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Abstract

This paper addresses a control methodology to enhance power system dynamic stability and voltage regulation by augmenting existing

generator controls (conventional PSS and AVR) using an optimal static gain vector. The control design problem is reduced to finding a

new control loop including a simple fixed gain vector. In order to optimal tune gain elements, the problem is formulated via an HN static

output feedback (HN-SOF) control technique, and the solution is easily found using an iterative linear matrix inequalities (ILMI)

algorithm. Real-time experiments have been performed for a longitudinal four-machine infinite-bus system on the Analog Power System

Simulator at the Research Laboratory of the Kyushu Electric Power Co. The proposed robust technique is shown to maintain the robust

performance and minimize the effects of disturbances.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Power systems continuously experience changes in
operating conditions due to variations in generation/load
and a wide range of disturbances. Power system stability
and voltage regulation have been considered an important
problem for secure system operation over many years
(Kundur et al., 2004). Currently, because of expanding
physical setups, functionality and complexity of power
systems, the mentioned problems become more significant
than in the past. That is why in recent years a great deal of
attention has been paid to application of advanced control
techniques to power systems.

Conventionally, the automatic voltage regulation and
power system stabilizer (AVR–PSS) design is considered as
a sequential design including two separate stages. Firstly,
the AVR is designed to meet the specified voltage re-
gulation performance and then the PSS is designed to
satisfy the stability and required damping performance.
e front matter r 2008 Elsevier Ltd. All rights reserved.
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It is known that stability and voltage regulation are
ascribed to different model descriptions, and it has been
long recognized that AVR and PSS have inherent conflicting
objectives (Law, Hill, & Godfrey, 1994a, 1994b; Venikov &
Stroev, 1971).
In the last two decades, some studies have considered an

integrated design approach to AVR and PSS design using
domain partitioning (Venikov & Stroev, 1971), robust
pole-replacement (Soliman & Sakar, 1988) and adaptive
control (Malik, Hope, Gorski, Uskakov, & Rackevich,
1986). Moreover, several control methods have recently
been made to coordinate the various requirements for
stabilization and voltage regulation within the one new
control structure (Bevrani & Hiyama, 2006; Guo, Hill, &
Wang, 2001; Heniche, Bourles, & Houry, 1995; Wang &
Hill, 1996; Yadaiah, Kumar, & Bhattacharya, 2004).
Although most of these approaches have been proposed

based on new contributions in modern control systems,
they are not well suited to meet the design objectives in a
real multi-machine power system because of following two
main reasons: (i) The complexity of control structure,
numerous unknown design parameters and neglecting real
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Fig. 1. Closed-loop system via HN-SOF control.
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constraints can be frequently seen in the most of new
suggested techniques. While in real world power systems,
usually controllers with simple structure are desirable. That
is why electric industry still uses the simple PI, PID and
Lead-lag controllers that their parameters are commonly
tuned based on classical, experiences and trial-and-error
approaches. (ii) Experience shows that although the con-
ventional PSS and AVR systems are incapable of obtaining
good dynamical performance for a wide range of operating
conditions and disturbances, the electric industry is too
conservative to open the conventional control loops
and test the novel/advanced controllers because of some
probable risks, bugs and/or having a complex structure.

In response to above problems, this paper presents a
methodology to enhance the stability and voltage regula-
tion of existing real power system without opening their
conventional PSS and AVR devices. The methodology
provides a simple gain vector in parallel with the con-
ventional control devices. The design objectives are
formulated via an HN-SOF (HN static output feedback)
control problem and the optimal static gains are obtained
using an ILMI (iterative linear matrix inequalities) algo-
rithm. The preliminary step of this work has been
presented in Bevrani and Hiyama (2006).

The controller proposed in this paper uses the measur-
able signals and has merely proportional gains; so gives
considerable promise for implementation, especially in a
multi-machine system. In fact the proposed control
strategy attempts to make a bridge between the simplicity
of control structure and robustness of stability and
performance to satisfy the simultaneous AVR and PSS
tasks.

To demonstrate the efficiency of the proposed control
method, some real time nonlinear laboratory tests have
been performed on a four-machine infinite-bus system
using the large scale Analog Power System Simulator at the
Research Laboratory of the Kyushu Electric Power
Company (Japan). The obtained results are compared with
a conventional AVR–PSS system.

2. Proposed control strategy

2.1. A background on HN-SOF control design

This section gives a brief overview for the HN-SOF
control design. Consider a linear time invariant system G(s)
with the following state-space realization.

GiðsÞ :

_xi ¼ Aixi þ B1iwi þ B2iui;

zi ¼ C1ixi þD12iui;

yi ¼ C2ixi;

(1)

where xi is the state variable vector, wi is the disturbance
and area interface vector, ui is the control input vector, zi is
the controlled output vector and yi is the measured output
vector. The Ai, B1i, B2i, C1i, C2i and D12i are known real
matrices of appropriate dimensions.
The HN-SOF control problem for the linear time
invariant system Gi(s) with the state-space realization of
(1) is to find a gain matrix Ki (ui ¼ Kiyi), such that the
resulted closed-loop system is internally stable, and the HN

norm from wi to zi (Fig. 1) is smaller than g, a specified
positive number, i.e.

kTziwi
ðsÞk1og. (2)

It is notable that the HN-SOF control problem can be
transferred to a generalized SOF stabilization problem
which is expressed via the following theorem (Cao, Lam,
Sun, & Mao, 1998).
Theorem. The system (A, B, C) is stabilizable via SOF if

and only if there exist P40, X40 and Ki satisfying the

following quadratic matrix inequality

ATX þ XA� PBBTX � XBBTPþ PBBTP ðBTX þ KiCÞ
T

BTX þ KiC �I

" #
o0.

(3)

Here, the matrices A, B and C are constant and have

appropriate dimensions. The X and P are symmetric and

positive-definite matrices.
Since a solution for the consequent non convex
optimization problem (3) cannot be directly achieved by
using general and convex LMI techniques (Bevrani &
Hiyama, 2007; Boyd, El Chaoui, Feron, & Balakrishnan,
1994; Swarnakar, Marquez, & Chen, 2007), a variety of
methods were proposed by many researchers with many
analytical and numerical methods to approach a local/
global solution. In this paper, to solve the resulted SOF
problem, an iterative LMI is used based on the existence
necessary and sufficient condition for SOF stabilization,
via the HN control technique.
Using above theorem and the bounded real lemma

(Zhou, Doyle, & Glover, 1996), the Ki is an HN-SOF
controller for system (1), if and only if there exists X40
such that

X̄ B̄iKiC̄i þ ðX̄ B̄iKiC̄iÞ
T
þ Ā

T

i X̄ þ X̄ Āio0, (4)
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Fig. 2. Overall control structure.

Fig. 3. The proposed HN-SOF control framework.
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where

X̄ ¼

X 0 0

0 I 0

0 0 I

2
664

3
775; Āi ¼

Ai B1i 0

0 �gI=2 0

C1i 0 �gI=2

2
664

3
775,

B̄i ¼

B2i

0

D12i

2
664

3
775; C̄i ¼ ½C2i 0 0�. (5)

Here, Āi; B̄i and C̄i are three generalized matrices.

2.2. Modeling

In order to design a robust power system controller, it is
first necessary to consider an appropriate linear mathema-
tical description of multi-machine power system with two
axis generator models. In the view point of ‘‘generator unit
i’’, the nonlinear state space representation model for such
a system has the form

_xgi ¼ f ðxgi; ugiÞ, (6)

where the states

xT
gi ¼ ½x1gi x2gi x3gi x4gi� ¼ ½di oi E 0qi E0di� (7)

are defined as deviation form the equilibrium values

xT
egi ¼ ½d

e
1i oe

2i E0eqi E 0edi�. (8)

Using the linearization technique and after some
manipulation, the nonlinear state Eqs. (6) can be expressed
in the form of following linear state space model.

_xgi ¼ Agixgi þ Bgiugi, (9)

where

Agi ¼

0 1 0 0

a21 �
Di

Mi

a23 a24

a31 0 a33 �
GiiDxdi

T 0d0i

a41 0
GiiDxqi

T 0q0i

a44

2
66666666664

3
77777777775
; Bgi ¼

0

0
1

T 0d0i

0

2
666664

3
777775

(10)

and

Dxdi ¼ xdi � x0di; Dxqi ¼ xqi � x0di. (11)

The akj elements are described in Appendix. The other
parameters are defined as follows. di, Machine rotor angle;
oi, Machine rotor speed; E0di, d axis internal machine
voltage; E0qi, q axis internal machine voltage; Di, Damping
constant; Mi, Inertia constant; Gii, Driving point con-
ductance; T 0doi, d axis open circuit transient time constant;
T 0qoi, q axis open circuit transient time constant; xdi, d axis
synchronous reactance; x0di, d axis transient reactance; xqi, q

axis synchronous reactance.
Considering the conventional AVR–PSS system, the
overall system control input can be written in the following
form.

ugi ¼ uci þ ui, (12)

where, uci is the output of conventional AVR–PSS system
and the ui is the new control input (Fig. 2). Therefore, the
overall system can be described as follows:

_xi ¼ Aixi þ Biui (13)

and

xT
i ¼ ½x

T
gi1�4

xT
ci1�m
�1�ð4þmÞ. (14)

Here, the xci shows the state vector of conventional
AVR–PSS system and m represents its dynamic order.

2.3. Proposed control framework

The overall control structure using SOF control design
for an assumed power system is shown in Fig. 2, where
blocks PSS and AVR represents the existing conventional
power system stabilizer and voltage regulators. Here, the
electrical power signal Dpei is considered as input signal
for the PSS unit. The optimal gain vector (OGV) uses the
terminal voltage Dvti, electrical power Dpei and machine
speed Doi as input signals. The Dvrefi and di show the
reference voltage deviation and system disturbance input,
respectively.
Using the linearized model for power system ‘‘i’’ in the

form of (1) and performing the standard HN-SOF
configuration with considering appropriate controlled
output signals results an effective control framework,
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which is shown in Fig. 3. This control structure adapts the
HN-SOF control technique with the described power
system control targets and allows a direct trade-off between
voltage regulation and closed-loop stability by merely
tuning of a vector gain.

Here, disturbance input vector wi, controlled output
vector zi and measured output vector yi are considered as
follows:

wT
i ¼ ½Dvrefi di�, (15)

zTi ¼ ½Z1iDvti Z2iDdi Z3iui�, (16)

yT
i ¼ ½Dvti Dpei Doi�. (17)

The Dvti and Dpei can be easily expressed via the specified
system states, and the Z1i, Z2i and Z3i are constant weights
that must be chosen by the designer to achieve a desired
closed-loop performance. Since the vector zi properly
covers all significant controlled signals which must be
minimized by an ideal AVR–PSS design, it is expected that
the proposed robust controller should be able to satisfy
the voltage regulation and stabilizing objectives, simulta-
neously. It is notable that, since the solution must be
obtained trough the minimizing of an HN optimization
problem, the designed feedback system satisfies the
robust stability and voltage regulation performance for
the overall closed-loop system. Moreover, the developed
ILMI algorithm (which is described in the next section)
provides an effective and flexible tool for finding an
appropriate solution in the form of a simple static gain
controller.
Ā
T

i X̄ i þ X̄ iĀi � PiB̄iB̄
T
i X̄ i � X̄ iB̄iB̄

T
i Pi þ PiB̄iB̄

T
i Pi � aiX̄ i

B̄
T
i X̄ i þ KiC̄

2
4 ðB̄

T
i X̄ i þ KiC̄iÞ

T

�I

#
o0, (22)
2.4. ILMI algorithm

It is well-known that static output feedback stabilization is
still an open problem. Its reformulation generally leads to
bilinear matrix inequalities (BMI) which are non-convex.
This kind of problem is usually solved by an iterative
algorithm that may not converge to an optimal solution.

Here, in order to solve the HN-SOF, an iterative LMI
algorithm has been used. The algorithm is mainly based on
the given idea by Cao et al. (1998). The key point is to
formulate the HN problem via a generalized static output
stabilization feedback such that all eigenvalues of (A-B Ki

C) shift towards the left half plane in the complex s-plane,
to close to feasibility of (3). The described theorem in the
previous section gives a family of internally stabilizing SOF
gains is defined as Ksof. The desirable solution Ki is an
admissible SOF law

ui ¼ Kiyi; Ki 2 Ksof , (18)
such that

kTziwiðsÞk1og�; jg� g�jo�, (19)

where e is a small positive number. The performance index
g* indicates a lower bound such that the closed-loop system
is HN stabilizable. The optimal performance index (g), can
be obtained from the application of a full dynamic HN

dynamic output feedback control method. The proposed
algorithm, which gives an iterative LMI solution for above
optimization problem includes the following steps:

Step 1. Set initial values and compute the generalized
system ðĀi; B̄i; C̄iÞ as shown in (5), for the given power
system including conventional AVR–PSS system. For this
purpose, according to (13), the matrix Ai has the following
form and the elements of other matrices in (5) can be
obtained based on the structure of the used excitation
system and AVR–PSS unit.

Ai ¼
Agið4�4Þ 0ð4�mÞ

0ðm�4Þ Aciðm�mÞ

" #
. (20)

The ‘‘c’’ is used for the conventional AVR–PSS system.
Step 2. Set i ¼ 1, Dg ¼ Dg0 and let gi ¼ g04g. Dg0 and g0

are positive real numbers.
Step 3. Select Q40, and solve X̄ from the following

algebraic Riccati equation

Ā
T

i X̄ þ X̄ Āi � X̄ B̄iB̄
T
i X̄ þQ ¼ 0. (21)

Set P1 ¼ X̄ .
Step 4. Solve the following optimization problem for X̄ i,

Ki and ai.
Minimize ai subject to the LMI constraints:
X̄ i ¼ X̄
T
i 40. (23)

Denote a�i as the minimized value of ai.
Step 5. If a�i p0, go to step 8.
Step 6. For i41, if a�i�1p0, Ki�1 2 Ksof is an HN

controller and g� ¼ gi þ Dg indicates a lower bound such
that the above system is HN stabilizable via SOF control.
Go to step 10.

Step 7. If i ¼ 1, solve the following optimization problem
for X̄ i and Ki.
Minimize traceðX̄ iÞ subject to the above LMI constraints

(22) and (23) with ai ¼ a�i . Denote X̄
�

i as the X̄ i that
minimized traceðX̄ iÞ. Go to step 9.

Step 8. Set gi ¼ gi � Dg, i=i+1. Then do steps 3 to 5.
Step 9. Set i=i+1 and Pi ¼ X̄

�

i�1, then go to step 4.
Step 10. If the obtained solution ðKi�1Þ satisfies the gain

constraint, it is desirable, otherwise change constant
weights (Zi) and go to step 1.
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Fig. 4. Iterative LMI algorithm.

Fig. 5. Four-machine infinite-bus power system.
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The proposed iterative LMI algorithm, which is sum-
marized in the flowchart of Fig. 4, shows that if one simply
perturbs Āi to Āi � ða=2ÞI for some a40, a solution of the
matrix inequality (3) can be obtained for the performed
generalized plant. That is, there exist a real number (a40)
and a matrix P40 to satisfy inequality (22). Consequently,
the closed-loop system matrix Āi � B̄iKC̄i has eigenvalues
on the left-hand side of the line <ðsÞ ¼ a in the complex
s-plane. Based on the idea that all eigenvalues of Āi �
B̄iKC̄i are shifted progressively towards the left half plane
through the reduction of a. The given generalized
eigenvalue minimization in the proposed iterative LMI
algorithm guarantees this progressive reduction.

2.5. Weights selection

The vector Zi ¼ ½Z1i Z2i Z3i� is a constant weight vector
that must be chosen by the designer to get the desired closed-
loop performance. The selection of these weights is
dependent on specified voltage regulation and damping
performance goals. In fact an important issue with regard to
selection of these weights is the degree to which they can
guarantee the satisfaction of design performance objectives.
It is notable that Z3i sets a limit on the allowed control signal
to penalize fast changes, large overshoot with a reasonable
control gain to meet the physical constraints. Therefore, the
selection of constant weights entails a compromise among
several performance requirements.
One can simply fix the weights to unity and use the

method with regional pole placement technique for perfor-
mance tuning (Gahinet & Chilali, 1996). Here, for the sake of
weight selection, the following steps are simply considered
through the proposed ILMI algorithm:

Step 1. Set initial values, e.g. [1 1 1].
Step 2. Run the ILMI algorithm (summarized in Fig. 4).
Step 3. If the ILMI algorithm gives a feasible solution

such that satisfies the robust HN performance and the gain
constraint; the assigned weights vector is acceptable.
Otherwise retune Zi and go to Step 2.

3. Real time implementation

To illustrate the effectiveness of the proposed control
strategy, a real time experiment has been performed on the
large scale Analog Power System Simulator at the
Research Laboratory of the Kyushu Electric Power
Company. For the purpose of this study, a longitudinal
four-machine infinite bus system is considered as a test
system. A single line representation of the study system is
shown in Fig. 5. Although, in the given model the number
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Table 1

Generator constants

Unit

no.

Mi

(s)

Di xdi

(pu)

x0di

(pu)

xqi

(pu)

x0qi

(pu)

T0d0i

(s)

T0q0i

(s)

MVA

1 8.05 0.002 1.860 0.440 1.350 1.340 0.733 0.0873 1000

2 7.00 0.002 1.490 0.252 0.822 0.821 1.500 0.1270 600

3 6.00 0.002 1.485 0.509 1.420 1.410 1.550 0.2675 1000

4 8.05 0.002 1.860 0.440 1.350 1.340 0.733 0.0873 900

Table 2

Line parameters

Line no. Bus–Bus Rij (pu) Xij (pu) Sij (pu)

1 1–9 0.02700 0.1304 0.0000

2 2–10 0.07000 0.1701 0.0000

3 3–11 0.04400 0.1718 0.0000

4 4–12 0.02700 0.1288 0.0000

5 10–6 0.02700 0.2238 0.0000

6 11–7 0.04000 0.1718 0.0000

7 12–8 0.06130 0.2535 0.0000

8 9–10 0.01101 0.0829 0.0246
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of generators is reduced to four, it closely represents the
dynamic behavior of the west part of Japan (West Japan
Power System), and it is widely used by researchers
(Bevrani & Hiyama, 2007; Hiyama, Oniki, & Nagashima,
1996; Hiyama, Kawakita, & Ono, 2004; Hiyama, Kojima,
Ohtsu, & Furukawa, 2005). The most important global and
local oscillation modes of actual system are included. For
the study system, the local mode for each corresponding
unit, and the low frequency global mode are around 1.5Hz
and 0.3Hz, respectively. Each unit is a thermal unit, and
has a separately conventional excitation control system as
shown in Figs. 6a and b.

Each unit has a full set of governor-turbine system
(governor, steam valve servo-system, high-pressure turbine,
intermediate-pressure turbine, and low-pressure turbine)
which is shown in Fig. 7. The generators, lines, conven-
tional excitation system and governor-turbine parameters
are given in Tables 1–4, respectively.

Unit 1 is selected to be equipped with robust control, and
therefore our objective is to apply the control strategy
described in the previous section to controller design for
Fig. 6. Conventional excitation control system: (a) for units 2 and 3 and

(b) for units 1 and 4.

Fig. 7. (a) Conventional speed governing system and (b) detailed turbine

system.

9 10–11 0.01101 0.0829 0.0246

10 11–12 0.01468 0.1105 0.0328

11 12–5 0.12480 0.9085 0.1640

Table 3

Excitation parameters

K1 K2 K3 K4 |Emax(min)| Umax Umin

1.00 19.21 10.00 6.48 5.71 7.60 �5.20

T1 (s) T2 (s) T3 (s) T4 (s) T5 (s) T6 (s) T7 (s)

0.010 1.560 0.013 0.013 0.200 3.000 10.000

Table 4

Governor and turbine parameters

Parameters Unit 1 Unit 2 Unit 3 Unit 4

T1 (s) 0.08 0.06 0.07 0.07

T2 (s) 0.10 0.10 0.10 0.10

T3 (s) 0.10 0.10 0.10 0.10

T4 (s) 0.40 0.36 0.42 0.42

T5 (s) 10.0 10.0 10.0 10.0

TH (s) 0.05 0.05 0.05 0.05

TI (s) 0.08 0.08 0.08 0.08

TL (s) 0.58 0.58 0.58 0.58

KH (pu) 0.31 0.31 0.31 0.31

KI (pu) 0.24 0.24 0.24 0.24

KL (pu) 0.45 0.45 0.45 0.45

M1 (pu/min) 0.50 0.50 0.50 0.50

M2 (pu/Min) 0.20 0.20 0.20 0.20

M3 (pu/Min) 1.50 1.50 1.50 1.50

N1 (pu/Min) �0.50 �0.50 �0.50 �0.50

N2 (pu/Min) �0.20 �0.20 �0.20 �0.20

N3 (pu/Min) �0.50 �0.50 �0.50 �0.50
unit 1. The whole power system has been implemented
in the mentioned laboratory. Fig. 8 shows the overview
of the applied laboratory experiment devices including the
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Fig. 8. Performed laboratory experiment: (a) overview of analog power

system simulator and (b) the control/monitoring desks.

Fig. 9. The performed computer based control loop.

Fig. 10. Conventional power system stabilizer.

Table 5

Conventional PSS parameters

Tr (s) GPSS Umax (pu) T1 (s)

5.00 10.00 1.00 0.025

T2 (s) T3 (s) T4 (s) T5 (s)

0.056 0.054 0.037 0.53

H. Bevrani et al. / Control Engineering Practice 16 (2008) 1109–1119 1115
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control/monitoring desks. A digital oscilloscope and a
notebook computer (shown in Fig. 8b) are used for
monitoring purposes.

The proposed control loop (Fig. 9) has been built in a
personal computer were connected to the power system using
a digital signal processing (DSP) board equipped with analog
to digital (A/D) and digital to analog (D/A) converters as the
physical interfaces between the personal computer and the
analog power system hardware. In Fig. 9, the input/output
scaling blocks are used to match the PC based controller
and the Analog Power System hardware, signally. High
frequency noises are removed by appropriate low pass filters.
Then, applying the proposed HN-SOF control metho-
dology an OGV for the problem at hand is obtained as
follows:

K1;SOF ¼ ½9:5899 7:8648 1:2990�. (24)

The considered constraints on limiters and control loop
gains are set according to the real power system control
units and close to ones that exist for the conventional
AVR–PSS units. The used constant weight vector (Zi) is
given in Appendix.

4. Experiment results

The performance of the closed-loop system using the
proposed OGV in comparison of a pure conventional
AVR–PSS system is tested in the presence of voltage
deviation, faults and system disturbance. The configuration
of the applied conventional power system stabilizer, which
was accurately tuned by the system operators, is illustrated
in Fig. 10. The conventional PSS parameters are listed in
Table 5.
During the first test scenario, the output setting of unit 1

is fixed to 0.5 pu. Fig. 11 shows the electrical power,
terminal voltage and machine speed of unit 1, following a
fault on the line between buses 11 and 12 at 2 s. To force a
more critical situation, the faulted line is isolated from the
network just after four cycles from the fault. It can be seen
that the system response is quite improved using the
designed feedback gains.
Furthermore, the size of resulted stable region by the

proposed method is significantly enlarged in comparison of
conventional AVR–PSS controller. To show this fact, the
critical power output from unit 1 in the presence of a three-
phase to ground fault is considered as a good measure. To
investigate the critical point, the real power output of unit 1
is increased from 0.3 pu (The setting of the real power
output from the other units is fixed at the values shown in
Fig. 5). Using the conventional AVR–PSS structure, the
resulted critical power output from unit 1 to be 0.31 pu
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Fig. 11. System response for a fault between buses 11 and 12. Solid (using

OGV), dotted (conventional AVR–PSS).

Table 6

Critical power output of unit 1

Control design Critical power output

Proposed design 0.94 (pu)

Conventional AVR–PSS 0.52 (pu)
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AVR–PSS).
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(Hiyama et al., 1996, 2004); and in case of tight tuning
of CPSS parameters it could not be higher than 0.52 pu.
For the proposed control method, the critical power
output, as shown in Table 6, is increased to 0.94 pu. The
system response for a fault between buses 11 and 12, while
the output setting of unit 1 is increased to 0.7 pu is shown
in Fig. 12.
In the second test case, the performance of designed

controllers was evaluated in the presence of a 0.05 pu step
disturbance injected at the voltage reference input of unit 1
at 20 s. Fig. 13 shows the closed-loop response of the
power systems fitted with the conventional control and
the proposed robust control design. Better performance
is achieved by the proposed control strategy. In the next
scenario, the closed-loop system response is examined
in the face of a step disturbance (di) at 20 s. The result is
shown in Fig. 14. Comparing the experiment results shows
that the robust design achieves robustness against the
voltage deviation, disturbance and line fault with a quite
good voltage regulation and damping performance.
Finally, to demonstrate the simultaneous damping of

local (fast) and global (slow) oscillation modes, filtering
analysis has been performed. The laboratory results for
the speed deviation of unit 1, following a fault on the
line between buses 11 and 12 are shown in Fig. 15
(in this experiment, the fault was happen at 2 s and the
output setting of unit 1 was fixed at 0.45 pu).
20 25 30

20 25 30

20 25 30

20 25 30

20 25 30

20 25 30
e (sec)

setting of unit 1 is fixed to 0.5 pu. Solid (using OGV), dotted (conventional



ARTICLE IN PRESS

20 22 24 26 28 30 32 34 36 38 40
0.45

0.5

P
e1

 (p
u)

20 22 24 26 28 30 32 34 36 38 40

0.9
0.95

V
t1

 (p
u)

20 22 24 26 28 30 32 34 36 38 40
-0.5

0
0.5

Δ 
w

1 
(r

ad
/s

)

20 22 24 26 28 30 32 34 36 38 40
0.38

0.4
0.42

P
e2

 (p
u)

20 22 24 26 28 30 32 34 36 38 40
0.58

0.6
0.62

P
e3

 (p
u)

20 22 24 26 28 30 32 34 36 38 40
0.58

0.6

0.62

P
e4

 (p
u)

Time (sec)

Fig. 13. System response for a 0.05 pu step change at the voltage reference input of unit 1. Solid (using OGV), dotted (conventional AVR–PSS).
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5. Conclusion

In order to achieve simultaneous enhancement of power
system stability and voltage regulation, a new control
strategy is developed using an HN-SOF control technique
and a developed iterative LMI algorithm. The proposed
method was applied to a four-machine infinite bus power
system, through a laboratory real-time experiment, and the
results are compared with a conventional AVR–PSS
design. The performance of the resulting closed-loop
system is shown to be satisfactory over a wide range
of operating conditions.

As shown in the nonlinear real-time simulation results,
the proposed coordination through a new optimal feed-
back loop has brought a significant improvement to power
system performance and has increased the stable region
of operation. The resulting controller is not only robust
but it also allows direct effective trade-off between voltage
regulation and damping performance. Furthermore, be-
cause of simplicity of structure, decentralized property,
ease of formulation and flexibility, the design methodology
can be practically implemented.
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Appendix

The nonlinear model of (6) can be presented as follows:

_x1gi ¼ x2gi,

_x2gi ¼ �ðDi=MiÞx2gi � ð1=MiÞDPeiðxÞ,

_x3gi ¼ �ð1=T 0d0iÞx3gi � ðDxdiðxÞ=T 0d0iÞDIdiðxÞ þ ugi,

_x4gi ¼ �ð1=T 0q0iÞx4gi � ðDxqiðxÞ=T 0q0iÞDIqiðxÞ,

where

DPeiðxÞ ¼ ðE
0
diIdi þ E0qiIqiÞ � ðE

0e
diI

e
di þ E0eqiI

e
qiÞ,

Idi ¼
X

k

½Gik cos dik þ Bik sin dik�E
0
dk

þ
X

k

½Gik sin dik � Bik cos dik�E
0
qk;

Iqi ¼
X

k

½Bik cos dik � Gik sin dik�E
0
dk

þ
X

k

½Gik cos dik þ Bik sin dik�E
0
qk.

A detailed description of all symbols and quantities can be
found in Sauer and Pai (1998). The elements of Agi matrix
in (10) are

a21 ¼ �
1

Mi

qf 1iðxÞ

qx1gi

����
xegi

a23 ¼ �
½GiiE

0e
qi � BiiE

0e
di þ Ie

qi�

Mi

�
1

Mi

qf 1iðxÞ

qx3gi

����
xegi

,
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a24 ¼ �
½GiiE

0e
di þ BiiE

0e
qi þ Ie

di�

Mi

�
1

Mi

qf 1iðxÞ

qx4gi

����
xegi

,

a31 ¼ �
Dxdi

T 0d0i

qf 2iðxÞ

qx1gi

����
xegi

; a33 ¼ �
1

T 0d0i

þ
BiiDxdi

T 0d0i

,

a41 ¼ �
Dxqi

T 0q0i

qf 3iðxÞ

qx1gi

�����
xegi

; a44 ¼ �
1

T 0q0i

þ
BiiDxqi

T 0q0i

,

where

f 1iðxÞ ¼ x4giDIdiðxÞ þ x3giDIqiðxÞ

þ
X
kai

f½E0ediZikðdÞ þ E 0eqiẐikðdÞ�x4gk

þ ½E0edinikðdÞ þ E0eqin̂ikðdÞ�x3gk

þ ½E0ediuikðdÞ þ E0eqiûikðdÞ� sinfikg,

f 2iðxÞ ¼
X
kai

½ZikðdÞx4gk þ nikðdÞx3gk þ uikðdÞ sinfik�,

f 3iðxÞ ¼
X
kai

½ẐikðdÞx4gk þ n̂ikðdÞx3gk þ ûikðdÞ sinfik�,

ZikðdÞ ¼ Gik cos dik þ Bik sin dik,

ẐikðdÞ ¼ Bik cos dik � Gik sin dik,

nikðdÞ ¼ Gik sin dik � Bik cos dik,

n̂ikðdÞ ¼ Bik sin dik � Gik cos dik,

uikðdÞ ¼ 2g1ik sin
de

ik þ dik

2
þ 2g2ik cos

de
ik þ dik

2
,

fik ¼ 0:5ðx1gi � x1gkÞ,

ûikðdÞ ¼ 2g2ik sin
de

ik þ dik

2
� 2g1ik cos

de
ik þ dik

2
,

dik ¼ di � dk,

g1ik ¼ GikE0edk � BikE0eqk,

g2ik ¼ GikE0eqk þ BikE0eqk,

Constant weights : Z1 ¼ ½0:25 0:1 5�.

References

Bevrani, H., & Hiyama, T. (2006). Stability and voltage regulation

enhancement using an optimal gain vector. In Proceedings of IEEE

PES general meeting, Canada.
Bevrani, H., & Hiyama, T. (2007). Robust load–frequency regulation: a

real-time laboratory experiment. Optimal Control Applications and

Methods, 28(6), 419–433.

Boyd, S. P., El Chaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear

matrix inequalities in systems and control theory. Philadelphia, PA:

SIAM.

Cao, Y. Y., Lam, J., Sun, Y. X., & Mao, W. J. (1998). Static output

feedback stabilization: An ILMI approach. Automatica, 34(12),

1641–1645.

Gahinet, P., & Chilali, M. (1996). HN-design with pole placement

constraints. IEEE Transactions on Automatic Control, 41(3), 358–367.

Guo, Y., Hill, D. J., & Wang, Y. (2001). Global transient stability and

voltage regulation for power systems. IEEE Transactions on Power

Systems, 16(4), 678–688.

Heniche, A., Bourles, H., & Houry, M. P. (1995). A desensitized controller

for voltage regulation of power systems. IEEE Transactions on Power

Systems, 10(3), 1461–1466.

Hiyama, T., Kawakita, M., & Ono, H. (2004). Multi-agent based wide

area stabilization control of power systems using power system

stabilizer. In Proceedings of IEEE international conference on power

system technology.

Hiyama, T., Kojima, D., Ohtsu, K., & Furukawa, K. (2005). Eigenvalue-

based wide area stability monitoring of power systems. Control

Engineering Practice, 13, 1515–1523.

Hiyama, T., Oniki, S., & Nagashima, H. (1996). Evaluation of advanced

fuzzy logic PSS on analog network simulator and actual installation on

hydro generators. IEEE Transactions on Energy Conversion, 11(1),

125–131.

Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares,

C., et al. (2004). Definition and classification of power system stability.

IEEE Transactions on Power Systems, 19(2), 1387–1401.

Law, K. T., Hill, D. J., & Godfrey, N. R. (1994a). Robust co-ordinated

AVR–PSS design. IEEE Transactions on Power Systems, 9(3),

1218–1225.

Law, K. T., Hill, D. J., & Godfrey, N. R. (1994b). Robust controller

structure for coordinated power system voltage regulator and stabilizer

design. IEEE Transactions on Control Systems Technology, 2(3),

220–232.

Malik, O. P., Hope, G. S., Gorski, Y. M., Uskakov, V. A., & Rackevich,

A. L. (1986). Experimental studies on adaptive microprocessor

stabilizers for synchronous generators. IFAC power system and power

plant control (pp. 125–130). Beijing, China.

Sauer, P. W., & Pai, M. A. (1998). Power system dynamic and stability.

Englewood Cliffs, NJ: Prentice-Hall.

Soliman, H. M., & Sakar, M. M. F. (1988). Wide-range power system pole

placer. Institute of Electrical Engineering Proceedings, Part C, 135(3),

195–200.

Swarnakar, A., Marquez, H. J., & Chen, T. (2007). Robust stabilization of

nonlinear interconnected systems with application to an industrian

utility boiler. Control Engineering Practice, 15(6), 639–654.

Venikov, V. A., & Stroev, V. A. (1971). Power system stability as affected

by automatic control of generators—some methods of analysis and

synthesis. IEEE Transactions on PAS, PAS-90, 2483–2487.

Wang, Y., & Hill, D. J. (1996). Robust nonlinear coordinated control of

power systems. Automatica, 32(4), 611–618.

Yadaiah, N., Kumar, A. G. D., & Bhattacharya, J. L. (2004). Fuzzy based

coordinated controller for power system stability and voltage

regulation. Electric Power System Research, 69, 169–177.

Zhou, K., Doyle, J. C., & Glover, K. (1996). Robust and optimal control.

New Jersey: Prentice-Hall.


	Power system dynamic stability and voltage regulation enhancement using an optimal gain vector
	Introduction
	Proposed control strategy
	A background on Hinfin-SOF control design
	Modeling
	Proposed control framework
	ILMI algorithm
	Weights selection

	Real time implementation
	Experiment results
	Conclusion
	Acknowledgments
	References


