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SUMMARY

This paper addresses a new method for robust decentralized design of proportional-integral-based load–
frequency control (LFC) with communication delays. In the proposed methodology, the LFC problem is
reduced to a static output feedback control synthesis for a multiple delays power system, and then the
control parameters are easily carried out using robust H∞ control technique. To demonstrate the efficiency
of the proposed control strategy, an experimental study has been performed on the Analog Power System
Simulator at the Research Laboratory of the Kyushu Electric Power Co. in Japan. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In a restructured power system, load–frequency control (LFC) acquires a fundamental role to
enable power exchanges and to provide better conditions for the electricity trading. An effective
power system market highly needs an open communication infrastructure to support the increasing
decentralized property of control processes, and a major challenge in a new environment is to
integrate computing, communication and control into appropriate levels of real-world power system
operation and control.

In the control systems, it is well known that time delays can degrade a system’s performance and
even cause system instability [1–3]. In light of this fact, in near future, the communication delays
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420 H. BEVRANI AND T. HIYAMA

as one of the important uncertainties in the LFC synthesis/analysis due to expanding physical
set-ups, functionality and complexity of power system is to become a significant problem. On the
other hand, the real-world LFC systems use the proportional-integral (PI) type controllers. Since
the PI controller parameters are usually tuned based on classical, experiences and trial-and-error
approaches, they are incapable of obtaining good dynamical performance for a wide range of
operating conditions and various load scenarios.

Recently, several papers have been published to address the LFC modelling/synthesis in the
presence of communication delays [4–6]. Reference [4] is focused on the network delay models
and communication network requirement for a third-party LFC service. A compensation method for
communication time delay in the LFC systems is addressed in Reference [5] and a control design
method based on linear matrix inequalities (LMIs) is proposed for LFC system with communication
delays in Reference [6]. These references clearly addressed the effects of signal delays on the load
following task.

Most published research works on the PI-based LFC have neglected problems associated with
the communication network. Although, under the traditional dedicated communication links, this
was a valid assumption, however, the use of an open communication infrastructure to support the
ancillary services in deregulated environments raises concerns about problems that may arise in
the communication system. It should be noted for a variety of reasons optimal setting of the PI
parameters is difficult and as a result the most of robust and optimal approaches suggest complex
state-feedback or high-order dynamic controllers.

In this paper, the PI-based multi-delayed LFC problem is transferred to a static output feedback
(SOF) control design and to tune the PI parameters, the optimal H∞ control is used via a multi-
constraint minimization problem. The problem formulation is based on expressing the constraints
as LMI which can be easily solved using available semi-definite programming methods [7, 8].
Simplicity of control structure, keeping the fundamental LFC concepts, using multi-delay-based
LFC system and no need to additional controller can be considered as advantages of the proposed
LFC design methodology. To demonstrate the efficiency of the proposed control method, some
real-time simulations have been performed on the Analog Power System Simulator at the Research
Laboratory of the Kyushu Electric Power Co. (Japan).

2. PRELIMINARIES

2.1. H∞ control for time-delay systems

Consider a class of time-delay systems of the form [1]
ẋ(t) = Ax(t) + Bu(t) + Adx(t − d) + Bhu(t − h) + Fw(t)

z(t) =C1x(t) (1)

y(t) =C2x(t), x(t) ∈ �(t) ∀t ∈ [−max(d, h), 0]

Here x ∈ �n is the state, u ∈ �n is the control input, w ∈ �n is the input disturbance, z ∈ �n is
the controlled output, y ∈ �n is the measured output and C2 ∈ �n is the constant matrix such that
the pair (A,C2) is detectable. d and h represent the delay amounts in the state and the input,
respectively. A∈ �n×n and B ∈ �n×m represent the nominal system without delay such that the
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ROBUST LOAD–FREQUENCY REGULATION 421

pair (A, B) is stabilizable. Ad ∈ �n×n , Bh ∈ �n×m , F ∈ �n×q are known matrices and �(t) is a
continuous vector-valued initial function.

The following theorem adapts H∞ theory in the control synthesis for time-delay systems (using
LMI description) and establishes the conditions under which the state-feedback control law

u(t) = Kx(t) (2)

stabilizes (1) and guarantees the H∞ norm bound � of the closed-loop transfer function Tzw,
namely ‖Tzw‖∞<�; �>0.

Theorem 1
The state-feedback controller K asymptotically stabilizes the time-delay system (1) and ‖Tzw‖∞<�
for d, h�0 if there exists matrices 0<PT = P ∈ �n×n , 0<QT

1 = Q1 ∈ �n×n , 0<QT
2 = Q2 ∈ �n×n

satisfying the LMI
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PAc + AT
c P + Q1 + Q2 AT

d P KTBT
h P C1 FTP

PAd −Q1 0 0 0

PBhK 0 −Q2 0 0

CT
1 0 0 I 0

PF 0 0 0 −�2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (3)

where

Ac = A + BK (4)

Proof
According to the Schur complement method [7], LMI (3) is equivalent to the following matrix
inequality:

PAc + AT
c P + Q1 + Q2 + PAdQ

−1
1 AT

d P + PBhKQ
−1
2 KTBT

h P + CT
1C1 + �−2PFFTP<0 (5)

The sufficiency of theorem for the inequality notation (5) is given in [1]. �

2.2. LFC with time delays

The time-delayed LFC system is well discussed in [4, 6]. For purposes of this work, the communi-
cation delays are considered on the control input and control output of the LFC system: the delays
on the measured frequency and power tie-line flow from remote terminal units to control centre
which can be considered on the area control error (ACE) signal and the produced rise/lower signal
from control centre to individual generation units.

The time-delayed LFC system is shown in Figure 1. The communication delay is expressed
by an exponential function e−s�, where � gives the communication delay time. Following a load
disturbance within the control area, the frequency of the area experiences a transient change
and the feedback mechanism comes into work and generates appropriate control signal to make
the generation readjusts to meet the load demand. The balance between connected control areas
is achieved by detecting the frequency and tie-line power deviation via communication line to
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422 H. BEVRANI AND T. HIYAMA

Figure 1. A general control area with time delays.

generate the ACE signal used by the PI controller. The control signal is submitted to the participated
generation companies (Gencos) via another link, based on their participation factors. w1i and w2i
demonstrate the area load disturbance and interconnection effects (area interface), respectively.

w1i = �Pdi , w2i =
N∑
j=1
j �=i

Ti j� f j (6)

where �Ptie−i is the net tie-line power flow, Mi the equivalent inertia constant, Di the equivalent
damping coefficient, Ti j the tie-line synchronizing coefficient for area i and j , �i the frequency bias,
Rk the drooping characteristic, ACEi the area control error (ACE) and �ki the ACE participation
factors.

3. PROPOSED CONTROL STRATEGY

3.1. Problem formulation

The PI-based LFC problem can be transferred to a SOF control problem by augmenting the
measured output signal to include the ACE and its integral [9]

u(t) = ky(t) (7)

u(t) = kPACE + kI

∫
ACE= [kP kI]

[
ACE

∫
ACE

]T
(8)

where kP and kI are constant real numbers (PI parameters). ACE is the area control error signal
for which each control area can be expressed as a linear combination of tie-line power change and
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ROBUST LOAD–FREQUENCY REGULATION 423

Figure 2. H∞-SOF control framework.

frequency deviation:
ACE= �� f + �Ptie (9)

The main merit of this transformation is in the possibility of using the well-known SOF control
techniques to calculate the fixed gains, and once the SOF gain vector is obtained, the PI gains are
ready in hand and no additional computation is needed.

The overall control framework to formulate the time-delayed LFC problem via a H∞-based
SOF (H∞-SOF) control design is shown in Figure 2. The output channel z∞i is associated with
the H∞ performance while the yi is the augmented measured output vector (performed by ACE
and its integral). �1i , �2i and �3i are constant weights that must be chosen by designer to get the
desired closed-loop performance. Experience suggests that one can fix the weights �1i , �2i and �3i
to unity and use the method with regional pole placement technique for performance tuning [10].
The first two terms of z∞i output are used to minimize the effects of disturbances on area frequency
and ACE by introducing appropriate fictitious controlled outputs. Furthermore, fictitious output
�3i�PCi sets a limit on the allowed control signal to penalize fast changes and large overshoot in
the governor load set point with regards to practical constraint on power generation by generator
units [11, 12].

Gi (s) is the nominal dynamic model of the given control area, ui is the control input and wi
includes the perturbed and disturbance signals in the given control area. According to (1), the open-
loop state-space model (Gi (s)) for the LFC system of control area ‘i’ can be obtained as follows:

ẋi (t) = Ai xi (t) + Biui (t) + Adi xi (t − d) + Bhiui (t − h) + Fiwi (t)

zi (t) =C1i xi (t)

yi (t) =C2i xi (t)

(10)

Using the standard simplified LFC model for the prime mover and governor in Figure 1, the state
variables can be considered as follows:

xTi =
[
� fi �Ptie−i

∫
ACEi xti xgi

]
(11)
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424 H. BEVRANI AND T. HIYAMA

where

xti = [�Pt1i �Pt2i . . . �Ptni ], xgi =[�Pg1i �Pg2i . . . �Pgni ] (12)

and

yTi =
[
ACEi

∫
ACEi

]
, ui = �PCi (13)

zTi =
[
�1i� fi �2i

∫
ACEi �3i�PCi

]
(14)

wT
i = [w1i w2i ] (15)

where � fi is the frequency deviation, �Pgi the governor valve position, �Pci the governor load
set point and �Pti the turbine power.

3.2. H∞-SOF-based LFC design

Using the described transformation from PI to SOF control design, the time-delayed LFC problem
is reduced to synthesis of SOF control for the time-delay system (1) of the form of (7). k is a
static gain vector to be determined.

The SOF control problem is one of the most important research areas in control engineering
[13–15]. One reason why SOF has received so much attention is that it represents the simplest
control structure that can be realized in the real-world systems. Another reason is that many
existing dynamic control synthesis problems can be transferred to a SOF control problem by a
well-known system augmentation techniques [15, 16]. A comprehensive survey on SOF control is
given in [15]. A variety of SOF problems were studied by many researchers with many analytical
and numerical methods to approach a local/global solution, however, only few references have
addressed the time-delayed systems. Here, in order to obtain an optimal LMI-based H∞ solution for
the mentioned SOF problem from the delay-based LFC synthesis, the following theorem is used:

Theorem 2
The SOF controller k asymptotically stabilizes system (1) and ‖Tzw‖∞<� for d, h�0 if there exists
matrices 0<Y T = Y ∈ �n×n , 0<QT

t = Qt ∈ �n×n and 0<QT
s = Qs ∈ �n×n satisfying the following

matrix inequality

Ws=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AY + YAT + Qt + Qs (BkC2)
T Y YAT

d (BhkC2Y )T C1Y FT

BkC2 −In 0 0 0 0 0

Y 0 −In 0 0 0 0

AdY 0 0 −Qt 0 0 0

BhkC2Y 0 0 0 −Qs 0 0

YCT
1 0 0 0 0 −Ip 0

F 0 0 0 0 0 −�2 Iq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (16)
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ROBUST LOAD–FREQUENCY REGULATION 425

An equivalent theorem with a different configuration using some relaxation parameters is given
in [1]. Since the mentioned theorem and its result are not straightly applicable to the PI-based
LFC design, above-modified theorem is proposed.

Proof
The controller (7) can be considered as a replica of the state-feedback controller (2):

u(t) = ky(t) = kC2x(t) (17)

Based on Theorem 1, there exists a memory-less feedback controller with constant gain

K = kC2 (18)

such that the closed-loop system is asymptotically stable and ‖Tzw‖∞<� for d, h�0. According
to (4), for the closed-loop system we have

Ac = A + BkC2 (19)

The stabilizing controller satisfies inequality (5). Therefore, using (19) we can write

P(A + BkC2) + (A + BkC2)
TP + Q1 + Q2 + PAdQ

−1
1 AT

d P

+PBhkC2Q
−1
2 (kC2)

TBT
h P + CT

1C1 + �−2PFFTP<0 (20)

Premultiplying and postmultiplying (20) by P−1 and letting P−1 = Y , we get

AY + YAT + YQ1Y + YQ2Y + BkC2Y + Y (kC2)
TBT + AdQ

−1
1 AT

d

+BhkC2Q
−1
2 (kC2)

TBT
h + YCT

1C1Y + �−2FFT<0 (21)

Now, assuming YQ1Y = Qt , YQ1Y = Qs and using the following inequality [7]:
∀�1, �2 ∈ �: �T

1�2 + �T
2�1���T

1�1 + �−1�T
2�2, �>0 (22)

Equation (21) can be reduced to

[AY + YAT + Qt + Qs] + [BkC2(BkC2)
T + Y TY ] + [AdYQ

−1
t (AdY )T]

+[BhkC2YQ
−1
s (BhkC2Y )T] + YCT

1C1Y + �−2FFT<0 (23)

Using the Schur complement method, (23) can be arranged conveniently to yield the block form
(16) as desired. �

Theorem 2 shows that to determine the SOF controller k, one has to solve the following
minimization problem:

min
Qt ,Qs ,Y,k

� subject to − Y<0, −Qt<0, −Qs<0, −Ws<0 (24)

The matrix inequality (16) points to an iterative approach to solve k, Qt and Qs , namely, if Y
is fixed, then it reduces to an LMI problem in the unknown k, Qt and Qs . The LMI problem is
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426 H. BEVRANI AND T. HIYAMA

convex and can be solved efficiently using the LMI Control Toolbox [8], if a feasible solution
exists. One may use a simple optimization algorithm similar to that is given in [9].
Remark 1
It is shown that the necessary condition for the existence of solution is that the nominal transfer
function

T (s) = kC2[s I − A]−1B (25)

is strictly positive real (SPR) [17]. To approach the solution for some positive real cases, it is
possible to use a reasonable approximation to close those systems to SPR ones.

Remark 2
It is significant to note that because of using simple constant gains, pertaining to SOF synthesis
for dynamical systems in the presence of strong constraints and tight objectives are few and
restrictive. Under such conditions, the minimization problem (24) may not approach to a strictly
feasible solution.

4. REAL-TIME LABORATORY EXPERIMENT

4.1. Configuration of study system

To illustrate the effectiveness of the proposed control strategy, some real-time simulations have
been performed on the Analog Power System Simulator at the Research Laboratory of the Kyushu

Figure 3. Study power system.
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ROBUST LOAD–FREQUENCY REGULATION 427

Electric Power Company. For the purpose of this study, a longitudinal three-machine infinite bus
system is considered as a test system. The study system is shown in Figure 3. All generator units
are thermal type, with separately conventional excitation control systems. Set of three generators
represent a control area (Area I), and, the infinite bus is considered as other connected systems
(Area II).

The whole power system has been implemented in the mentioned laboratory. The proposed
controller, ACE computing unit and participation factors which build in SIMULINK environment
(shown in Figure 4) have been connected to the power system using a digital signal processing
(DSP) board equipped with analog to digital (A/D) and digital to analog (D/A) converters as
the physical interface between the personal computer and the Analog Power System Simulator.
Figure 5 shows the overview of the applied laboratory experiment devices. The block diagram

Figure 4. SIMULINK-based control loop.

Figure 5. Overview of the performed laboratory experiment.
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428 H. BEVRANI AND T. HIYAMA

Figure 6. Generator unit: (a) speed governing system and (b) detailed turbine system.

given in Figure 4 has been implemented in a personal computer. The digital oscilloscope and
notebook computer (shown in the right side of Figure 5) are used for monitoring purposes.

The detailed block diagram of each generator unit and its associated turbine system (including
the high-pressure, intermediate-pressure and low-pressure parts) is illustrated in Figure 6. The
power system parameters are given in Table AI (Appendix).

4.2. H∞-SOF-based PI controller

To adapt (10) with the shown time-delayed LFC system in Figure 1, the Adi can be easily computed
by transferring the ACE delay (�d) through its components (� fi and �Ptie−i as states). Therefore,
the delay is considered in the both states and control input. Based on a simple stability condition
[18], the open-loop system (10) with real matrices is stable if

�(Ai ) + ‖Adi‖<0 (26)

where

�(Ai ) = 1

2
max

j
� j (A

T
i + Ai ) (27)

Here, � j denotes the j th eigenvalue of (AT
i + Ai ). Using the above stability rule, we note that for

the example at hand, the control area is unstable:

�(Ai ) + ‖Adi‖= 12.9714>0 (28)
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Figure 7. System response with 10 s delay (solid) and without delay (dotted),
following a 5% step load increase.

Table I. Participation factors.

Generators Unit 1 Unit 2 Unit 3

� 0.4 0.4 0.2

According to the described synthesis methodology in Section 3, the PI parameters are obtained
as (29). For the study system at hand, the total time delay of communication channels is considered
near to the LFC cycle rate of the power system and a suitable value for constant weights �1i , �2i
and �3i are considered as 0.5, 1 and 25, respectively,

kP = 0.0611, kI = 0.1369 (29)

Based on Theorem 2, since a solution for the time-delayed LFC problem will be obtained through
minimizing the guaranteed the H∞ performance index � (as a valid performance measure) subject
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Figure 8. System response with 6 s delay (solid) and without delay (dotted),
following a 10% step load increase.

to the given constraints in (24), the designed PI controllers satisfy the robustness of the closed-loop
system. In other words, the basis of designing the SOF controllers (7) is to simultaneously stabilize
(10) and guarantee the H∞-norm bound �of the closed-loop transfer function Tzw, namely,

‖Tzw‖∞<�, �>0 (30)

5. REAL-TIME SIMULATION RESULTS

In the performed non-linear real-time laboratory’s simulations, the proposed PI controller was
applied to the control area power system described in Figure 3. The performance of the closed-loop
system is tested in the presence of load disturbances and time delays. Two types of communication
delays, fixed and random, are simulated. To simplify the presentation and because of space limitation
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Figure 9. System response in the presence of 10 s delay, following a 10% step load increase.

here, case studies of fixed delays are used. The nominal area load demands PL1, PL2 and PL3 (in
Figure 3) during simulation tests are considered as 0.3, 0.6 and 0.6 pu, respectively.

For the first test scenario, the power system is examined with and without delays, following a
5% step load increase at 5 s in control area. The total communication delay is assumed as 10 s. The
closed-loop system response including frequency deviation (��), tie-line power change (�Ptie),
control action signals (ui ) and ACE, are shown in Figure 7. The designed PI controller acts to
return the frequency, tie-line power and ACE signals to the scheduled values properly. Figure 7
shows the changes in control signals applied to the generator units are provided according to their
participation factors (�) listed in Table I.

Figure 8 shows the closed-loop response in the presence of a 6 s total communication delay,
following a 10% step load increase in the control area. System response for 10 s delay with the
same step load change is shown in Figure 9. Figures show the frequency deviation and ACE of
control area are properly maintained within a narrow band using smooth control efforts.
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432 H. BEVRANI AND T. HIYAMA

Further simulation results show that using the time delay-less H∞ approach given in [9], the
resulted closed-loop system will be unstable for the above-mentioned scenarios; while the designed
controller can ensure good performance despite load disturbance and delays in the communication
network. The proposed real-time non-linear simulation demonstrates that the robust PI controller
acts to maintain area frequency and total exchange power closed to the scheduled values by
sending corrective smooth signals to the generator units in proportion to their participation in the
LFC task.

6. CONCLUSION

The PI-based LFC problem with communication delays in a multi-area power system is formu-
lated as a robust SOF optimization control problem. To obtain the constant gains, an LMI-based
H∞ methodology has been proposed. Simplicity of control structure, keeping the fundamental
LFC concepts, using multi-delay-based LFC system and no need to additional controller can be
considered as advantages of the proposed methodology. The proposed method was applied to a
control area power system using a laboratory real-time non-linear simulator.

APPENDIX A

Generating unit parameters are given in Table AI.

Table AI. Generating unit parameters.

Parameters Gen 1 Gen 2 Gen 3

MVA 1000 600 1000
R (Hz/pu) 3.00 3.00 3.30
T1 (s) 0.08 0.06 0.07
T2 (s) 0.10 0.10 0.10
T3 (s) 0.10 0.10 0.10
T4 (s) 0.40 0.36 0.42
T5 (s) 10.0 10.0 10.0
� (pu/Hz) 0.3483 0.3473 0.3180
D (pu/Hz) 0.0150 0.0150 0.0150
M (s) 8.05 7.00 8.05
TH (s) 0.05 0.05 0.05
TI (s) 0.08 0.08 0.08
TL (s) 0.58 0.58 0.58
KH (pu) 0.31 0.31 0.31
KI (pu) 0.24 0.24 0.24
KL (pu) 0.45 0.45 0.45
M1 (pu/min) 0.50 0.50 0.50
M2 (pu/min) 0.050 0.050 0.050
M3 (pu/min) 2.00 2.00 2.00
N1 (pu/min) −0.50 −0.50 −0.50
N2 (pu/min) −0.20 −0.20 −0.20
N3 (pu/min) −0.50 −0.50 −0.50
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