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Abstract: Battery energy storage system (BESS) is one of the best solutions to compensate the wind power fluctuations and
forecasting errors for participation in the power markets by contribution in the energy production several hours ahead. Based on
coordination of BESS and wind power, this study aims to present a new strategy to optimise the BESS size and increase the
battery lifetime. In the proposed strategy, the average wind power is considered as the dispatch power to minimise the battery
capacity and two back up battery sets are utilised to avoid shallow charge–discharge cycles for saving the battery efficiency and
lifetime. In addition, the short-term operation criterion is chosen to deal with the prediction error effects. The proposed method is
applied to a 2 MW wind turbine as a case study with 2 years wind data. Simulation results show the effectiveness of the
proposed strategy.

 Nomenclature
Pw instantaneous wind power
Pb instantaneous battery power
Pd dispatching power
Pb(r) required battery power capacity
Pmax(i) maximum battery power over each subinterval
Eb instantaneous battery energy
Eb(r) required battery energy capacity
SOC state of charge of battery
Pb(r)

1 required battery power capacity in the first method
Pb(r)

2 required battery power capacity in the second method
Pb(r)

p required battery power capacity in the proposed method

Eb(r)
1 required battery energy capacity in the first method

Eb(r)
2 required battery energy capacity in the second method

Eb(r)
p required battery energy capacity in the proposed method

Tb
1 battery lifetime in the first method

Tb
2 battery lifetime in the second method

Tb
p battery lifetime in the proposed method

Vf forecasted wind speed
Vf

u upper limit of forecasted wind speed

Vf
l lower limit of forecasted wind speed

μ normalised mean value of prediction error
σ normalised standard deviation of prediction error
l confidence level
Vr rated wind speed
Vw instantaneous wind speed (in p.u.)
Pf

u upper limit of forecasted wind power

Pf
l lower limit of forecasted wind power

Pw
avg average wind power over dispatch intervals

1 Introduction
Renewable energy sources, in particular the wind turbines, are
going to be a significant part of power systems [1, 2]. Owing to its
fluctuations, high penetration of wind power may affect the quality
and stability of power systems [3, 4]. The traditional approach to
compensate the wind power fluctuations is the use of spinning

reserve in the grid. High level of wind power, however, increases
the overall cost of reserve units. In addition, in the modern power
markets the generating units are required to commit the power
production in a day or several hours ahead. Any deviation from the
scheduled dispatch power results in penalties [5, 6]. Despite of
intermittency and uncertainty of wind speed, it is required to
generate some stable and smooth power for a given time interval,
based on the predicted wind speed.

Although there are many prediction methods, which can foresee
the wind profile with acceptable precision [7, 8], error in the
predicted wind power is inevitable [9, 10] and prediction of the
exact power is impossible. In addition, there are some extent of
wind power fluctuation during the dispatching interval (e.g. one
hour), despite of spatial smoothing in wind farms [11]. Therefore,
injecting the specified constant power during dispatching intervals
requires compensation of the prediction error and the wind power
fluctuation.

Battery energy storage system (BESS) is acknowledged as one
of the best solutions to remedy the wind power fluctuations and
wind power prediction errors [12–18]. A number of studies have
investigated hybrid wind-battery systems. Using two battery sets,
as the complement of wind turbine, has been presented by Yao et
al. [19], in which, during a given time interval one battery is
charged, while the other is discharged, injecting a constant power
into the grid. In this scheme, batteries with high power and energy
capacities, in the range of the wind farm, are required. In some
recently proposed methods, the battery is used as a subsidiary
element beside the wind system that needs smaller battery capacity
[20–26]. Since the application of the battery is to compensate the
difference between dispatched power and the wind power, hence,
the strategy for determining the dispatched power during time
intervals affects the battery size and lifetime. There are two general
strategies; using the mean value and using the min–max values of
the predicted wind power as the dispatched power during time
intervals [20–26]. The first strategy, which uses the mean value
[20–22], has two advantages. It needs low power and energy
capacity of the battery, and, regarding the wind forecasting,
prediction methods usually have better performance with the mean
value rather than the instantaneous values. Besides, there are
several error distributions for estimation of the average wind power
[7, 8, 10]. However, because of fluctuations around the mean
value, the battery compensates the short time negative and positive
deviations. This causes many shallow charge–discharge cycles,
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leading to reduction of the battery lifetime [23, 24]. On the other
hand, the second approach uses the min–max values of wind power
as the dispatched power, depending on the charge or discharge
mode of the battery [23, 25, 26]. This strategy has the advantage of
longer battery lifetime, due to avoiding shallow charge–discharge
cycles. However, in turn, the battery compensates the difference
between minimum and maximum wind power at each interval, so it
requires a larger power capacity than the first method (average
method). In addition, this method needs to forecast the
instantaneous values of the wind power to find the minimum and
maximum values. Beside their advantages and disadvantages, in
both approaches the overall battery cost is relatively high.

The above mentioned references consider only the wind power
profile to determine the power dispatch, i.e. according to wind
power forecasting and of course the battery situation, the amount of
power dispatch is announced. However, there are some studies
which also consider the energy price profile. In these studies, at
high energy price times the hybrid battery-wind system tries to sell
more energy by discharging the batteries, whereas, at low energy
price times it tries to dispatch less power by charging the batteries
[27, 28]. Despite the advantages of this method, it requires large
battery capacity in the range of wind farm, which is not economic
with regard to the high costs of battery systems.

As the BESS should compensate the prediction error, so the
amount of this error affects the battery sizing. There are some
papers which concentrate on the forecasting methods in order to
decrease the wind power prediction error, and subsequently,
optimise the battery sizing by using predictive control methods [29,
30].

In this paper, a new strategy based on BESS and wind systems
is presented to optimise the battery power and energy capacity and
increase its lifetime. In the proposed strategy, the mean value of
wind power is used as the dispatched power to reduce the battery
capacity, and two battery sets are used to avoid shallow charge–
discharge cycles for increasing the battery lifetime. In addition, the
short-term operation, considering the effect of prediction error on
the required battery capacity is investigated.

This paper is organised as follows. In Section 2, the wind–
battery system is described to determine the battery size. The
proposed strategy is presented in Section 3. The short-term
operation is analysed to consider the prediction error in Section 4.
Then a case study is performed in Section 5. Finally, a conclusion
is presented in Section 6.

2 Wind–battery systems
Power market requires the generation levels several hours in
advance for specific time intervals, e.g. 1  hour, which is known as
dispatched power (Pd) [31]. Since the wind power has fluctuations
within the time range of <1 h, even in the range of minutes [11],
thus it is not constant for dispatching interval. In addition, the
prediction error results in the deviation of dispatched power from
the real power. Therefore, the hybrid wind-BESS strategy is used
to compensate the power fluctuation and prediction error. The
schematic of a hybrid wind–battery system, with single battery, is
shown in Fig. 1.

The variable speed wind turbine with full rated converter is
considered and the BESS is connected to the DC link via a DC/DC
converter.

In this system, the battery compensates the difference between
wind power (Pw) and dispatched power (Pd). Hence, the battery
exchanged power (Pb) at each instant is

Pb = Pw − Pd (1)

Implementation of hybrid wind-BESS includes two stages;
determining the strategy to select the dispatched power for time
intervals and the required battery characteristics. In this section,
first by considering the specified dispatched power, the required
battery characteristics are discussed and then different strategies to
select the dispatched power are analysed.

2.1 Determining the required BESS

The characteristics of the required BESS are determined according
to the long-term wind data and dispatched power as described
below. It is assumed that the dispatched power is known as
discussed in Section 2.2.

2.1.1 Power capacity: The power capacity of the battery is the
nominal energy exchange rate of the battery, which must be
determined using (1) for the given period T of wind power (Pw)
profile. First, the period T is divided into N subintervals of 1 h
dispatching time. Then for each subinterval the maximum battery
power (Pmax(i)) is calculated, and finally the largest value of the local
maxima is considered as the required battery power (Pb(r))

Pb(r) = max
T

Pmax(i), i = 1: N (2)

2.1.2 Energy capacity: It is defined as the total energy that a
battery can deliver/absorb during complete charge/discharge
cycles. Energy capacity depends on the power capacity and is
obtained by integrating the battery power over time. The maximum
value over the period T (a long time period, e.g. 2 years) is
considered as the required battery energy capacity (Eb(r)), as
presented in (3), in which Pb(τ) is the instantaneous battery power

Eb(r) = max
T

Eb(t) = ∫
0

t
Pb(τ) dτ (3)

2.1.3 State-of-charge (SOC): SOC indicates the amount of
residual energy level in the battery at each time. The SOC can be
obtained according to the following equation:

SOC t = SOC t0 +
∫ t0

t Pb(τ) dτ
Eb(r)

(4)

SOC level should be managed in a safe range
(SOCL ≤ SOC ≤ SOCH). The maximum level is limited to the
rated energy level, i.e. fully charged (SOC = 1) and the minimum
level is limited to the maximum allowable discharge without
damaging the battery [32]. In addition, there is another parameter
known as depth of discharge (DOD) which indicates the amount of
discharge in each cycle. Because of random fluctuations in wind
power, the battery may experience deep and shallow discharges.

2.1.4 Lifetime: Usually the battery lifetime is defined based on the
rated number of complete charge–discharge cycles (Nr) under rated
power and energy condition. If the time of each cycle, according to
the rated energy and power capacity, is defined as Tc, the total time
Tt, which is used as the battery lifetime in this paper, can be
obtained as

Tt = Nr ∗ Tc (5)

The values of Nr and Tc and consequently Tt are considered for
ideal condition (rated power capacity and complete cycles), so in
non-ideal condition they would be changed. For example, in

Fig. 1  Schematic of hybrid wind-single battery system
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shallow cycles (short cycle time), despite the number of cycles is
increased but the throughput and the total time (lifetime) is
decreased [33]. In wind applications, there may be shallow and
deep discharges, therefore, the number of charge–discharge cycles,
consequently, the lifetime of the battery can be affected by DOD
level [33]. Deep (complete) discharge cycles are suggested to be
used in solar and wind applications to achieve longer lifetime [23,
24].

2.2 Power dispatching strategy

In addition to the wind power fluctuations, the amount of
dispatched power affects the battery capacity (1). The dispatched
power is the amount of power that has to be submitted to the power
market several hours ahead. Usually it is defined as scheduled
power for the next dispatching interval Td (usually Td = 1 h) [17].
There are two general approaches to determine the dispatched
power according to the wind power [21–31]. In this section, the
prediction error is neglected, but it will be discussed in Section 4.

2.2.1 Mean value: In this strategy, mean value of the estimated
wind power is considered as the dispatched power (Pd) for each
dispatching interval (Td). For a typical wind power profile, the
dispatched power and battery power, in a 1 h dispatching time
(Td = 1 h) schedule, obtained by the mean value strategy are shown
in Figs. 2a and b. In this method, depending on the sign of battery
power, the battery mode (charging or discharging) is changed fast
from one mode to the other, so the battery experiences many
shallow charge–discharge cycles (Fig. 2b).

2.2.2 Min–max value: In this strategy, complete charge–discharge
cycles are defined for the battery and shallow charging–discharging
is avoided. So according to the battery mode, i.e. charging or
discharging, the minimum or maximum value of the wind power is
considered as the dispatched power, respectively. The dispatched
power and battery power for a typical wind power are shown in
Figs. 2c and d, respectively.

As it is seen in Figs. 2b and d, depending on the dispatching
strategy, the required battery power and the number of charge–
discharge cycles in each interval are different. The mean value

strategy needs less power capacity but the battery experiences
many shallow charge and discharge cycles with uneven DOD
levels (Fig. 2b). Against, in the min–max method, the battery
experiences complete charge–discharge cycles, which improves the
battery lifetime. Of course it needs larger power capacity,
approximately two times that of the former method, which is the
deficiency of this method for the high cost of battery (Fig. 2d).
Therefore, the first method has the advantage of requiring battery
with lower capacity, but the second method is better from the point
of complete charge cycles, which results in longer lifetime [33]. In
addition, regarding power prediction, the first method needs only to
forecast the mean value of wind power for each dispatching
interval, while the second method needs the instantaneous values
of wind power to find the maximum and minimum power.
Prediction methods are usually defined to predict mean value of the
wind data, and also the prediction error analysis and error
distribution are performed for mean value [8, 10]. So using the
mean value for dispatching power is more feasible than the min-
max values. By the way, there are some methods which predict
wind speed over subintervals <1 h [34], which uses an artificial
neural network method over 10 min intervals. In the next section
the proposed method is presented to overcome the disadvantages of
these methods.

3 Proposed method
Concerning battery costs, the desirable condition is having low
capacity and using the battery in complete charge/discharge cycles
to prevent deficiency in the battery lifetime. The mentioned
strategies, each has just one of these points. In this paper, a new
strategy is proposed which has both advantages together. This
method uses mean value for the dispatched power, similar to the
first method, so it needs less power capacity for the battery. On the
other hand, two battery sets are proposed to be used, where in each
interval one of them is only charged and the other one is only
discharged. Hence, the battery sets do not experience many shallow
charge–discharge cycles like in the first method. For a typical wind
power shown in Fig. 2a, the charging and discharging power of the
two batteries are shown in Fig. 3a (the dispatched power in the
proposed method is same as in Fig. 2a, which is the mean value of
wind power). 

Fig. 2  Dispatched and battery power
(a) Wind power and dispatched power, (b) Battery power, in mean value method, (c) Wind power and dispatched power, (d) Battery power, in min–max value method
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As it is seen, the power profiles in Figs. 2b and 3a are the same,
but in the first method (Fig. 2b), the power fluctuation is handled
by one battery, while in the proposed method it is handled by two
batteries. In the first method, the battery mode changes according
to the sign of the battery power (negative or positive), while in the
proposed method the negative powers within an interval are
responded consistently by one battery and the positive powers by
the other one, and the battery roles are interchanged during
subsequent intervals. So in the proposed method both batteries
experience complete charge–discharge cycles. The schematic of the
proposed strategy is shown in Fig. 3b. Since the proposed method
uses average wind power, so it needs low power and subsequently
low energy capacity. In addition, full charge–discharge cycles are
performed, so it insures good efficiency in terms of battery
lifetime.

In the proposed approach, two batteries with the same capacity
are connected to the dc link via a multi-port converter. It should be
noticed that the two batteries should have the same capacity to
reach their max/min SOC at the same time. In other words, at the
time of role interchange, both batteries should be charged/
discharged completely, otherwise, the battery with larger capacity
is not completely charged/discharged and not fully utilised.

Compared with the other approaches, the following points can
be deduced for the proposed method.

3.1 Power capacity

Since in both the first method and proposed method, the dispatched
power is same and equal to the mean value, so according to (1) and
(2), the required power capacity is the same for these two
strategies. On the other hand, in min-max method, the required
power capacity in each interval is the difference between minimum
and maximum values of the wind power, which is larger than the
difference between maximum (or minimum) and mean values, used
in the proposed and first methods (Figs. 2b, d and 3a). So the
required battery power capacity in the three methods
(Pb(r)

1 , Pb(r)
P , Pb(r)

2 ) can be compared as:

Pb(r)
1 = Pb(r)

p < Pb(r)
2 (6)

In this paper, indices 1, 2 and p are used for the first (average)
method, second (min–max) method and the proposed method,
respectively.

3.2 Energy capacity

Since in the first method charge and discharge time intervals are
not even and depend on the wind speed fluctuations, the battery
mode is changed quickly and the required energy capacity is
determined by (3), for the time subintervals corresponding to the
powers above and below the mean value. Whereas, the second and
proposed methods consider the complete cycles, so that, the long
term data is divided into several intervals (m intervals) with equal
durations (ΔT) as charge–discharge cycles (ΔT  is different from Td
and might be considered several times larger than it). Then the

maximum value of energy during these intervals is considered as
the required energy capacity. So the required energy capacity for
the proposed and second methods can be described alternatively by
(7), which is somewhat different from (3).

Eb(r) = max
T

Ebi t = ∫
ΔTi

Pb(τ) dτ, i = 1:m (7)

In which, Eb(r) is the total energy for both battery sets in the
proposed method, i.e. the sum of Pb1  and Pb2 .

Unlike the first method, in the proposed method and second
method, the required energy not only depends on the wind power,
but also depends on the time duration (ΔT) of each cycle, so that
larger ΔT  leads to larger energy capacity. Now the required energy
capacity for these methods is compared as fallows. It is obvious
that the first method needs less energy capacity, because the
charge–discharge cycles are shorter than in the other methods. In
the first method, the charge–discharge time duration is always less
than the dispatching interval (Td). Since the battery power has zero
mean value in each dispatching interval, it has at least one charge
and one discharge period during each dispatching interval.
Whereas for the two other methods the charge–discharge cycle
may take several dispatching intervals. Then it can be deduced that
the first method needs less energy capacity compared to the other
methods

Eb(r)
1 < Eb(r)

p and Eb(r)
2 (8)

To compare the second method with the proposed method, the
same charge–discharge cycle time (Tc = ΔT) is assumed for both
methods. In the proposed method, the sum of energy capacities for
both battery sets at each interval (ΔT) can be written as below:

Eb
p = ∫

ΔT
Pb(t) dt = ∫

ΔT
Pw t − Pw

avg dt (9)

In which Pw
avg is the average wind power over each interval. For the

second method (assuming the battery is in discharging mode, so the
maximum power Pw

max is selected as the dispatched power), the
energy value in discharge interval can be written as

Eb
2 = ∫

ΔT
Pw

max − Pw t dt (10)

The wind power in each interval can be considered as the sum of
average value (Pw

avg) and fluctuating part (p(t)).

Pw t = Pw
avg + p(t) (11)

By substituting (11) into (10), the energy capacity for discharge
interval can be obtained as

Fig. 3  Proposed wind-battery system with two battery sets
(a) Battery power in the proposed method, (b) Schematic of the proposed hybrid wind–battery system
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Eb
2 = ∫

ΔT
Pw

max − Pw
avg + p t dt = (Pw

max − Pw
avg)ΔT (12)

Since always Pw t ≤ Pw
max, so according to (9) and (12)

∫
ΔT

Pw t − Pw
avg dt ≤ (Pw

max − Pw
avg)ΔT

→
yields

Eb(r)
p < Eb(r)

2

(13)

Similar result can be obtained for charge mode by using Pw
min as the

dispatched power in (10). Equation (13) shows that the proposed
method always needs lower energy capacity than the second
method. Therefore, according to (8) and (13), it can be deduced
that

Eb(r)
1 < Eb(r)

p < Eb(r)
2 (14)

For the typical wind power profiles, presented in Figs. 2a, c and 3,
the required energies are shown in Fig. 4 for the three methods. As
it is seen the first method needs the least capacity (0.3 MWh in this
example), but with many shallow charge–discharge cycles. The
proposed method requires 0.9 MWh for both battery sets, and the
second method needs the largest capacity, 2 MWh. A 6 h cycle
time (Tc) has been assumed for the second and proposed methods.

3.3 Lifetime

Since the first method has many uneven charge–discharge cycles
(Fig. 6a), so the battery lifetime in this method cannot be estimated
analytically. However, because of many shallow cycles and fast

mode changing, this method has shorter lifetime [23, 24]. On the
other hand, the other two methods experience complete charge–
discharge cycles so they have better performance from the point of
lifetime.

It should be noticed in these two methods, there is a trade-off
between energy capacity level and life time. For example, in
Section 3.2, a 6 h cycle time was assumed and according to this
time the energy levels were computed. Different energy capacity
would be obtained if another cycle time was considered. As it was
deduced, for the same cycle time, the proposed method needs less
energy capacity (14). In other words, if the same energy capacity is
considered for both methods, the cycle time in the second method
should be smaller than the proposed method. Therefore,
considering the same number of cycles, it can be deduced that in
the case of equal energy capacity, the proposed method has longer
lifetime

Tb
1 < Tb

2 < Tb
p (15)

According to the above sections, a comparison between the three
methods is shown in Table 1. As it is seen, the proposed method
has better performance in terms of power, energy capacity and
lifetime.

4 Short-term operation
The wind farm operators have to submit the production level to the
power market several hours ahead. They are not allowed to change
the announced power a few hours before the appointed time,
otherwise, they are penalised for any deviation from the set points
[6]. So because of uncertainty, the wind power has to be forecasted
in order to estimate the dispatched power several hours in advance.

Fig. 4  Required energy capacity in three methods
(a) First method, (b) Second method, (c) Proposed method

 
Table 1 Comparison between three methods from point of battery characteristics

Power capacity Energy capacity Lifetime
proposed method low medium good
second method high high good
first method low low weak
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Fortunately there are several methods that can predict wind speed,
and in turn wind power according to the speed–power curves, with
suitable precision. However, the error in wind perdition is
unavoidable, so this error has to be considered in determination of
dispatched power for the next intervals. In fact, BESS has to
compensate not only the power fluctuation but also the forecasting
error. The wind speed prediction error is dependent on the time
horizon of forecasting. Usually for time scales less than one day it
has a normal distribution [10, 35]. Of course because of nonlinear
speed–power curve, the wind power prediction error cannot be
stated in a normal distribution [10]. In this section, at first the
dispatched power, considering the prediction error, is investigated
and then the battery operation for short term is discussed.

4.1 Dispatched power

Forecasted wind speed values have usually some deviation from
the real wind speed. The authors of [10, 35] have shown that the
wind speed prediction error (the mean speed over 1 h) has normal
distribution around the forecasted speed. A normal distribution
with mean value μ and standard deviation σ can be described
around the forecasted value (Vf) between an upper (Vf

u) and lower
(Vf

l) limits as below [23, 25]:

Vf
u = Vf + μ + lσ Vr

Vf
l = Vf − μ + lσ Vr

(16)

In which Vr is the rated wind speed and l indicates the confidence
level. As an example, l = 2 results in 97% confidence level [36].
The mean and standard deviation values are normalised by the
rated speed and they depend on the terrain type and time of the day,
and are obtained according to the forecasting implementation over
a long time real data [10].

Then wind power forecasting can be determined according to
the speed–power relationship of the wind turbine (for wind farm,
one has to consider wake effect and spatial smoothing to obtain
wind power). The speed–power relationship for a wind turbine in
per unit is given in the following equation:

Pw =

0, Vw ≤ Vcut − in

Vw
3 , Vcut − in < Vw ≤ Vr

1, Vr ≤ Vw < Vcut − out

0, Vw ≥ Vcut − out

(17)

Below cut-in and above cut-out speeds, the wind system is stalled.
For speeds between cut-in and rated values, the wind power is a
cubic function of the wind speed, and from the rated speed up to
the cut-out speed the power is limited to its rated value
(Pw = 1 p . u .). So according to (17), the forecasted wind power can
be obtained for each predicted wind speed. However, depending on
the wind speed range, the wind power prediction error has different
significances, as for above rated speed, power is limited to the
rated value and prediction error has no significance. On the other
hand, for below rated speed if the upper limit of the forecasted
speed is lower than the rated speed (Vf

u ≤ Vr), then the wind power
has a normal distribution similar to that of wind speed, but with
larger standard deviation because of cubic function. Conditions
might be different for speeds close to the rated, cut-in and cut-out
values. In overall, according to (16) and (17) the following
relationships can be defined for upper and lower ranges of wind
power forecasting, considering the prediction error

Pf
l =

0, Vf
l ≤ Vcut − in

(Vf
l)3, Vcut − in ≤ Vf

l ≤ Vr

1, Vr ≤ Vf
l ≤ Vcut − out

0, Vf
l ≥ Vcut − out

Pf
u =

0, Vf
u ≤ Vcut − in

(Vf
u)3, Vcut − in ≤ Vf

u ≤ Vr

1, Vr ≤ Vf
u ≤ Vcut − out

0, Vf
u ≥ Vcut − out

(18)

In which, Pf
l, Pf

u are lower and upper limits for forecasted wind
power, respectively. Therefore, according to (18) and (16) the
forecasted wind power can be obtained as Pf

l ≤ Pf ≤ Pf
u. As stated,

the forecasted wind power is used to determine the dispatched
power, which has some deviation from the available wind power.
In fact, BESS has to compensate not only the power fluctuation but
also the forecasting error. Since the difference between available
power and forecasted value has to be compensated by BESS, to
have a balance between charge and discharge cycles, the upper and
lower forecasted values are selected as the dispatched power
alternatively. This concept is shown in Fig. 5a. As it is seen, for the
first interval the upper forecasted value is considered as the
dispatched power and for the next interval the lower forecasted
value.

As the prediction error should be compensated by BESS, so the
amount of this error directly affects the required battery capacity.
Therefore, the precision of forecasting method can optimise the
battery capacity. There are many studies on prediction methods in
order to optimise the battery capacity [29, 30]. In this study, an
artificial neural network method [34] has been used for prediction.

4.2 Battery operation

The dispatched power is determined according to the forecasted
wind power, so in this condition the dispatched value is not
necessarily equal to the mean value of the real power. Also as
indicated in Figs. 2a and 3, the dispatched value and battery power
are different. For a typical wind power, the dispatched power,
battery power and energy level in the proposed method,
considering the prediction error are shown in Figs. 5b–d.
Comparison of results in Figs. 2a and 5b shows that the dispatched
powers are different because of considering prediction error. For
some intervals the dispatched value is less than the real mean value
and for some other intervals it is more than the real mean value.
The battery power and energy level are also shown in Figs. 5c and
d. The power and energy level are larger than those without
considering prediction error (Figs. 2b and 4c).

In addition, from Fig. 5d, there is an inequality in energy levels
of the battery sets. For example, when the battery 1 reaches the
complete level at time t = 3 h, battery 2 has got just 70% of its
complete level. This problem is due to the inequality in power
profiles (Fig. 5c) of the two batteries, which is resulted by
prediction error. Whereas in the case of without prediction error the
battery power profiles are the same (Fig. 3a). In other words, in
Fig. 3a, the dispatched power is the mean value of wind power
profile, so the integration of battery powers on each half-cycle for
both batteries are the same and they reach to full-charged/
discharged point at the same time. However, in Fig. 5c, the
dispatched power is not the mean value of the wind power profile,
so there is an inequality in the integral of battery powers. Since the
dispatched power is selected between the upper and lower
forecasted powers consecutively, if the same number of repetitions
of upper and lower forecasted powers in each charge/discharge
half-cycle is selected, then the effects of negative and positive
errors can be cancelled and the integral of batteries power would be
balanced. This means that the half-cycle time should be selected an
even multiple of dispatched time; ΔT /2 = 2n ∗ Td, n = 1, 2, …, as
shown in Fig. 6. As it is seen, by selecting (ΔT /2) = 4 ∗ Td = 4 h,
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the energy level for both battery sets will be balanced in each half-
cycle (Fig. 6b).

Overall, the prediction error leads to larger power and energy
capacity that should be considered in planning phase.

5 Case study
In this section, battery sizing and short-time operation for a typical
2 MW wind turbine (rated wind speed: 12 m/s, cut-in and cut-out
wind speeds 4 and 25 m/s, respectively) are investigated. First the
planning phase, including battery sizing, is carried out and then the
short-time operation is studied.

5.1 Battery sizing

5.1.1 Power capacity: A 2 years wind speed data [37] is assorted
in 1 h intervals, then by considering upper and lower prediction
errors of ±10%, the dispatched power is determined for
subintervals by using (18) and the proposed method in part (IV-B).
As stated, the prediction error is dependent on prediction method
and temporal and train type which is determined by prediction
analysis. In this paper, artificial neural network method [34],
considering 10% error is used for forecasting wind speed and wind
power. After that the battery power for each interval is obtained
from (1) and then using (2), the required power capacity is
calculated and the results are shown in Table 2. In this table, the
results of three methods in two cases; with and without prediction

Fig. 5  Short-term operation of proposed method considering prediction error
(a) Determination of dispatched power, considering the prediction error, (b) Wind and dispatched power, (c) Battery power, (d) Battery energy level

 

Fig. 6  Balanced energy level with larger cycle time
(a) Battery power, (b) Energy level

 
Table 2 Required battery power and energy capacity

Without prediction error With prediction error 10%
Battery power Battery energy Battery power Battery energy

proposed method 0.6 MW 1.4 MWh 0.8 MW 2 MWh
second method 1.5 MW 3 MWh 2.2 MWh 5 MWh
first method 0.6 MW 1 MWh 0.8 MW 1.5 MWh
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errors, are shown. As it is seen, the first and proposed methods
need the same power capacity, while the second method requires
about three times larger power capacity. In addition, it is shown
that the prediction error leads to larger capacities in all three
methods.

As it was mentioned, determination of the energy capacity is
involved in a trade off with the lifetime. In this case, a 2 years
lifetime with 750 charge cycles is assumed, so the entire period is
divided by N = 750, which results in the duration time of
ΔT = 2 ∗ (8760/750) ≃ 24 h. Then according to (7) the required
energy capacity is obtained for the second and the proposed
methods. For the first method, it is obtained from (3). Results for
the two conditions; with and without considering prediction error,
are presented in Table 2 for the three methods. The required energy
capacity in the proposed and the first methods is considerably
lower than that of the second method. In addition the prediction
error leads to larger capacities of BESS in all three methods.

5.2 Short term operation

In the operation phase, the battery power in each interval is
obtained according to the proposed strategy. The SOC is kept at an
allowable level (SOCL ≤ SOC ≤ SOCH). For a typical 24 h wind
speed profile shown in Fig. 7, averaged over 10 min intervals, the
results are obtained for a 2 MW wind turbine by employing the
three mentioned methods.

Predicted wind power and the corresponding upper and lower
limits, obtained from (16), are shown in Fig. 8. Results of the first
and the proposed methods, which use the average value of
forecasted power, are presented in Fig. 8a and those for the second
method, using the max/min values of forecasted wind power during
charge/discharge cycles, are given in Fig. 8b.

Then, according to the discussion made in Section 4, the
dispatched power is selected between upper and lower forecasted
powers alternatively for the first and the proposed methods
(Fig. 9a) and the maximum/minimum values during discharging/
charging cycles for the second method (Fig. 9b). 

SOC for the two battery sets of the proposed method are shown
in Fig. 10a. It is limited within the range 0.2 ≤ SOC ≤ 1. When
one of the batteries reaches the upper or lower limit, the mode of
both batteries is interchanged. As it is seen, there is approximately
one charge–discharge cycle for 24 h.

SOC for the second method is shown in Fig. 10b. It is seen that
like the proposed method it has a complete charge/discharge cycle.
It should be mentioned, however, in this case a BESS with larger
capacity is required, as compared to the proposed method
(Table 2).

SOC in the first method is shown in Fig. 10c, as it can be seen
there are many shallow charge–discharge cycles which reduce the
battery efficiency in terms of lifetime.

6 Conclusions
Unit commitment and participating in power market needs to
commit a specific generation, several hours ahead. This is a big
challenge for the intermittent and uncertain wind power. Using

Fig. 7  24 h wind speed profile
 

Fig. 8  Results for a 2 MW wind turbine case study. Wind power and upper and lower forecasted values
(a) First and proposed methods, (b) Second method

 

Fig. 9  Results for a 2 MW wind turbine case study. Wind power and dispatched power
(a) First and proposed methods, (b) Second method
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BESS can compensate the prediction errors and power fluctuations
during dispatching intervals. The proposed strategy in this paper
uses mean value of wind power as the dispatched power. As the
difference between the instantaneous wind power and its mean
value is not large, the required battery capacity is low.
Furthermore, in order to avoid many shallow charge–discharge
cycles, two battery sets are used, which experience complete
charge cycles, resulting in increased battery lifetime. Simulation
results show the effectiveness of the proposed method in
comparison with other methods. In addition, the short-term
operation, considering the effect of prediction error, was
investigated and it was shown that the prediction error leads to
lager required power and energy capacity for BESS. The precision
of prediction method and the spatial smoothing in wind farm can
reduce the effects of prediction errors and power fluctuations,
which in turn reduce the required power capacity for BESS. Since
in this paper 10 min averaged data were used, the spatial
smoothing in the wind farm was almost considered.
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