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Nonlinear Suboptimal Tracking Controller Design Using
State-Dependent Riccati Equation Technique
Yazdan Batmani, Mohammadreza Davoodi, and Nader Meskin

Abstract— In this brief, a new technique for solving a
suboptimal tracking problem for a class of nonlinear dynamical
systems is presented. Toward this end, an optimal tracking
problem using a discounted cost function is defined and a
control law with a feedback-feedforward structure is designed.
A state-dependent Riccati equation (SDRE) framework is used in
order to find the gains of both the feedback and the feedforward
parts, simultaneously. Due to the significant properties of the
SDRE technique, the proposed method can handle the presence
of input saturation and state constraint. It is also shown that
the tracking error converges asymptotically to zero under mild
conditions on the discount factor of the corresponding cost func-
tion and the desired trajectory. Two simulation and experimental
case studies are also provided to illustrate and demonstrate the
effectiveness of our proposed design methodology.

Index Terms— Input saturation, linear quadratic tracking,
optimal control, state-dependent Riccati equation (SDRE),
time-varying desired trajectory.

I. INTRODUCTION

OPTIMAL control deals with the problem of finding
a control law in order to achieve the best possible

behavior with respect to a predefined criterion. The optimal
quadratic regulation problem for linear systems was solved
in the 1960s [1] and the obtained results were also extended
to the optimal tracking problem for linear systems [1], [2].
Nevertheless, in many practical engineering problems, the
system to be controlled is nonlinear. Due to the complexity of
the arising Hamilton–Jacobi–Bellman (HJB) equation, which
is too difficult or even impossible to be solved, various
methods were developed to find approximate solutions of the
nonlinear optimal regulation problem (see [3]–[5]). Although
some methods were proposed to solve the optimal tracking
problem for nonlinear systems [6], [7], it can be said that
much less attention has been paid to this problem.

The state-dependent Riccati equation (SDRE) technique
was originally proposed by Pearson in 1962 to approxi-
mately solve the optimal regulation problem for nonlinear
systems [8]. Representing a nonlinear system dynamics as a
state-dependent linear system, called the pseudo-linearization
or extended linearization [9], is the main idea of the
SDRE technique. Since then several methods have been
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developed based on the pseudo-linearization framework to
solve different problems such as robust H∞ filter design [10],
suboptimal sliding mode control design for delayed sys-
tems [11], observer design for nonlinear delayed systems [12],
and so on. These methods were effectively applied in a
wide variety of applications, such as drug administration in
cancer treatment [13] and dive plane control of autonomous
underwater vehicles (AUVs) [14]. Two complete surveys of
the SDRE techniques and the related theories can be found
in [8] and [9].

For the set-point tracking problem, the SDRE technique is
developed based on the integral action method [8]. However,
to the best of our knowledge, the optimal tracking control
problem for nonlinear systems, which is practically very
important, has not been solved using the SDRE technique. The
main reason for this shortage is that the quadratic cost function
used in the SDRE technique is only valid for the desired trajec-
tories generated by an asymptotically stable system. However,
many of desired trajectories, such as steps and sinusoidal
signals, are not generated by such systems. This problem and
interesting properties of the SDRE method, such as simplicity
and flexibility of the SDRE design procedure, ability to con-
sider input saturation, and maintaining the nonlinear charac-
teristics of the system, motivate us to develop an SDRE-based
control design method for the nonlinear tracking problem.

Toward this end, a discounted cost function is used to tackle
the above-mentioned problem and define an optimal tracking
problem for more general desired trajectories. Then, the opti-
mal nonlinear tracking problem is converted into an optimal
nonlinear regulation problem and the SDRE technique is used
to find a suboptimal solution of the obtained optimal regulation
problem or equivalently a solution of the original optimal
tracking problem. The proposed method inherits almost all
of the interesting properties of the SDRE technique such as
ability to consider input saturation, robustness with respect
to parametric uncertainties and unmodelled dynamics, and so
on. The preliminary result of this brief is presented in [15].
In this brief, the stability of the proposed tracking controller
is investigated and a theorem is also presented to find proper
values of the discount factor. The results of applying the
proposed method to two simulation and experimental case
studies are also presented to illustrate the effectiveness and
capabilities of the proposed design methodology.

The remainder of this brief is organized as follows.
In Section II, we first define an optimal tracking problem for a
broad class of nonlinear dynamical systems and then using the
pseudo-linearization technique, a method is proposed to find a
suboptimal solution of the tracking problem. The asymptotic
stability of the closed-loop system is also investigated in this
section. In Section III, results of applying the proposed method
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to two practical case studies (dive plane control of an AUV
and level control of a three-tank system) are presented. Finally,
Section IV concludes this brief.

II. CONTROLLER DESIGN METHODOLOGY

A. System Description and Problem Statement

Consider the following nonlinear dynamical system:
ẋ(t) = f (x(t)) + b(x(t))u(t), x(0) = x0

y(t) = h(x(t)) (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control
input, and y(t) ∈ R

p is the system output. f : R
n → R

n ,
b : R

n → R
n×m , and h : R

n → R
p are assumed to be smooth

functions and f (0) = h(0) = 0 and b(x) �= 0 for all x ∈ R
n .

As mentioned, the optimal tracking problem with traditional
quadratic cost function is only valid for the cases where
the desired trajectories are generated by an asymptotically
stable system. However, there are many practically important
trajectories, which are not generated by such a system. In
this brief, to tackle this problem, a discounted cost function
is considered and a technique to solve the following optimal
tracking problem is proposed.

Discounted Infinite-Time Horizon Nonlinear Optimal Track-
ing (DITHNOT) Problem:

Find the control input u(t), t ≥ 0, such that the system
output y(t), t ≥ 0 tracks the desired trajectory yd(t), t ≥ 0,
and the following discounted cost function is minimized:

J (x0, u(t), yd (t)) =
∫ ∞

0
e−2γ t ((y(t) − yd(t))T Q1(y(t)

− yd(t)) + uT (t)Ru(t))dt

(2)

where γ > 0 is the discount factor. It is assumed that Q1 and R
are, respectively, positive-semidefinite and positive-definite
symmetric matrices with appropriate dimensions. Assume
further that the desired trajectory has the general nonlinear
dynamics

ẋd(t) = fd (xd(t)), xd(0) = xd0

yd(t) = hd (xd(t)) (3)

where xd(t) ∈ R
nd and yd(t) ∈ R

p are the state and output
of the desired trajectory system (3) and functions fd : R

nd →
R

nd and hd : R
nd → R

p are assumed to be smooth and
fd (0) = hd(0) = 0. Note that many useful desired trajectories,
such as steps, sinusoidal signals, and damped sinusoids, can
be generated by (3).

Applying Bellman’s principle of optimality to the above
DITHNOT problem leads to an HJB equation, which is too
difficult or impossible to be analytically solved. Therefore,
finding approximate solutions of the problem is considered
as an alternative way in order to avoid encountering the
complicated HJB equation. In Section II-B, based on the
pseudo-linearization idea, a technique to find a suboptimal
solution of the DITHNOT problem is proposed.

B. Proposed Method

Since the nonlinear functions f , h, fd , and hd are assumed
to be smooth and f (0) = h(0) = fd (0) = hd (0) = 0, they
can be rewritten in their pseudo-linearized forms (also called
state-dependent coefficient (SDC)) as follows [8]:

f (x(t)) = F(x(t))x(t), fd (xd(t)) = Fd (xd(t))xd (t)

h(x(t)) = H (x(t))x(t), hd (xd(t)) = Hd(xd(t))xd (t) (4)

where F : R
n → R

n×n, H : R
n → R

p×n, Fd : R
nd →

R
nd×nd , and Hd : R

nd → R
p×nd are four matrix-valued

functions. It should be mentioned that there are infinite
ways to pseudo-linearize non-scalar systems. This property of
the pseudo-linearization technique provides additional degrees
of freedom, which can enhance the design procedure of
SDRE-based methods [13].

Defining X (t) � e−γ t
[
x T (t) x T

d (t)
]T ∈ R

n+nd and U(t) �
e−γ t u(t) and substituting them in the cost function (2) in the
DITHNOT problem leads to

J (X0, U(t))=
∫ ∞

0
(X T (t)Q(eγ t X (t))X (t)+ U T (t)RU(t))dt

(5)

where

Q(eγ t X (t)) = [H (x(t)) − Hd(xd(t))]T

Q1[H (x(t)) − Hd(xd(t))].
The nonlinear dynamics of X (t) is given as

Ẋ(t) = −γ X (t) + e−γ t[ẋ T (t) ẋ T
d (t)

]T
.

Now, by substituting ẋ(t) and ẋd(t) from (1) and (3),
respectively, and using (4), we have the following augmented
pseudo-linearized dynamics:

Ẋ(t) =
(

− γ I +
[

F(x(t)) 0
0 Fd (xd(t))

])
X (t) +

[
b(x(t))

0

]

U(t) = A(eγ t X (t))X (t) + B(eγ t X (t))U(t) (6)

where I and 0 denote the identity and zero matrices with
appropriate dimensions, respectively. Therefore, an infinite-
time horizon nonlinear optimal regulation (ITHNOR) problem,
described by (5) and (6), should be solved instead of the
DITHNOT problem. The optimal solution of the ITHNOR
problem is

U(t) = −R−1 B(eγ t X (t))
∂V (t, X (t))

∂ X (t)

where V (t, X (t)) is the solution of the following HJB equa-
tion, which arises from Bellman’s principle of optimality [9]:

−∂V

∂ t
= inf

U

((
∂V

∂ X

)T

Ẋ(t) + X T (t)Q(eγ t X (t))X (t)

+ U T (t)RU(t)

)
. (7)

However, solving the above HJB equation is not generally
easier than the HJB equation arising from the original
DITHNOT problem. Nevertheless, there are some well-known
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approximation methods to solve ITHNOR problems [3]–[5],
and among them, the SDRE is one of the most popular meth-
ods, which yield to suboptimal performance [9]. In the follow-
ing, the SDRE technique is used to find a suboptimal control
law for the ITHNOR problem, or equivalently the DITHNOT
problem. Toward this end, some necessary definitions, which
are needed in the rest of this brief, are presented.

Definition 1: The SDC representation (6) is pointwise sta-
bilizable in the bounded open set � ∈ R

n+nd if the pair
(A(eγ t X (t)), B(eγ t X (t))) is stabilizable in the linear sense
for all X (t) ∈ � and t ≥ 0.

Definition 2: The SDC representation (6) is pointwise
detectable in the bounded open set � ∈ R

n+nd if the pair
(A(eγ t X (t)), Q1/2(eγ t X (t))) is detectable in the linear sense
for all X (t) ∈ � and t ≥ 0.

In order to find a suboptimal solution for the above
ITHNOR problem using the SDRE technique, two steps must
be taken [16]. At the first step, the following state-dependent
algebraic Riccati equation:
AT (eγ t X (t))P(eγ t X (t)) + P(eγ t X (t))A(eγ t X (t))

− P(eγ t X (t))B(eγ t X (t))R−1 BT (eγ t X (t))P(eγ t X (t))

+ Q(eγ t X (t)) = 0 (8)

should be solved to find the matrix P(eγ t X (t)). The SDRE (8)
has a unique symmetric positive-definite solution P(eγ t X (t))
if the triple (A(eγ t X (t)), B(eγ t X (t)), Q1/2(eγ t X (t))) is
point-wise stabilizable and detectable [16]. While this equation
can be solved analytically for simple problems, there are some
numerical methods to find its solution for complex systems [8].
The second step of the SDRE design procedure is to compute
the control law U(t) as

U(t) = −R−1 BT (eγ t X (t))P(eγ t X (t))X (t). (9)

It can be seen that the above technique uses the solution
of the SDRE (8) instead of solving the HJB equation (7).
Although it has been shown [9] that there is always an SDC
representation, which yields to the optimal solution, finding
such an SDC form is not straightforward. However, using any
SDC representation leads to having a suboptimal control law.
The following theorem shows that under which conditions the
SDRE technique leads to a locally stable closed-loop system.

Theorem 1: Assume that the triple (A(eγ t X (t)),
B(eγ t X (t)), Q1/2(eγ t X (t))) is pointwise stabilizable and
detectable in the bounded open set � ∈ R

n+nd where 0 ∈ �.
The control law (9) guarantees the local asymptotic stability
of the origin of the system (6), where P(eγ t X (t)) is the
solution of the SDRE (8).

Proof: Due to the point-wise stabilizability and detectabil-
ity of the SDC representation (6), from Riccati equation theory,
it can be concluded that the SDRE (8) has a unique symmetric,
positive-definite solution P(eγ t X (t)) [11]. Using Taylor series
expansion, A(eγ t X (t)), B(eγ t X (t)), and P(eγ t X (t)) can be
written as A(eγ t X (t)) = A0 + �A(eγ t X (t)), B(eγ t X (t)) =
B0 + �B(eγ t X (t)), and P(eγ t X (t)) = P0 + �P(eγ t X (t)),
where A0 = A(0), B0 = B(0), and P0 = P(0). �A(eγ t X (t)),
�B(eγ t X (t)), and �P(eγ t X (t)) are the other terms of
Taylor series expansions for A(eγ t X (t)), B(eγ t X (t)), and

P(eγ t X (t)), respectively. Applying the control law (9) leads
to the following closed-loop system:

Ẋ(t) = A(eγ t X (t))X (t) − B(eγ t X (t))R−1

BT (eγ t X (t))P(eγ t X (t))X (t) � Acl(eγ t X (t))X (t).

The closed-loop system dynamics Acl(eγ t X (t)) can be
rewritten as Acl(eγ t X (t)) = Acl

0 + �Acl(eγ t X (t)), where

Acl
0 = A0 − B0 R−1 BT

0 P0. (10)

Since �A(eγ t X (t)),�B(eγ t X (t)), and �P(eγ t X (t)) tend
to zero for the small values of X (t), one can see that
�Acl(eγ t X (t)) tends to zero. Now, consider the Lyapunov
function V (X (t)) = X T (t)P0 X (t). The derivative of V (X (t))
along the trajectory Ẋ(t) = Acl(eγ t X (t))X (t) is given as

V̇ (X (t)) = X T (t)((Acl)T P0 + P0 Acl)X (t)

= X T (t)
((

Acl
0

)T
P0 + P0 Acl

0 + σ(X (t))
)
X (t)

where σ(X (t)) = (�Acl(eγ t X (t)))T P0 + P0�Acl(eγ t X (t)).
Substituting Acl

0 from (10) in the above equality leads to

V̇ (X (t)) = −X T (t)Q̃(X (t))X (t) + X T (t)σ (X (t))X (t) (11)

where Q̃(X (t)) � Q(X (t)) + P0 B0 R−1 BT
0 P0. Since

�Acl(eγ t X (t)) tends to zero for small values of X (t), σ(X (t))
tends to zero, and therefore, for any ε > 0, there exists
δ > 0, such that ‖σ(X (t))‖ < ε for all X (t) ∈ Bδ � {X (t) |
‖X (t)‖ < δ}. From (11), it can be concluded that

V̇ (X (t)) < −X T (t)Q̃(X (t))X (t) + ε‖X (t)‖2 ∀X (t) ∈ Bδ.

On the other hand, if λmin(.) denotes the minimum eigenvalue
of a matrix, the following inequality holds:

V̇ (X (t)) < −(λmin(Q̃(X (t))) − ε)‖X (t)‖2 ∀X (t) ∈ Bδ.

Since Q̃(X (t)) is symmetric and positive definite for X (t) ∈
Bδ, λmin(Q̃(X (t))) is positive [17]. Therefore, V̇ (X (t)) is
negative by selecting

ε < inf
X (t)∈�

(λmin(Q̃(X (t))))

and this completes the proof. �
From Theorem 1, using the proposed method, the aug-

mented state variable X (t) = e−γ t [x T (t) xd
T (t)]T

asymp-
totically tends to zero and the cost function (2) is mini-
mized in a suboptimal way. Therefore, it can be concluded
that the tracking error e(t) = y(t) − yd(t) tends to zero
for γ → 0.

Using the obtained control law U(t), we can find
the following control law for the original DITHNOT
problem:
u(x(t), xd(t))

= −R−1 BT (x(t))P(x(t), xd (t))
[
x(t)T xd

T (t)
]T

(12)

which can be rewritten as u(x(t), xd(t)) = −K f (x(t), xd(t))
x(t) − K f f (x(t), xd(t))xd(t), where K f (x(t), xd(t)) and
K f f (x(t), xd(t)) are, respectively, the state-dependent
feedback and feedforward gains, which both are calculated
from solving the SDRE (8). The following theorem shows
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Fig. 1. Flowchart of the proposed tracking controller.

that it is possible to find a lower bound for γ in such a way
that the SDRE (8) can be solved.

Theorem 2: The SDC representation (6) is pointwise stabi-
lizable in � = �x × �xd if the pair (F(x), b(x)) is pointwise
stabilizable in �x ⊂ R

n and the discount factor γ satisfies

γ > sup
xd∈�xd

(max(Re(λ(Fd (xd)))))

where λ(Fd (xd)) is the eigenvalue of Fd(xd) for xd ∈ �xd .
Proof: The state-dependent controllability matrix of the

pair
(

A(eγ t X (t)), B(eγ t X (t))
)

is as follows:


c =
[

b(x) (F(x) − γ I )b(x) . . . (F(x) − γ I )n+nd −1b(x)
0 0 . . . 0

]
.

It can be concluded that if the pair (F(x), b(x)) is pointwise
stabilizable in �x , then the above controllability matrix 
c has
a rank of n and the state variables Xi , i = 1, . . . , n are con-
trollable. On the other hand, the remaining state variables are
uncontrollable. Note that this result is trivial, since these states
are actually related to the desired trajectory. Nevertheless, if all
the real parts of the eigenvalues of the state-dependent matrix
Fd (xd) − γ I are negative for all xd ∈ �xd , then these states
are pointwise stabilizable in �xd . This condition is guaranteed
if the real parts of all the eigenvalues of Fd (xd) are smaller
than γ . This completes the proof. �

From Theorems 1 and 2, it can be concluded that the
discount factor γ is a critical parameter of the proposed
method. Although the tracking error e(t) only guarantees to be
zero for small values of γ , in some cases due to Theorem 2,
we have to select larger values for the discount factor γ ,
which causes error in the tracking. However, the observed error
can be decreased by selecting larger values for the elements
of the weighing matrix Q1. The main steps involved in the
computation of the proposed SDRE tracking controller are
illustrated in Fig. 1.

Remark 1: The proposed SDRE tracking controller can be
used in a class of nonlinear delayed systems based on the
extensions of the SDRE regulator in [18].

III. CASE STUDIES

In this section, the proposed SDRE tracking controller is
applied to two practical examples. The first one demonstrates
how the proposed tracking controller can solve the problem
of dive plane control of an AUV in a complex mission. The
second example concerns the problem of level control of a
laboratory three-tank system.

A. Dive Plane Control of AUV

AUVs have become an increasingly important tool in a
number of applications over the recent years such as deep
sea inspections, neutralize undersea mines, and so on. Design
of controllers for AUVs is an extremely difficult task mostly
due to the inherent nonlinearity of the underwater vehicle
dynamics. On the other hand, it is so important to design a
controller so as to make the AUV tracks a desired time-varying
trajectory in complex missions in order to avoid hitting phys-
ical obstacles. The considered AUV in this brief is a REMUS
AUV, which has been described in detail by [19]. The objective
of this example lies in the design of a robust suboptimal
tracking control system for the control of AUVs in the dive
plane using the proposed method presented in Section II. For
this purpose, the following SDC representation of the AUV
model is used [14]:

Ẋ (t) =
[A1(X (t)) A2(X (t))
A3(X (t)) A4(X (t))

]
X (t) +

[
b1

02×1

]
δs(t)

+
[

d1
02×1

]
= A(X (t))X (t) + b2δs(t) + d (13)

where X (t) = [w(t) q(t) z(t) θ(t)]T

A1(X (t)) = M−1
[

Zuwu + Zw|w||w(t)| A1,12(X (t))
Muwu + Mw|w||w(t)| A1,22(X (t))

]

A2(X (t)) = M−1
[

0 A2,12(X (t))
0 A2,22(X (t))

]

A3(X (t)) =
[

cos(θ(t)) 0
0 1

]
, d1 =

[
W − B0

xB B0 − xG W

]

A4(X (t)) =
[
0 −u sin(θ(t))θ−1(t)
0 0

]
, b1 = M−1

[
Zuu

Muu

]
u2

and

A1,12(X (t)) = Zuq + Zq|q||q(t)| + mzGq(t) + mu

A1,22(X (t)) = Muq + Zq|q||q(t)| − m(cos(θ(t)) − 1)θ−1(t)

A2,12(X (t)) = (W − B0)(cos(θ(t)) − 1)θ−1(t)

A2,22(X (t)) = (xB B0 − xG W )(cos(θ(t)) − 1)θ−1(t)

− (zG W − zB) sin(θ(t))θ−1(t)

M =
[

m − Zẇ −mxG − Zq̇

−mxG − Mẇ Iyy − Mq̇

]
.

In the above equations, w, q , z, and θ are the heave velocity,
the pitch velocity, the depth, and the pitch angle, respectively,
and δs denotes the fin angle, which is considered as the control
input for the dive plane control of the AUV. The hydrodynamic
parameters values of the AUV are reported in Table I [14].
Table II also represents the physical parameters values of the
AUV [14], where (xB, zB) and (xG , zG) are the coordinates
of the center of buoyancy and the coordinates of the center
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TABLE I

HYDRODYNAMIC PARAMETERS OF THE REMUS

TABLE II

VEHICLE PHYSICAL PARAMETERS OF THE REMUS

of gravity of the AUV with respect to the center of buoyancy,
respectively. W denotes the AUV’s weight, B0 is the vehicle
buoyancy, m is the mass of the AUV, and Iyy is the moment of
inertia of the AUV about the pitch axis. It should be mentioned
that in the following simulations, the forward velocity u is
assumed to be held as u = 2 m/s.

Since the amplitude of the control input, i.e., the fin angle,
cannot be larger than a certain value, it is so vital to consider
the presence of the input saturation in the design procedure.
Unlike the well-known nonlinear controller design techniques,
such as sliding mode control and backstepping, the SDRE
method can easily handle this problem [8]. Let us define an
auxiliary input δ̃s(t) and consider the following dynamics for
the fin angle:

δ̇s(t) = δ̃s(t). (14)

Augmenting (13) and (14) yields to the following SDC
representation:

ẋ(t) =
[A(X (t)) b2δ

−1
s (t)sat(δs(t), δsm)

01×4 0

]
x(t)

+
[

04×1
1

]
δ̃s(t) +

[
d
0

]

= F(x(t))x(t) + bδ̃s(t) + D (15)

where x(t) = [X T (t) δs(t)]T
, δsm is the maximum admissible

value of the fin angle, and sat is the saturation function defined
as follows:

sat(δs(t), δsm) =

⎧⎪⎨
⎪⎩

δsm, δs(t) > δsm

δs(t), |δs(t)| ≤ δsm

−δsm, δs(t) < −δsm.

For the dive plane control problem of the AUV, the output
z(t) is as follows:

z(t) = [ 0 0 1 0 0 ]x(t) = H x(t). (16)

Based on the above SDC representation, the problem of
tracking a constant trajectory is solved using the SDRE
method [14]. Nevertheless, it is so important to design a

Fig. 2. Determinant of φc.

controller, such that the AUV tracks a desired time-varying
trajectory. In the following simulations, it is assumed that
due to some physical obstacles, the AUV has to track a
damped sinusoidal trajectory, which can be described by the
following dynamics:

ẋd(t) =
⎡
⎣0 1 0

0 0 1
0 −0.5 −0.5

⎤
⎦ xd(t) = Fd xd(t),

zd (t) = [ 1 0 0 ] xd(t) = Hd xd(t),

xd(0) = [ 0 0 0.5 ]T
. (17)

Now, the above dive plane control of the AUV, represented
by (15)–(17), can be considered as a tracking problem, which
is in the form of (1) and (3). Therefore, it is possible to
apply the proposed method, provided that the conditions of
Theorem 1 are satisfied. To check the pointwise stabilizability
condition, according to Theorem 2, the pair (F(x), b) must
be stabilizable in the domain of interest in the state space R

5

and the discounted factor γ must be positive. For the pair
(F(x), b), the pointwise controllability matrix φc ∈ R

5×5 is
as φc = [b F(x)b F2(x)b F3(x)b F4(x)b].

A code in MATLAB is written to compute the determinant
of φc in the domain �x = {x ∈ R

5 : ||x || ≤ 5}. This domain is
considered based on the initial conditions of the AUV as well
as the desired trajectory zd(t) in the following simulations.
The obtained results show that in this domain, the determinant
of φc is always negative, and therefore, the pair (F(x), b)
is controllable in �x . Fig. 2 shows the determinant of the
pointwise controllability φc when z, θ , and δs are assumed to
be zero and −1 ≤ w, q ≤ 1.

The above results show that the pointwise stabilizability
condition in Theorem 1 is satisfied provided that the discount
factor γ is a positive constant. Paying attention to the stability
of the desired trajectory (17), in the following simulations,
this parameter is selected as γ = 0.01. The same analysis
shows that the pointwise detectability condition in Theorem 1
is also satisfied and the augmented SDC representation (6)
is pointwise detectable in the domain � ∈ R

8, which con-
tains �x . Therefore, the proposed tracking controller can be
applied to the problem of dive plane control (see (15)–(17)).
Fig. 3(a) shows the depth z(t) when the amplitude of the fin
angle δs is unconstrained as well as when it is assumed to
be limited to δsm = 40°. In these simulations, the weighting
matrices and the initial conditions are Q1 = 100, R = 0.01,
and x(0) = [0 0 0 0 0]T , respectively. As it can be seen from
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Fig. 3. Results of applying the proposed tracking controller to the AUV.
(a) Depth of the AUV. (b) Control input.

Fig. 3(a), the obtained results are satisfactory and the AUV
tracks the desired trajectory zd(t) even in the presence of input
saturation. Fig. 3(b) shows the corresponding control inputs
with and without input saturation.

To apply the proposed tracking controller to the AUV,
the parameter values of the AUV model must be known.
However, in practice, their actual values are different from
their nominal values reported in Table I. Therefore, the
designed controller must be robust against the uncertainty in
the parameters to maintain its nominal performance. On the
other hand, as it was mentioned in Section I, the SDRE
controller has intrinsic robustness with respect to parametric
uncertainties. Since the proposed tracking controller is the
extension of the SDRE technique to the DITHNOT problem,
it is expected to inherit this crucial property of the SDRE.
To examine the robustness of the proposed tracking controller,
it is assumed that the hydrodynamics parameters of the AUV
are uncertain but bounded. Indeed, the controller is designed
using the nominal parameters of the AUV (p∗) while the
correct values of the parameters are randomly selected in the
bound [p∗−εp∗, p∗+εp∗]. The simulation results for ε = 0.3
and ε = 0.5 are shown in Fig. 4. In each case, simulations
are run for 250 sets of the parameters. For ε = 0.3, the
average and the standard deviation of the root mean square
error are 0.0021 and 0.0045, respectively. These values are,
respectively, increased to 0.0030 and 0.0049 for ε = 0.5.
It can be concluded that the proposed tracking controller is
so robust against parametric uncertainties and the depth of the
AUV successfully tracks the desired time-varying trajectory.

B. Level Control of a Three-Tank System

In this example, to illustrate the performance of the
proposed controller, a setup of a three-tank system
with mathematical model At ḣ1(t) = q1(t) − q13(t),

Fig. 4. Graphs of the depth of the AUV for (a) ε = 0.3 and (b) ε = 0.5.
Dashed lines: desired trajectory.

At ḣ3(t) = q13(t) − q32(t), and At ḣ2(t) = q2(t) + q32(t) −
q20(t) is considered, where hi denotes the level of tank i in m,
(i = 1, 2, 3). q1 and q2 are the supplying flow rates in m3/sec,
qi j shows the water flow from tank i to tank j in m3/sec,
(i, j ∈ {1, 2, 3}), and At denotes the section of the cylinder
in m2 [20]. The three-tank system has four state regions
in which the corresponding model is differentiable [20]. In
this example, we consider the region h1(t) > h3(t) > h2(t).
Using the generalized Torricelli rule, equations q13(t) =
a1S(2g(h1(t)−h3(t)))1/2, q32(t) = a3S(2g(h3(t)−h2(t)))1/2,
and q20(t) = a2S(2gh2(t))1/2 are obtained for the flow rates,
where g is the earth acceleration in m/sec2, S and ai

(i ∈ {1, 2, 3}), respectively, denote the section of the
connection pipes in m2 and the outflow coefficients [20].

The control problem is to find the control law u(t) =
[q1(t) q2(t)]T in such a way that the level of the first
and the second tanks is set to some predefined values. To
implement the proposed SDRE tracking controller, an SDC
representation of the above model is needed. Since the model
has three state variables, there are infinite ways to form the
state-dependent matrices. The following one is used in our
implementation:

ẋ(t) = F(x(t))x(t) + bu(t), y(t) = H x(t) (18)

where x(t) = [h1(t) h3(t) h2(t)]T , and

F(x(t)) =
⎡
⎣F11(x(t)) F12(x(t)) 0

F21(x(t)) F22(x(t)) F23(x(t))
0 F32(x(t)) F33(x(t))

⎤
⎦

b =

⎡
⎢⎢⎢⎣

1

At
0

0 0

0
1

At

⎤
⎥⎥⎥⎦

H =
[

1 0 0
0 0 1

]
.
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Fig. 5. Graphs of the levels of the tanks. Dashed lines: desired trajectories.

The elements of F(x(t)) are as follows:

F12(x(t)) = −F11(x(t)) = a1S
√

2g

At
(h1(t) − h3(t))

−1
2

F21(x(t)) = a1S
√

2g

At
(h1(t) − h3(t))

−1
2

F23(x(t)) = a3S
√

2g

At
(h3(t) − h2(t))

−1
2

F22(x(t)) = −F21(x(t)) − F23(x(t))

F32(x(t)) = T a3S
√

2g

At
(h2(t) − h3(t))

−1
2

F33(x(t)) = −F32 − a2S
√

2g

At
(h2(t))

−1
2 .

As it was mentioned above, the problem is to set the levels
of the first and second tanks to the desired constant values.
Therefore, the dynamics ẋd(t) = 02×1 and yd(t) = xd(t) is
used to describe the desired trajectory.

Due to the assumption h1(t) > h3(t) > h2(t), one can
see that the above SDC representation (18) is pointwise
controllable. On the other hand, by selecting the discounted
factor γ = 0.01 and the weighting parameters Q1 = 100I2
and R = 0.05I2 and using Theorems 1 and 2, it is possible
to show that the closed-loop system is stable and the tracking
error converges to zero. Fig. 5 shows the levels of the tanks
for ai = 0.5, S = 0.5, At = 0.0154, and g = 9.81. From this
figure, it can be seen that the proposed method is so effective
and the levels of the tanks are successfully set to their desired
values.

Remark 2: Finding the solution of the SDRE (8) is the
central component of the proposed tracking controller. While
this equation might be solved analytically, a sampled-data
method, represented in [8], is used in this brief.

IV. CONCLUSION

Using a discounted cost function, a general optimal tracking
problem has been considered for a broad class of nonlinear
systems. The tracking problem has been converted into an
optimal regulation problem without any discount factor by
defining some new state variables and control input. In order
to avoid encountering any HJB equations, the SDRE technique
has been used to find a suboptimal solution of the obtained
regulation problem. It has been shown that this control law
has actually a feedback-feedforward structure for the original

tracking problem, where both the feedback and feedforward
gains are calculated by solving a state-dependent algebraic
Riccati equation. The proposed method has been systemat-
ically applied to the problem of dive plane control of an
AUV. Simulation results show that the proposed method is
so effective to control nonlinear systems even in the presence
of input saturation and parametric uncertainties. Capabilities
of the proposed tracking controller have also been evaluated
using an experimental three-tank system.
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