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This paper proposes a new framework to tackle computer-aided modeling and evolutionary algorithms
into conventional design phase of a machine, which, in turn, significantly reduces time and cost of struc-
tural optimization. The model-based engineering approach overcomes the crudity of hard modeling, field
experiments and statistical analysis for finding the optimum structure of a design. Genetic algorithm
incorporated with fuzzy modeling established a hybrid computational algorithm which predicts optimal
sizing of a platform, developed for a chickpea harvester header. The harvesting losses of the platform’s
configurations in field trials were fed to the metaheuristic approach to develop a soft simulator for
redesigning of the machine. Acceptable harvesting performance of the optimized harvester in field trials
confirmed the robustness feature of the experiments based simulator. Further the results validated the
virtual model and verified the reliability of the automatically generated harvester. The methodology
can be employed for structural optimization of mechanical systems.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Time-consuming and costly development of the conventional
design methodology are difficulties for prototyping a concept and
reaching optimal solution. During last decades, conceptually
designed headers and harvesters were tried for chickpea (Cicer ari-
etinum L.) harvesting (Bansal and Sakr, 1992; Behroozi-Lar and
Huang, 2002; Konak et al., 2002; Siemens, 2006), but acceptable
performance has not been achieved yet. The problem becomes
more acute when mechanical harvesters applied for harvesting
rainfed chickpeas cultivated in fallow fields.

In 2006, available information on the physical, mechanical, and
aerodynamic properties of chickpea seeds was reviewed for
designing of a chickpea harvester. Terminal velocity, Reynolds
number, sphericity, dimensions, densities, mass, volume hardness,
impact velocity, coefficient of friction and drag force were sur-
veyed for designing of a concept. For instance, length, width, thick-
ness and geometric mean diameter of chickpeas seed were
determined 9.34, 7.72, 7.75 and 8.5 mm, respectively. Later, the
gathered information was published by (Golpira, 2015). In 2009,
a tractor-pulled harvester with modified stripper header was
conceptually designed and fabricated for chickpea harvesting. A
platform, with 1 m working width, was accompanied by a batted
reel to develop a modified stripper harvester header. The platform
with forward-opening fingers produced a harvester header, in
which the plants move through the V-shaped slots and are
stripped. The platform supports the passive fingers and delivers
the harvested material. Reel with three bats sweeps the pods
across the platform and pushes the top of the chickpeas over the
header. A conveyor with an endless chain sweeps the harvested
material which falls onto the header (Golpira et al., 2013). In
2011, the tractor-pulled harvester was redesigned to a tractor-
mounted harvester which benefits from advantages of pneumatic
conveyors (Golpira, 2013). In addition to adaptability of the float-
ing header with ground unevenness, field environmental impacts
have moderated by two tire wheels located on both sides of the
header. This causes the performance of the harvester is kept
acceptable in different fields. Field experiments results confirmed
that the structural optimization of the platform can reduce losses.
However, hard modeling, field experiments, and statistical analysis
are time and cost-consuming tools for decision-making in conven-
tional design of a concept.

Nature of computer-based design models and evolutionary
algorithms provides some opportunities that cannot be obtained
through conventional approaches. Fuzzy Modeling (FM), Genetic
Algorithm (GA), differential evolution, harmony search, particle
swarm and ant colony optimizations, bee, bat and firefly algo-
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Nomenclature

W slot width
L finger length
D keyhole diameter
E entrance width
Hp weight of harvested pods on the header, kg

l total losses, %
Lp weight of remained pods on the plant, kg
Ls weight of shattered pods on the ground, kg
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rithms, cuckoo search, charged system search and krill herd are
utilized for modeling and optimization (Babuska, 2001; Gandomi
et al., 2011, 2013; Saridakis and Dentsoras, 2008). While modeling
approaches are employed to visualize performance of a system,
bio-inspired algorithm attains the required knowledge to converge
at optimum solution from the fitness function in the evolutionary
process. Two types of rule-based fuzzy models are Mamdani and
Takagi–Sugeno. While the early one is determined by linguistic
description of both antecedent and consequent, the later, known
as Takagi–Sugeno (Takagi and Sugeno, 1985), is described by lin-
guistic antecedent and crisp consequent. The linguistic fuzzy
model, introduced by (Mamdani, 1977; Zadeh, 1973), is appropri-
ate for structural optimization problems (Kicinger et al., 2005).
GA is a powerful optimization technique, capable of being applied
to a wide range of optimization problems that enables to perform
randomized global search in a solution space. GA produces an
exhaustive set of variables that covers all the search space of pos-
sible solutions in an optimal way. Combination of two or more
above mentioned metaheuristic approaches produces hybrid algo-
rithms for model-based engineering solutions. It should be noted
that while evolutionary algorithms and hybrid models are com-
mon tools to deal with control systems (Jamshidi, 1996), their abil-
ity in designing a concept is neglected in literature.

In this research, a soft simulator was developed to optimize per-
formance of a platform, designed for chickpea harvesting. FM
incorporated with GA provides an experiment-based hybrid model
for structural optimization of the machine. The virtual harvester
reduces design cost and time through mimics the behavior of the
machine to predict harvesting losses.

The rest of this paper is organized as follows. Section 2 presents
the harvesters, models and design variables. Section 3 describes
real and virtual field evaluations. Section 4 develops the soft
simulator. Section 5 validates the hybrid model, and finally Sec-
Fig. 1. Platform with design variables of D: Keyhole diameter; E: Entrance width; L:
Finger length; W: Slot width.
tion 6 compromises a framework for structural optimization of
concepts.

2. Machine design

2.1. Platform configurations

Platform variables of slot width, finger length, keyhole diameter
and entrance width would be modified in order to minimize the
harvesting losses (Fig. 1). The sizing optimization problem is for-
mulated as:

Minimize Losses ¼ FðW; L;D; EÞ ð1Þ
where W; L;D; and E are slot width, finger length, keyhole diameter,
and entrance width, respectively.

Eighteen steel platforms were built and evaluated in field trials.
The design variables of the fabricated platforms are illustrated in
Table 1. Platform with slot widths of 40- and 70-mm and finger
lengths of 150- and 200-mm were the preliminary models (Nos.
1, 2 and 3). The width of these platforms was 100 cm. These models
were tried during year 2009 on the tractor-pulled harvester
(Fig. 2). The optimal design included a slot width of 40 mm and fin-
ger lengths of 200 mm. As the long fingers produce high losses, the
finger lengths were reduced to 95-mm. Further, Keyhole, a hole at
the base of the fingers, was added to the platform structure. Plat-
form with the slot width of 72-mm, finger length of 95-mm, key-
hole diameter of 16-mm and entrance width of 10-mm (No. 4)
was the baseline for the redesigned harvester (Fig. 3). The width
of this platform was 140 cm.

To reduce cost and time, a simple harvester was fabricated for
testing the platform configurations (Fig. 4). An adjustable screw
adjusts height of platforms above the ground. This human-
handled harvester is utilized to test ten fabricated platforms, i.e.
configuration Nos. 5–14 in Table 1. The width of theses platforms
Table 1
Platform configurations fabricated for chickpea harvesting.

Platforms Design variables (mm)

Slot width Finger length Entrance width Keyhole diameter

1 70 150 – –
2 40 200 – –
3 40 150 – –
4 72 95 10 16
5 72 95 13 16
6 40 40 6 6
7 58 95 12 13
8 58 95 10 17
9 58 40 12 13
10 58 40 10 17
11 40 40 7 10
12 40 40 14 15
13 40 40 8 11
14 72 95 6 12
15 – – 13.5 15.5
16 – – 6.5 9
17 – – 5.5 13.5
18 – – 12.5 16



Fig. 2. Tractor-pulled harvester with modified stripper header fabricated for
chickpea harvesting.

Tire wheel Platform 
Adjustable Screw 

Fig. 4. Human-operated harvester fabricated for testing of the platform
configurations.
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was 35 cm. Further, four models were developed and tried out-of-
field in laboratory for size optimization of the keyhole and
entrance width (Nos. 15–18). Keyhole diameters and entrance
widths ranged respectively, from 6- to 17-mm and 6- to 14-mm.

Each platform was a redesigned version of the previous one
with modified functional operators of keyhole diameter, finger
length, slot width and entrance width. Some platforms were com-
bined with each others to form a new configuration with lower
losses in comparison with the constituent platforms. It could be
seen, as will be discussed in next section, that the rationale behind
the conventional design is the same with the soft computing
methodology. In this way, designing of a newmodel based on func-
tional operators modifications and combination of platforms could
be considered as mutation and crossover, respectively. Crossover
combines the pairs of chromosomes promoted by selection opera-
tor to generate the new candidates (Golpîra et al., 2011; Loia et al.,
2000). Mutation changes a single bit value in chromosomes ran-
domly to explore the global design space.

2.2. Genetic algorithm

The algorithm begins with a set of initial random population
represented in chromosomes, that is, a string of genes representing
an encoding of a candidate solution (Coley, 1999; Hajela and Lin,
1992; Huang et al., 2010). GA, which is utilized to minimize the
Fig. 3. (a) Tractor-mounted harvester with redesigned stripper header (b). Redesigne
Adjustable screw; F: Conveyor input; G: Shoe; H: Chain; K: Ground wheel sprocket; L:
harvester losses, is characterized by initial population of 400 chro-
mosomes; 40 binary genes, representing W, L, E, D, for a chromo-
some and 10 gens for each input variable. Genetic operators,
known as selection, crossover andmutation, acts on the initial pop-
ulation to reproduce new generation. Selection is a procedure that
individual chromosomes are selected from population for the later
mate. These chromosomes are applied to the developed fuzzy-
based model (will be discussed in next section) to estimate the har-
vester losses. The chromosomes then are sorted based on the har-
vester losses to specify the more fit individuals. The algorithm
gradually modifies the more fit individuals to form next genera-
tion. Fitness proportionate selection method, known as roulette-
wheel selection method, is used to select the elite strings for
recombination. This would be visualized through dividing of each
individual fitness to the summation of fitness for all the individuals
in the generation. Chromosomes with higher fitness values have
higher chance to be selected for breeding.

The selected individuals, through roulette-wheel selection
method, incorporated with crossover and mutation to evolve
toward optimal solution. Generally two crossover operators,
namely, normal and mathematical, are applied in the optimiza-
d stripper header. A: Ground wheel; B: Adjustable screw; C: Frame, D: Reel; E:
Reel sprocket; M: Platform; N: Hitch point.



Fig. 5. Formation of new virtual platforms by GA. (a) Two typical chromosomes in first generation, (b) generated platforms by means of crossover, (c) generated platform by
means of mutation.

Fig. 6. A general scheme for Genetic Algorithm (Golpîra et al., 2011).
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tion problems. Normal, the most suitable, substation elimination
and dual displacement are mutation operators which used to
improve the optimization procedure (Seifi and Sepasian, 2011).
The normal crossover and mutation are employed with probabil-
ities of 0.8 and 0.05, respectively. However, it was shown by
(Boyabatli and Sabuncuoglu, 2004) that effects of mutation and
crossover probabilities as well types of them on the best fitness
value are negligible. The resulting chromosomes from crossover
and mutation define a set of chromosomes, known as children.
The new generation consists of the fitter chromosomes of the
old population (parents) and the children. Fig. 5 explains forma-
tion of new virtual platforms by means of GA. The chromosomes
represented in Fig. 5(a) are two typical chromosomes which are
promoted by selection procedure for breeding. Fig. 5(b) demon-
strates formation of a typical new platform, i.e. children, from
two exist platforms, i.e. parents, in the second generation. In this
way, crossover visualizes through combination of genes sur-
rounded in the dash and dot rectangles. Fig. 5(c) reveals forma-
tion of a new platform in the third generation by means of
mutation. This chromosome is assumed to be generated from
Fig. 5(b) after action of mutation operator. The mutated genes
in Fig. 5(c) are shown by arrows. These steps continue until
the termination condition, a situation where the highest ranking
solution’s fitness, is satisfied (Fig. 6). The algorithm stops when
the change in the fitness function values over successive gener-
ations is less than function tolerance, i.e. 0.001. Moreover, in
order to guarantee the optimal solution, GA runs several times
in such a way that in each run the initial population set to the
final population from the previous run. Over successive genera-
tions, the population evolves toward an optimal solution.
3. Field evaluation

3.1. Harvesting losses

Field evaluations were conducted to determine machine perfor-
mance based on shattering losses and pods remaining on anchored
plants. The experiments were performed on the Dooshan farm of
University of Kurdistan, Gerize farm of Sanandaj Agricultural
Research Center and Saral farm of Kurdistan Agriculture Research
Center during the summers of 2007–2012 using a very common
chickpea variety, Kabuli, on the typical fallow fields. The harvesters
were operated along the rows and losses, excluding pre-harvest
losses, were measured after harvesting. Details regarding the
harvesters, evaluation methodology, statistical analysis, design of
experiments and selection of discrete values were precisely elabo-
rated in (Golpira, 2013; Golpira et al., 2013). Losses comprise the
weight of pods that has been shattered by the header (Ls) and those
remained on the plant (Lp) which was measured by collecting them
in field and calculated by the following equation:

L ¼ Lp þ Ls
Lp þ Ls þ Hp

� 100 ð2Þ

where Hp, Ls and Lp are the weight (in kg) of harvested pods on the
header, detached pods on the ground (shattering losses) and
remained pods on the plant after harvesting, respectively.

3.2. Fuzzy modeling

Fuzzy Model (FM) aims to do the same work as field evaluation,
where the harvester losses analyze. Fuzzy modeling characterizes
with fuzzification, generating of Fuzzy Associate Memory (FAM),
defuzzification and settles by validation in order to be appropriate
for optimization purpose (Babuska, 2001; Jamshidi, 1996; Kumru
and Kumru, 2013). Input variables of slot width (W), finger length
(L), keyhole diameter (D), and entrance width (E) were specified to
generate losses output (l). The fuzzified inputs and outputs, named
antecedent and consequent in rule-based system, defined by Mem-
bership Functions (MFs), depicted in Fig. 7. Since fuzzy modeling
partially depends on the designers’ intention (Espinosa et al.,
2005), fuzzification relies on the pre-specified losses levels, i.e.
accepted, marginal and rejected. In this way, each input variable
is varied in a defined range while the others are considered con-
stant. Any significant change in losses in response to studied vari-
able variation leads to definition of a MF. For example, for entrance
width more than 12 mm, stems escape from keyholes before strip-
ping. Large entrance widths do not grab anchored stems which in
turn increases pod losses and reduces harvesting quality. Table 2
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Fig. 7. Fuzzy membership functions for the inputs (finger length, slot width, keyhole diameter and entrance width)-output (harvesting losses) model.
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summarizes the designer knowledge on which MFs in Fig. 7 are
defined based on. Desired zones are those which their behavior is
accepted in field experiments.

The gathering data, represented in Table 1, in corporation with
the defined MFs are employed to generate a set of if-then rules,
called FAM bank. FAM bank contains a set of linguistic relationship
between design variables. The result was a fuzzy-based model
which determines the mapping function of:

F : ðW; L; E;DÞ ! l ð3Þ
While fuzzification converts crisp input data to fuzzy values,

using membership functions, defuzzification regenerates crisp val-
ues as the output of the model. The Max-Min inference scheme
(Mamdani, 1977) which uses center of gravity was employed to
defuzzify output values. Mamdani inference method does not
require any discritization and thus can work with analytically
defined MFs (Babuska, 2001).
4. Soft simulator

An experiment-based hybrid model was developed to minimize
harvesting losses of the chickpea harvester header. FM helps
designer to quantify expert knowledge and facilitates optimized
design through GA. A general description of the proposed hybrid
algorithm can be explained by the following steps:
Step 1: Fabricating of a platform to harvest chickpea
Step 2: Evaluating of the fabricated platform to determine har-
vesting losses
Step 3: Feeding of the evaluation data, in the form of if-then
rules, to fuzzy system for developing a fuzzy model
Step 4: Return to Step 1, repeat until the developed model
results match the practical results
Step 5: Applying GA to the validated fuzzy model to calculate
optimal W, L, E, D.
Step 6: Fabrication of the platform (concept) based on the opti-
mal functional operators.

The above steps are summarized in the flowchart of Fig. 8.
Model validation, robustness justification and an overview of the
economic aspects of the hybrid simulator will be discussed in the
following section.
5. Results and discussion

Visualization of virtual field and designer knowledge through
GA and fuzzy model not only omits necessity for fabricating and
evaluating of new models but also provides a simulator to predict
losses and optimize the machine. Fig. 9 describes two portraits of
relationship between losses and the input variables. The minimum
losses were 10% for the optimal structure, where GA determines
the slot width of 40-mm, finger length of 40-mm, keyhole diameter



Table 2
Membership functions definition procedure.

Keyhole
diameter

Low Not enough space for stems, they go out of
keyhole

Medium Desired zone
High Pods are not detached from anchored plant

Finger length Low Desired zone
Medium Desired zone
High Plants broke before stripping

Entrance width Low Stems cannot enter to keyholes
Medium Desired zone
High Stems escape before harvesting

Slot width Low Plants break
Medium Desired zone
High Desired zone
Very
High

Plants break

Losses Accepted High performance
Marginal Tradeoff between economic and performance
Rejected Lack of economic and performance merits

Fig. 8. Flow chart representation of the optimization process of the platform
concept.
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of 10-mm and entrance width of 6-mm. The optimized platform
with 140 cm width was assembled on the redesigned harvester
and tried in field experiments. The powerfulness of the proposed
modeling and hybrid approach was proved by comparing the out-
put of the simulator with field experiments and observations.

Validation results for the developed model are shown in
Fig. 10, where the predicted losses are plotted against the real
losses. In other words, Fig. 10 is aimed to assure that the model
represents the real-world header to a sufficient level of accuracy.
This, as the process of model validation, is done through com-
paring of the actual harvesting losses, associated with those con-
figurations reported in Table 1, and the predicted ones by the
proposed soft simulator. If a model gives rise to R > 0.8, and
error values, e.g., RMSE and MAE, are at minimum, there is a
strong correlation between the predicted and measured values.
R, RMSE and MAE are, respectively, correlation coefficient, root
mean squared error and mean absolute error, formulated by
(Gandomi et al., 2011). It can be observed from Fig. 9 that the
proposed model is able to predict the losses values to a satisfac-
tory degree of accuracy.

Field experiments and observations, obtained from testing of
the platform in five fields, validated the robustness feature of the
simulator/platform and suitability of the framework for most of
application environments. The proposed simulator and sequen-
tially the designed platform are robust enough to be employed in
any field without any concerns. The model can therefore be judged
as efficient/good and can be employed with high reliability in the
harvester analysis behavior.

The proposed hybrid algorithm is general enough to be applied
to any mechanical system without any concerns. Justification of
such claim is done through sensitivity analysis which in turn
demonstrates independency of the proposed soft simulator form
the FM and GA parameters. While it was shown previously that
fuzzification procedure and GA operators have no effects on the
model functionality, sensitivity analysis revealed that the number
of chromosomes has no significant impact on the best fitness value.
For this purpose, the best fitness values are calculated for the var-
ious population sizes in the range of [50–600]. Simulation results
showed that the impact of population size on the best fitness value
is less than 1%. On the other hand, number of genes has no signif-
icant effects on mechanical system design. For instance, consider-
ing 10 bits for keyhole diameter with maximum value of 20 mm
leads to 0.02 mm, i.e. 20/(210 = 1024), precision and 0.6 mm, i.e.
20/(25 = 32) for 5 bits. For the present platform design, mechanical
constraints do not allow to fabricate variable with precision less
than 1 mm. As the machine is in concept phase, any number of
genes more than 4 bits is acceptable. However, in manufacturing
phase larger number of genes, which specifies greater precision,
leads to exact optimized structure.

The simulator tests approximately 4000 (10 iterations � 400
chromosomes) platform configurations in less than one minute
with no cost. In contrast, in conventional design methodology
eighteen platforms (24 trials) were fabricated during five years
with cost of 1200$ per trial. It could be clearly seen that while
the both methods, i.e. conventional design and hybrid method,
do the same work, virtual model significantly reduces cost and
time to reach the optimal design.



Fig. 9. Response of the fuzzy model to predict harvesting losses. Portraits of model response which consists of two input variables of (a) keyhole diameter and entrance width
(b) finger length and slot width.
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6. Conclusion

This paper proposed a model-based engineering method for
structural optimization of a machine, and a framework for simula-
tion ofmechanical systems. Fusion of GA, FM and experimental data
produced a soft simulator which was developed for structural opti-
mizationof a harvesting platform. The effectiveness of the algorithm
would be accepted since the field evaluation results of the harvester
validated the robustness of the model and confirmed the perfor-
mance of the concept for chickpea harvesting. The soft harvester
not only provided reliable framework for out-of-season evaluation
but also significantly reduced design cost and time. The virtual
modelmake a tradeoff, in respect to economic and performance fea-
tures, between hard modeling and soft computing. Prototyping of
the simulator is considered for the next stage of the improvement.

Acknowledgments

The authors gratefully acknowledge the INSF (Iran National
Science Foundation) for the financial support through project’
Design, modeling and development of a chickpea harvester’ with
project number 89003079.

References

Babuska, R., 2001. Fuzzy Systems, Modeling and Identification. Delft University of
Technology, Department of Electrical Engineering Control Laboratory,
Mekelweg 4.
Bansal, R., Sakr, B., 1992. Development of a vertical conveyor reaper for harvesting
chickpeas and lentils in Morocco. Appl. Eng. Agric.

Behroozi-Lar, M., Huang, B., 2002. Design and development of chickpea combine.
Agric. Mech. Asia Africa and Latin America 33, 35–38.

Boyabatli, O., Sabuncuoglu, I., 2004. Parameter selection in genetic algorithms. J.
Syst. Cybern. Inform. 4, 78.

Coley, D.A., 1999. An Introduction to Genetic Algorithms for Scientists and
Engineers. World Scientific Singapore.

Espinosa, J., Vandewalle, J., Wertz, V., 2005. Constructing Fuzzy Models from Input-
Output Data. Fuzzy Logic, Identification and Predictive Control, pp. 21–58.

Gandomi, A.H., Alavi, A.H., Mousavi, M., Tabatabaei, S.M., 2011. A hybrid
computational approach to derive new ground-motion prediction equations.
Eng. Appl. Artif. Intell. 24, 717–732.

Gandomi, A.H., Yang, X.-S., Talatahari, S., Alavi, A.H., 2013. Metaheuristic
Applications in Structures and Infrastructures. Newnes.

Golpira, H., 2013. Conceptual design of a chickpea harvesting header. Spanish J.
Agric. Res. 11, 635–641.

Golpira, H., 2015. Redesign and evaluation of a chickpea harvester. J. Biosyst. Eng.
40, 102–109.

Golpîra, H., Bevrani, H., Golpîra, H., 2011. Application of GA optimization for
automatic generation control design in an interconnected power system.
Energy Convers. Manage. 52, 2247–2255.

Golpira, H., Tavakoli, T., Baerdemaeker, J., 2013. Design and development of a
chickpea stripper harvester. Spanish J. Agric. Res. 11, 929–934.

Hajela, P., Lin, C.-Y., 1992. Genetic search strategies in multicriterion optimal
design. Struct. Optim. 4, 99–107.

Huang, Y., Lan, Y., Thomson, S.J., Fang, A., Hoffmann, W.C., Lacey, R.E., 2010.
Development of soft computing and applications in agricultural and biological
engineering. Comput. Electron. Agric. 71, 107–127.

Jamshidi, M., 1996. Large-scale systems: modeling, control, and fuzzy logic.
Kicinger, R., Arciszewski, T., Jong, K.D., 2005. Evolutionary computationand structural

design: a survey of the state-of-the-art. Comput. Struct. 83, 1943–1978.
Konak, M., Carman, K., Aydin, C., 2002. PH—Postharvest Technology: physical

properties of chick pea seeds. Biosyst. Eng. 82, 73–78.
Kumru, M., Kumru, P.Y., 2013. Fuzzy FMEA application to improve purchasing

process in a public hospital. Appl. Soft Comput. 13, 721–733.

http://refhub.elsevier.com/S0168-1699(17)30228-4/h0005
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0005
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0005
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0010
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0010
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0015
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0015
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0020
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0020
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0035
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0035
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0035
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0040
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0040
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0045
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0045
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0050
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0050
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0055
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0055
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0055
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0060
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0060
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0065
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0065
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0070
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0070
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0070
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0080
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0080
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0085
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0085
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0090
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0090


H. Golpira, H. Golpîra / Computers and Electronics in Agriculture 135 (2017) 252–259 259

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order
Loia, V., Sessa, S., Staiano, A., Tagliaferri, R., 2000. Merging fuzzy logic, neural
networks, and genetic computation in the design of a decision-support system.
Int. J. Intell. Syst. 15, 575–594.

Mamdani, E.H., 1977. Application of fuzzy logic to approximate reasoning using
linguistic synthesis. Comput. IEEE Trans. 100, 1182–1191.

Saridakis, K.M., Dentsoras, A.J., 2008. Soft computing in engineering design – a
review. Adv. Eng. Inform. 22, 202–221.
Seifi, H., Sepasian, M.S., 2011. Electric Power System Planning. Springer.
Siemens, M., 2006. Effect of guard spacing, guard attachments and reel type on

chickpea harvesting losses. Appl. Eng. Agric. 22, 651.
Takagi, T., Sugeno, M., 1985. Fuzzy identification of systems and its applications to

modeling and control. Syst. Man Cybern. IEEE Trans., 116–132.
Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex systems and

decision processes. Syst. Man Cybern. IEEE Trans., 28–44.

http://refhub.elsevier.com/S0168-1699(17)30228-4/h0095
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0095
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0095
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0100
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0100
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0105
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0105
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0110
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0115
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0115
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0120
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0120
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0125
http://refhub.elsevier.com/S0168-1699(17)30228-4/h0125

	Soft simulator for redesigning of a chickpea harvester header
	1 Introduction
	2 Machine design
	2.1 Platform configurations
	2.2 Genetic algorithm

	3 Field evaluation
	3.1 Harvesting losses
	3.2 Fuzzy modeling

	4 Soft simulator
	5 Results and discussion
	6 Conclusion
	Acknowledgments
	References


