ), the PID control problem becomes one of finding a static output 

feedback that satisfied prescribed performance requirements. 

Finally, since the solution of resulted non convex inequalities using the general linear matrix 

inequalities (LMI) technique is not possible, to solve the H∞-SOF control problem and to obtain the 

optimal static gains (PID parameters), an iterative LMI algorithm is developed. The preliminary step of 

this work has been presented in [25]. 

The proposed controller uses the measurable signals and has merely proportional gains; so gives 

considerable promise for implementation, especially in a multi-machine system. In fact the proposed 

control strategy attempts to make a bridge between the simplicity of control structure (simple PID) and 

robustness of stability and performance (using H∞ theory) to satisfy the PSS tasks.  

To demonstrate the efficiency of the proposed control method, a real time experience has been 

performed on a four-machine infinite-bus system using the large scale Analog Power System Simulator 

at the Research Laboratory of the Kyushu Electric Power Company (Japan). The obtained results are 
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compared with conventional and full order H∞ controllers. The robust PID based PSS is shown to 

maintain the robust performance and minimise the effect of disturbances properly. 

 
 

2 Test System 

 

The test system is a modified 12-bus, 4-machine model of the West Japan Power System. A single 

line representation of the study system is shown in Fig. 1. Although, in the given model the number of 

generators is reduced to four, it closely represents the dynamic behavior of the west part of the West 

Japan Power System, and it is widely used by Japanese researchers [26, 27, 28]. The most important 

global and local oscillation modes of actual system are included. Each unit is considered a thermal unit, 

and has a separately conventional excitation control system as shown in Figs. 2a and 2b.  

Each unit has a full set of governor-turbine system (governor, steam valve servo-system, high-

pressure turbine, intermediate-pressure turbine, and low-pressure turbine) which is shown in Fig. 3. The 

generators, lines, conventional excitation system and governor-turbine parameters are given in Table 1, 

Table 2, Table 3 and Table 4 (Appendix), respectively.  

 

3 Power System Modeling 

 

In order to design a robust power system controller, it is first necessary to consider an appropriate 

linear mathematical description of multi-machine power system with two axis generator models. In the 

view point of ‘generator unit i’, the state space representation model for such a system has the form 
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)())(()(
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where the states  
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are defined as deviation form the equilibrium values 

 
[ ]e

di
e

qi
e
2i

e
1i

T
ei EEx ′′= ωδ           (5) 

 
and, here 

 
dididi xxx ′−=Δ , diqiqi xxx ′−=Δ          (6) 

 
)()()( e

qi
e

qi
e
di

e
diqiqididiei IEIEIEIExP ′+′−′+′=Δ         (7) 

 

∑
∑

′−+

′+=

k
qkikikikik

k
dkikikikikdi

EBG

EBGI

]cossin[      

]sincos[

δδ

δδ

         (8) 

 

∑
∑

′++

′−=

k
qkikikikik

k
dkikikikikqi

EBG

EGBI

]sincos[      

]sincos[

δδ

δδ

         (9) 

 
A detailed description of all symbols and quantities can be found in [29]. Using the linearization 

technique and after some manipulation, the nonlinear state equations (3) can be expressed in the form of 

following linear state space model.   
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4 Proposed Control Strategy 

4.1  H∞ SOF Design 

This section gives a brief overview for the H∞ based static output feedback (H∞-SOF) control design. 

Consider a linear time invariant system G(s) with the following state-space realization. 
 

)(sGi : 
i2ii

ii12i1ii

ii2i1iiii

xCy
uDxCz

uBwBxAx

=

+=

++=&

         (12) 

 
where ix  is the state variable vector, iw  is the disturbance and area interface vector, iz  is the controlled 

output vector and iy  is the measured output vector. The iA , 1iB , 2iB , 1iC , 2iC  and 12iD  are known real 

matrices of appropriate dimensions. 

The H∞-SOF control problem for the linear time invariant system )(sGi  with the state-space 

realization of (12) is to find a gain matrix iK  ( iii yKu = ), such that the resulted closed-loop system is 

internally stable, and the H∞ norm from iw  to iz  (Fig. 4) is smaller than γ , a specified positive number, 

i.e. 
 

γ(s)T
iiwz <

∞
           (13) 

 
It is notable that the H∞-SOF control problem can be transferred to a generalized SOF stabilization 

problem which is expressed via the following theorem [30]. 

Theorem. The system (A, B, C) is stabilizable via SOF if and only if there exist P>0, X>0 and iK  

satisfying the following quadratic matrix inequality 
 

0
ICKXB

C)KX(BPPBBPXBBXPBB-XAXA

i
T

T
i

TTTTT
<

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+
++−+        (14) 

 
Here, the matrices A, B and C are constant and have appropriate dimensions. The X and P are symmetric 

and positive-definite matrices (Proof is given in [30]).  
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Since a solution for the consequent non convex optimisation problem (14) can not be directly 

achieved by using general LMI technique [31], a variety of methods were proposed by many researchers 

with many analytical and numerical methods to approach a local/global solution. In Section 4.3, to solve 

the resulted SOF problem, an iterative LMI is introduced based on the existence necessary and sufficient 

condition for SOF stabilisation, via the H∞ control technique. 

4.2 Control Framework 

The overall control structure using SOF control design for an assumed power system is shown in 

Fig. 5, where refivΔ and id  show the reference voltage deviation and system disturbance input, 

respectively. 

Using the linearized model for a given power system “i” in the form of (12) and performing the 

standard H∞-SOF configuration (Fig. 4) with considering an appropriate controlled output signals 

results an effective control framework. This control structure adapts the H∞-SOF control technique with 

the described power system control targets and allows direct trade-off between robust performance and 

robust stability by merely tuning of a vector gain.  

Here, disturbance input vector iw , controlled output vector iz  and measured output vector iy  are 

considered as follows: 

 
[ ]irefi

T
i dvw Δ=            (15) 

 
][ i3ii2iti1i

T
i uηηvηz δ=           (16) 

 

⎥⎦
⎤

⎢⎣
⎡= ∫ dt

dy i
ii

T
i

ωωω            (17) 

 
where the iω and iδ  are the speed and rotor angle deviations. The 1iη , 2iη  and 3iη are constant weights that 

must be chosen by designer to get the desired closed-loop performance. The selection of performance 

constant weights 1iη  and 2iη  is dependent on the specified voltage regulation and damping performance 

goals. In fact an important issue with regard to selection of these weights is the degree to which they can 

guarantee the satisfaction of design performance objectives.  

Furthermore, 3iη sets a limit on the allowed control signal to penalize fast changes, large overshoot 
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with a reasonable control gain to meet the feasibility and the corresponded physical constraints. Since 

the vector iz  properly covers all significant controlled signals which must be minimized by an ideal PSS 

design, it is expected that the proposed robust controller could be able to satisfy the voltage regulation 

and stabilizing objectives, simultaneously. It is notable that, since the solution must be obtained trough 

the minimizing of an H∞ optimization problem, the designed feedback system satisfies the robust 

stability and robust performance for the overall closed-loop system. Moreover, the developed iterative 

LMI algorithm (which is described in the next section) provides an effective and flexible tool to find an 

appropriate solution in the form of a simple static gain controller. 

 

4.3 Developed ILMI Algorithm 

In order to solve the H∞-SOF, an iterative LMI algorithm has been used. The key point is to 

formulate the H∞ problem via a generalized static output stabilization feedback such that all eigenvalues 

of (A-B iK C) shift towards the left half plane in the complex s-plane, to close to feasibility of (14). The 

described theorem in the previous section gives a family of internally stabilizing SOF gains is defined 

as sofK . The desirable solution iK  is an admissible SOF law 

 
iii yKu =  , sofi KK ∈           (18) 

 
such that 

 
*γ<

∞
(s)T  wizi , εγγ <− *           (19) 

 
where ε  is a small positive number. The performance index *γ  indicates a lower bound such that the 

closed-loop system is H∞ stabilizable. The optimal performance index ( γ ), can be obtained from the 

application of a full dynamic H∞ dynamic output feedback control method.  

The proposed algorithm, which gives an iterative LMI solution for above optimization problem, 

includes the following steps: 

 

Step 1.  Set initial values and compute the new (generalized) system )C,B,(A ggg  for the given power 

system (12) as follows: 
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Step 2.  Set i =1, 0γΔ=γΔ  and let γ>γ=γ 0i . 0γΔ  and 0γ  are positive real numbers. 

 

Step 3.  Select 0Q > , and solve X  from the following algebraic Riccati equation 

 
0QXBBXAXXA T

ggg
T

g =+−+           (21) 
 
Set XP1 = . 

 

Step 4.  Solve the following optimization problem for iX , iK  and ia . 

Minimize ia  subject to the LMI constraints: 

 

0
I
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0XX T

ii >= .            (23) 
 
Denote *

ia  as the minimized value of ia . 

Step 5.  If 0a*
i ≤ , go to step 8.  

 

Step 6.  For 1i > , if  0a*
1-i ≤ , sof1-i KK ∈  is an H∞ controller and γΔ+γ=γ i

*  indicates a lower bound such 

that the above system is H∞ stabilizable via SOF control. Go to step 10. 

 

Step 7.  If  1i = , solve the following optimization problem for iX  and iK : 

Minimize trace( iX ) subject to the above LMI constraints (22-23) with *
ii aa = . Denote *

iX  as the iX  

that minimized trace( iX ).Go to step 9. 

 

Step 8.  Set γΔ−γ=γ ii , i =i+1. Then do steps 3 to 5. 
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Step 9.  Set i =i+1 and *
1-ii XP = , then go to step 4. 

 

Step 10.  If the obtained solution ( 1-iK ) satisfies the gain constraint, it is desirable, otherwise retune 

constant weights ( iη ) and go to step 1.   

The proposed iterative LMI algorithm shows that if we simply perturb gA  to I2aAg )/(−  for some 0a > , 

then we will find a solution of the matrix inequality (12) for the performed generalized plant. That is, 

there exist a real number ( 0a > ) and a matrix P>0 to satisfy inequality (22). Consequently, the closed-

loop system matrix ggg KCBA −  has eigenvalues on the left-hand side of the line as =ℜ )(  in the complex s-

plane. Based on the idea that all eigenvalues of ggg KCBA −  are shifted progressively towards the left half 

plane through the reduction of a . The given generalized eigenvalue minimization in the developed 

iterative LMI algorithm guarantees this progressive reduction. 

 

5 Real Time Implementation 

 

To illustrate the effectiveness of the proposed control strategy, a real time experiment has been 

performed on the large scale Analog Power System Simulator at the Research Laboratory of the Kyushu 

Electric Power Company. The whole power system (shown in Fig. 1) has been implemented in the 

mentioned laboratory. Fig. 6 shows the overview of the applied laboratory experiment devices including 

the hardware and control/monitoring desk.  

Unit 1 is selected to be equipped with robust PID control, and therefore our objective is to apply the 

control strategy described in the previous section to controller design for unit 1. Using the described 

control methodology in section 4, a set of optimal PID parameters for the problem at hand is obtained as 

follows.  

 
   [ ] [ ]2140.05308.09615.0== DIPPID kkkK        (24) 
 
 



 

 

12

12

 

The proposed PID control loop has been built in a personal computer were connected to the power 

system using a digital signal processing (DSP) board equipped with analog to digital (A/D) and digital to 

analog (D/A) converters as the physical interfaces between the personal computer and the analog power 

system hardware. In order to signal conditioning, the input/output scaling blocks are used to match the PC 

based controller and the Analog Power System hardware, and, high frequency noises are removed by 

appropriate low pass filters.  

The considered constraints on limiters and control loop gains are set according to the real power system 

control units and close to ones that exist for the conventional PSS unit. The used constant weight vector 

( iη ) is given in Appendix. 

 

6. Experiment Results 

 

The performance of the proposed robust PID (RPID) controller when a voltage deviation, fault and 

system disturbance is injected into the interconnected system is studied, and, the controller is compared 

with a conventional PSS (CPSS). The configuration of the applied CPSS that was accurately tuned by the 

expert operators (who have worked on the system for the several past years), is illustrated in Fig. 7. 

Furthermore, to provide a comparison of what is lost in performance using the simple PID controller over a 

high order controller to achieve the same purpose, an H∞ controller [32] is applied and its performance is 

compared with the RPID controller.   

Fig. 8 shows the electrical power of all units, with the terminal voltage and machine speed of unit 1, 

following a fault on the line between buses 11 and 12 at 2 sec. It can be seen that in comparison of CPPS, 

the system response is quite improved using the designed RPID controller. Fig. 8 shows that although the 

proposed PID controller has a very simple structure, however it is able to maintain the robust performance 

as well as full order H∞ controller. 

Furthermore, the size of resulted stable region by the proposed method is significantly enlarged in 

comparison of CPSS controller. To show this fact, the critical power output from unit 1 in the presence of a 

three-phase to ground fault is considered as a measure tool. To investigate the critical point, the real power 

output of unit 1 is increased from 0.1 pu (The setting of the real power output from the other units is fixed 

at the values shown in Fig. 1). Using the CPSS structure, the resulted critical power output from unit 1 to 

be 0.31 pu [27, 28]; and in case of tight tuning of CPSS parameters (similar to the performed experiment in 

the present work) it could not be higher than 0.52 pu. The critical power output for the applied three PSS is 
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given in Table 5. It can be seen that the simple PID controller designed by this method has a stability 

margin that is comparable to the more complex H∞ controller. During the test scenarios appeared in this 

paper, the output setting of unit 1 is fixed to 0.4 pu.   

In the second test case, the performance of designed controllers was evaluated in the presence of a 0.05 

pu step disturbance injected at the voltage reference input of unit 1 at 20 sec.  Fig. 9 shows the closed-loop 

response of the power systems fitted with the CPSS, H∞ and the proposed RPID controllers. In comparison 

of CPSS, the better performance is achieved by the developed control strategy. 

Finally, the system response in the face of a step disturbance (d) in the closed-loop system at 20 sec, is 

shown in Fig. 10. Comparing the experiment results shows that the robust design achieves robustness 

against the voltage deviation, disturbance and line fault with a quite good damping performance.  

 

7. Conclusion 

 

In this work, to provide robust performance and stability over a wide range of power system operating 

points, a new tuning methodology has been proposed for robust PID based power system stabilizers. For 

this purpose, a control strategy is developed using H∞-SOF control technique via an iterative LMI 

algorithm. The proposed method was applied to a four-machine infinite bus power system, through a real-

time experiment, and the results are compared with conventional PSS and complex H∞ control designs. 

The performance of the resulting closed-loop system is shown to be satisfactory over a wide range of 

operating conditions.  

As shown in the performed real-time laboratory experiments, the proposed robust PID control loop has 

brought a significant effect to improve the power system performance and to widen the stable region. It has 

been shown that the simple PID controller designed by this method has a performance and robust stability 

that is comparable the more complex H∞ controller. Furthermore, because of simplicity of structure, 

decentralized property, ease of formulation and flexibility of design methodology, it is practically 

desirable. 
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Figure Captions 

 
Figure 1. Four-machine infinite-bus power system 

 
Figure 2.  Conventional excitation control system; a) for units 2 and 3, b) for units 1 and 4 

 

Figure 3.  a) Conventional speed governing system, b) Detailed turbine system 

 

Figure 4.  Closed-loop system via H∞-SOF control 

 

Figure 5. The proposed control framework 

 
Figure 6. Performed laboratory experiment 

 

Figure 7.  Conventional power system stabilizer 

 

Figure 8.  System response for a fault between buses 11 and 12, while the output setting of unit 1 is fixed 

to 0.4 pu.; Solid (RPID), dash-dotted (H∞), dotted (CPSS) 

 

Figure 9.  System response for a 0.05 pu step change at the voltage reference input of unit 1; Solid (RPID), 

dash-dotted (H∞), dotted (CPSS) 

 

Figure 10.  System response for a step disturbance at 20 sec; Solid (RPID), dash-dotted (H∞), dotted 

(CPSS) 
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Tables 
 
 

Table 1. Generator constants 
 

 

 

 

 

 

 

 
 

Table 2. Line parameters 
  

Line No. Bus-Bus ijR  (pu) ijX  (pu) ijS  (pu) 

1 1-9 0.02700 0.1304 0.0000 

2 2-10 0.07000 0.1701 0.0000 

3 3-11 0.04400 0.1718 0.0000 

4 4-12 0.02700 0.1288 0.0000 

5 10-6 0.02700 0.2238 0.0000 

6 11-7 0.04000 0.1718 0.0000 

7 12-8 0.06130 0.2535 0.0000 

8 9-10 0.01101 0.0829 0.0246 

9 10-11 0.01101 0.0829 0.0246 

10 11-12 0.01468 0.1105 0.0328 

11 12-5 0.12480 0.9085 0.1640 

 

 

Table 3. Excitation parameters 
  

1K  2K  3K  4K  
)(minmaxE  maxU  minU  

1.00 19.21 10.00 6.48 5.71 7.60 -5.20 

1T ( sec) 2T (sec) 3T ( sec) 4T ( sec) 5T ( sec) 6T ( sec) 7T (s) 

0.010 1.560 0.013 0.013 0.200 3.000 10.000 

 

Unit 

No. 
iM  

(sec) 

iD  dix  

(pu) 

dix′  

(pu) 

qix  

(pu) 

qix′  

(pu) 

d0iT ′  

(sec) 

q0iT ′  

(sec) 

MVA 

 

1 8.05 0.002 1.860 0.440 1.350 1.340 0.733 0.0873 1000 

2 7.00 0.002 1.490 0.252 0.822 0.821 1.500 0.1270 600 

3 6.00 0.002 1.485 0.509 1.420 1.410 1.550 0.2675 1000 

4 8.05 0.002 1.860 0.440 1.350 1.340 0.733 0.0873 900 
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Table 4. Governor and turbine parameters 

  
Parameters Unit 1 Unit 2 Unit 3 Unit 4 

1T  (Sec) 0.08 0.06 0.07 0.07 

2T  (Sec) 0.10 0.10 0.10 0.10 

3T  (Sec) 0.10 0.10 0.10 0.10 

4T  (Sec) 0.40 0.36 0.42 0.42 

5T  (Sec) 10.0 10.0 10.0 10.0 

HT  (Sec) 0.05 0.05 0.05 0.05 

IT  (Sec) 0.08 0.08 0.08 0.08 

LT  (Sec) 0.58 0.58 0.58 0.58 

HK  (pu) 0.31 0.31 0.31 0.31 

IK  (pu) 0.24 0.24 0.24 0.24 

LK  (pu) 0.45 0.45 0.45 0.45 

1M  

(pu/Minute) 

0.50 0.50 0.50 0.50 

2M  

(pu/Minute) 

0.20 0.20 0.20 0.20 

3M  

(pu/Minute) 

1.50 1.50 1.50 1.50 

1N  

(pu/Minute) 

-0.50 -0.50 -0.50 -0.50 

2N  

(pu/Minute) 

-0.20 -0.20 -0.20 -0.20 

3N  

(pu/Minute) 

-0.50 -0.50 -0.50 -0.50 

 
 

Table 5. Critical power output of Unit 1 
 

 
Control design Critical power output 

RPID 0.94 (pu) 

CPSS 0.52 (pu) 

H∞ 0.96 (pu) 
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Figures 
 

 
 

Figure 1. Four-machine infinite-bus power system 
 
 

              
(a)            (b) 

 
Figure 2.  Conventional excitation control system; a) for units 2 and 3, b) for units 1 and 4. 

 
 

          
(a)               (b) 

 
 

Figure 3.  a) Conventional speed governing system, b) Detailed turbine system 
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Figure 4.  Closed-loop system via H∞-SOF control 
 
 
 

 

 
 
 

Figure 5. The proposed control framework 
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Figure 6. Performed laboratory experiment. 
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Figure 7.  Conventional power system stabilizer 
 

 
 
 

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

P
e1

 (p
u)

0 2 4 6 8 10 12

0.8

0.9

1

V
t1

 (p
u)

0 2 4 6 8 10 12
-0.4
-0.2

0
0.2
0.4
0.6

Δ
 w

1 
(ra

d/
s)

0 2 4 6 8 10 12
0.2

0.3

0.4

0.5

P
e2

 (p
u)

0 2 4 6 8 10 12

0.4

0.6

0.8

P
e3

 (p
u)

0 2 4 6 8 10 12

0.4

0.6

0.8

P
e4

 (p
u)

Time (sec)  
 
 
 
Figure 8.  System response for a fault between buses 11 and 12, while the output setting of unit 1 is fixed 
to 0.4 pu.; Solid (RPID), dash-dotted (H∞), dotted (CPSS) 
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Figure 9.  System response for a 0.05 pu step change at the voltage reference input of unit 1; Solid (RPID), 
dash-dotted (H∞), dotted (CPSS) 
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Figure 10.  System response for a step disturbance at 20 sec; Solid (RPID), dash-dotted (H∞), dotted 
(CPSS) 

 
 


