
1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2850533, IEEE
Transactions on Industrial Informatics

Abstract— Microgrids face with various uncertainty resources 
which may put their reliable and beneficial bidding strategy at 
risk. In the literature, to handle the uncertainties, distinctive 
methodologies from fuzzy to stochastic techniques have been 
implemented widely. However, they dominantly suffer from 
dependency to the uncertainty models and are highly 
computational. In this paper, to overcome the challenges, a new 
approach based on information gap decision theory (IGDT) is 
proposed to provide a promising risk-managing bidding strategy. 
The uncertainties are modeled effectively without relying on the 
model in both robust and opportunistic frameworks. The 
problem is formulated as an effective multi-objective 
optimization problem considering to the impacts of different 
uncertainties. Normal boundary intersection technique is utilized 
to generate evenly distributed Pareto Frontier. Analyzing the 
IGDT-based numerical results, applied to a test microgrid over a 
24 h time horizon, verifies the effectiveness of the proposed 
bidding strategy structure confronting to the severe 
uncertainties.         

Index Terms—Microgrid, Bidding strategy, Energy 
management, Information gap decision theory, Uncertainty.   
 

NOMENCLATURE  
Indices  
 d D   index of DRRs 
 i I   index of DGs 
 h H   Index of scheduling time horizon 
 s S   index of ESSs 

 l L   
index of blocks in piece-wise demand response 
offer package 

 v V   index of PVs 
 w W   index of WTs 
Parameters  
 En

h   forecasted price of energy market at hour h 

 SR
h   forecasted price of spinning reserve market at hour 

h 
 Retail

h   value of microgrid retail-rate at hour h 

 ia   fixed operation cost of DG i 

 ib   first-order operation cost of DG i 

 /i iSUC SDC   start-up/shut-down cost of DG i 

 iSRC   the cost of spinning reserve of DG i 

 wWTC   the cost associated with WT w 
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 vPVC   the cost associated with PV v 

 sESC   the degradation cost associated with ESS s 

 ,
En
d lDRC   the cost associated with block l in DRR d offer 

package 
 SR

dDRC   the cost associated with spinning reserve of DRR d 

 mgVLL   the microgrid value of lost load 

 min max/i iP P   the upper/lower level of active power generation of 
DG i 

/up dn
i iRMP RMP   ramp-up/down limit of DG i 

 /up dn
i iST SH   start-up/shut-down ramp of DG i 

 /MUP MDN
i iT T   the minimum up/down time of DG i 

max max/ch dch
s sP P   the upper/lower level of charge/discharge power of 

ESS s 

 min max/s sE E   the upper/lower level of stored energy of ESS s 

 FRC
hLOAD   forecasted load consumption at hour h 

 ,w hP   forecasted active power output of WT w at hour h 

 ,v hP   forecasted active power output of PV v at hour h 

 , ,d l h   the energy reduction offer block l of DRR d at hour 
h 

 mgEXC   maximum exchange level of microgrid 
interconnection 

/robust opportunistic    uncertainty budget in robust/opportunistic strategy 
Variables  

/robust opportunistic   robust/opportunistic risk-controlling variable 

 ex
hP   exchanged energy with the main grid at hour h 
ex
hR  exchanged reserve with the main grid at hour h 

 ,i hP   the active power output of DG i at hour h 

,i hR  scheduled reserve of DG i at hour h 

 , ,d l hP   accepted offered demand associated to block l in 
DRR d offer package at hour h 

 ,d hR   scheduled reserve associated with DRR d at hour h 

 ,s hE   stored energy of ESS s at hour h 

 , ,/ch dch
s h s hP P   the charge/discharge active power of ESS s at hour 

h 

 /mg mg
h hSL LSH   microgrid served/shed load at hour h  

 , ,/i h i hr t   binary variable indicating the start-up/shut-down 
state of DG i at hour h 

 ,i hw   binary variable indicating commitment state of DG 
i at hour h  

 , ,/ch dch
s h s h    binary variable indicating charge/discharge state of 

ESS s at hour h   

 , ,/on off
i h i hT T  time duration in which DG i is ON/OFF before 

hour h 
I. INTRODUCTION 

A. Motivations 
ECENTLY, in the light of the smart grid concept to 
provide the ever-increasing energy utilization in a more 
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automated and controllable architecture [1]-[2], Distributed 
Energy Resources (DERs) have been widely utilized by 
Distribution System Operator (DSO) to reliably enrich the 
overall system performance. Despite the techno-economic-
environmental advantages for both the end-user consumers 
and the DSO, individual integration of the DER units may 
have adverse impacts on the system stability, relaying and 
power quality issues. Moreover, small-scale and intermittent 
features restrict active and beneficial participation of the DER 
units in energy and/or ancillary service market environments 
[3].  

Conquering operational limitations corresponding to the 
DER units and bringing about a unified, integrated and 
competitive operational portfolio in a cost-effective and low-
carbon context, microgrid idea has been devised. Microgrids 
are recognizing as promising, controllable and with high 
operational flexibility aggregators of dispatchable Distributed 
Generations (DGs), non-dispatchable Renewable Energy 
Sources (RESs) including Wind Turbine (WT) and 
Photovoltaic (PV) units, Energy Storage Systems (ESSs) and 
Demand Response Resources (DRRs) which can appropriately 
behave as efficient market participants. In order to present a 
beneficial market behavior, Microgrid Central Controller 
(MGCC) should adopt a robust optimistic bidding strategy [4].  

Comparing to the bidding strategy problem for other 
conventional market players such as generation companies 
(GENCOs) [5] and large consumers [6], or the newly added 
participants like large-scale ESSs [7] and Electric Vehicle 
(EV) aggregators [8], the MGCC faces to a more complicated 
problem. First, he has to consider uncertainties associated with 
load consumption fluctuations and/or renewable output 
intermittencies while at the same time should take care of the 
market price variations. More significantly, the online 
satisfaction of the supply-demand balance requirement leads 
the microgrid bidding strategy more sophisticated. Oppositely, 
difficulties stem from transmission congestion limitation are 
not apparent in the trading strategy of the low-voltage 
microgrids. Meanwhile, the MGCC can take advantage of its 
consumers responsibility by encouraging them participating in 
demand response programs. Demand response refers to the 
modifications in the energy consumption patterns for rescuing 
the system from a reliability-based emergence or mitigating 
the market price spikes. By this way, microgrid uncertainties 
can be handled in a more economic-environmental manner.  

Accordingly, in order to properly characterize optimal 
buying/selling active power exchange with the market 
operator, subject to the uncertainties and system balance 
constraint, in this paper and as the-first-of-its-kind, a robust 
Information Gap Decision Theory (IGDT)-based methodology 
is proposed to establish a tailored bidding strategy framework. 
Indeed, the uncertainties are the main factors which bound up 
with the beneficial performance of the microgrids. IGDT helps 
the MGCC managing the microgrid operational strategy 
against the inevitable uncertainties in a simple and immune 
manner without requiring probability distribution function or 
membership function of the associated variables. Also, the 
proposed IGDT method provides exact and reliable solutions 
taking into account useful and harmful risks associated with 
the differences between forecasted and realized values of the 
uncertain variables. By this way, the MGCC can set the 

microgrid bidding strategy in both Risk-Averse (RA) and 
Opportunity Seeking (OS) portfolios. Furthermore, to 
simultaneously consider decision-making the procedure of the 
MGCC against the various microgrid uncertainty resources, 
the bidding strategy problem is transformed to a Multi-
Objective Mathematical Programming (MOMP) one. The 
constructed MOMP structure is solved using Normal 
Boundary Intersection (NBI) as an effective superior Pareto 
set generator and the best compromise solution is selected 
with the aid of fuzzy decision-making tool. 
B. Literature review    

In recent years, many types of research have addressed the 
bidding strategy problem of the microgrids. The main goal of 
the MGCC is to maximize the total microgrid benefit by 
optimizing the exchanging amounts of the energy and 
ancillary service bids in the day-ahead markets while at the 
same time maintaining the microgrid system requirements. 
Authors in [9], conducted a stochastic based optimal 
scheduling strategy of a microgrid in an electricity market. 
They have developed a comfort aware thermal model to assess 
the role of Heating, Ventilation and Air-Conditioning (HVAC) 
systems in the bidding strategy of the microgrid. In [4], 
bidding strategy of a microgrid in a joint day-ahead energy 
and spinning reserve market was solved using a scenario-
based stochastic programming framework. Although the 
fluctuations in load and renewable resources have been taken 
into account, however, the market price uncertainty was not 
considered. Analogously, Shayeghi and Sobhani [10], 
developed a comprehensive stochastic based market 
participation strategy for a microgrid increasing renewable 
penetration level. Stochastic based models suffer the drawback 
of the interdependency to the variable probabilistic densities 
and may become computationally inefficient in the case of 
complex problems. Authors in [11] have proposed a risk-
averse bidding strategy model that concentrates on minimizing 
the expected regret value over considering to a subset of worst 
case scenarios. They used Conditional Value-at-Risk (CVaR) 
index ensuring the robustness of the day-ahead bidding results. 
Comparing to the CVaR, the IGDT not only looks upon the 
associated model risks without adding complexity to the 
formulation, but it also does not stand on generating random 
scenarios which can potentially intensify the risk assessing 
errors [12]. Reference [13], through defining an effective 
incentive-based demand response program, took advantage of 
customer consumption reduction capability to cope with price 
and RES uncertainties and increase microgrid total benefit in a 
pool market. The corresponding bidding strategy was 
optimized using a stochastic programming considering to 
CVaR as a risk metric. Wang et al. [14], have focused on 
synergy among DER units to evaluate ramping capabilities of 
the microgrids in the ancillary service markets. They adopted 
a hybrid stochastic/Robust Optimization (RO) approach to 
cope with uncertainties. Likewise, authors in [15] have used a 
RO-based approach to model the uncertainty of upstream grid 
prices. A price-based time-of-use demand response program 
was utilized by the MGCC to reduce the procurement energy 
costs in the bidding strategy problem of microgrids. Despite 
that both RO and IGDT methodologies belong to risk-hedge, 
interval-based optimization technique category, IGDT as a 
strong performance satisfier provides the associated 
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confidence interval in a more comprehensive and user-friendly 
manner which, unlike its rival, can be simply extended to the 
opportunistic based optimization functions [5,12]. 
Furthermore, in the case of lacking of effective and adequate 
input data, IGDT seems to procure more reliable decisions. An 
optimal stochastic/robust bidding strategy of a microgrid in 
the day-ahead markets was proposed in [16] with the purpose 
of minimizing total net cost. To handle the microgrid 
uncertainties in the market environment, some of the 
researchers proposed Artificial Intelligence (AI) learning 
methods. Authors in [17], utilized reinforcement learning 
approach to obtain approximate auction strategy of the 
microgrids concerning to the demand variations and stochastic 
nature of the markets. Likewise, a partially observable Markov 
decision making-based probabilistic approach was used in [18] 
to microgrid agent behavior during bidding process. Hidden 
Markov approach is another AI-based learning technique 
which employed by [19] to model the uncertainty of the load 
demands and renewable generations to provide a truthful 
bidding strategy. Although these algorithms are efficient and 
interactive, comparing to the IGDT, they may suffer from 
scalability and possibly non-stationary solutions, particularly 
in the face of the highly-constrained optimization problems.  

By a detailed reviewing the literature and thorough focusing 
on the microgrid appropriative researches, owing to best of 
our knowledge, no work has been dedicated to provide a risk-
constrained bidding strategy framework for microgrids which 
is optimized using the IGDT methodology and evaluated 
against multiple uncertainties through an NBI-based MOMP 
portfolio. The comparison between different researches in the 
field of the microgrid bidding strategy is summarized in Table 
I.    

  
From Table I, the novel and comprehensive approach of this 
paper can be demonstrated. Comparatively, the full energy and 
reserve constraints considering to the all DERs are considered. 
Both single and multi-objective paradigms are evaluated under 
both robust and stochastic frameworks regarding to the 
simultaneous load and market price uncertainties.       
C. Paper scopes and contributions  

In order to increase the performance efficiency of the 
microgrids in the energy and spinning reserve markets, in this 
paper, a NBI-based MOMP risk-constrained IGDT-
constructed optimization framework is developed. The 
microgrid both robust and opportunistic behaviors confronting 
the uncertainties are precisely formulated using the IGDT. The 
derived model is simulated over a typical microgrid, and total 
benefit is optimized over a 24 h time horizon. Thanks to the 
smart grid technologies, the MGCC can utilize the DRRs 
coordinated with the DGs and RESs such a way the microgrid 
hourly supply-demand balance is obtained while the 
associated day-ahead benefit-based objective function is 
maximized. In gist, the main contributions of the paper can be 
highlighted as the following:  

 Providing, for the first time, a new IGDT- based risk-
constrained bidding strategy framework for the smart 
microgrids.   

 Developing the precise robust (RA) and opportunistic 
(OS) decision-making models for the MGCC facing 
to the operational uncertainties.  

 Efficient solving a NBI- constructed multi-objective 
optimization problem to cope with various 
uncertainty resources on the basis of the developed 
IGDT model.  

D. Paper organization                                  
The rest of the paper is laid out as follows. Paper 

methodology including the principles of the IGDT and the 
NBI-MOMP are explained in Section II. Section III describes 
the developed deterministic and risk-constrained models while 
providing the detailed formulations considering to the system 
uncertainties. Illustrative implementations are evaluated in 
Section IV in a typical microgrid considering to the both 
single and multi-objective frameworks. Moreover, for the 
verification, the numerical results are compared with 
stochastic and Monte Carlo Simulation (MCS) methodologies. 
Lastly, in Section V some relevant conclusions are extracted.  

     
II. METHODOLOGY 

A. IGDT method 
The IGDT as a recent uncertainty handling method aims to 

find out an optimal solution that ensures a specified 
expectation of the system target while at the same time 
deviations from the forecasted values associated with the 
uncertain variables are minimized [20, 21]. Indeed, IGDT 
provides required risk managing decisions when available 
required information is very restricted. The IGDT is 
particularly suitable in cases with severe uncertainty levels or 
with insufficient historical data. Since it models the gap 
between realized and forecasted values without requiring any 
data, e.g. probability distributions. In [20] various uncertainty 
models have been identified, however, in this paper, to model 
the microgrid different uncertainty resources, envelope-based 
model is utilized. In an envelope-bound uncertainty model, the 
gap between the realized ( ) and forecasted ( ) values of 
the microgrid uncertain variables can be simply explained as: 

 ( , ) . . ; 0mgH                  (1) 

The uncertain behavior of the microgrid uncertain variables 
are demonstrated using (.)mgH  and can be managed by 

TABLE I   
TAXONOMY TABLE OF THE MICROGRID BIDDING STRATEGY PROBLEM 
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[4] * *  *     * *  *  
[9] * * * *    *  *  *  

[10] *  * *    *  *  *  
[11]  * * *    *   * *  
[12] * * * *    *  * * *  
[14] *  * *  *   * *  *  
[15] * *  *  *  *  *  *  
[16] *  * *  *    *  *  
[17]   *    *   *  *  
[18]   *    *   *  *  
This 

paper  * * * *   * * * * * * 
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optimizing the value of  as the model risk-controlling 
(uncertainty horizon) variable. The value of the  is optimized 
subject to guaranteeing an expected value of the system 
objective function as can be described in (2).  

( , ) 1 . ( ); 0IGDT DET
mg mgOF X OF X       (2) 

where, parameter ߜ is Uncertainty Budget (UB) which 
characterizes the level of expected objective function. 

IGDT
mgOF and DET

mgOF are the IGDT-based and the deterministic 
values of the system objective function, respectively. The set 
of decision variables which should be optimized subject to the 
operational constraints are indicated by X . Noteworthy, 
according to the objective direction of the MGCC (i.e., 
minimizing or maximizing), interdependency between 
uncertain variable and the objective function and the 
considered robust (RA) or opportunistic (OS) decision making 
procedure, the ± signs are varied.  
B. NBI – based multi-objective optimization method  

Generally, a MOMP problem can be stated as follows  

 1 2/ ( ) ( ), ( ),..., ( )
. . ( ) 0, ( ) 0;

T
nMin Max OF X OF X OF X OF X

s t C X D X X FR


  
  

(3) 

where ( )OF X , ( )C X and ( )D X are objective functions, 
equality and inequality constraints in optimization problem. 
FR shows the feasibility region of the problem.  

In the decision-making process, Pareto Frontier plays a key 
role in establishing a posteriori or a priori solution. In the 
literature, several multi-objective optimization techniques 
(such as epsilon constraint and weighting methods) have been 
introduced to generate Pareto Frontier. Producing uniformly 
distributed set of Pareto points without relying on the relative 
ratios between competitive objective functions, leads the NBI 
to be taken as a more promising MOMP solution methodology 
[22], [23]. The fundamental structure of the NBI can be 
mathematically formulated as:  

. . ( )
( ) 0, ( ) 0;

Max

s t n OF X
C X D X X FR





   
  

  

(4) 

where,  and ( )OF X  are normalized payoff table and 
scaled objective functions, respectively. The corresponding 
payoff table (  ) consists of the minimum values associated 
with the objective functions. The pay-off matrix is calculated 

as Φ = ൬OFଵ(Xଵ) OFଵ(Xଶ)
OFଶ(Xଵ) OFଶ(Xଶ)

൰, where the diagonal elements 

show the amounts of functions when they are considered as 
objective functions to be optimized (referred as utopia 
amounts). On the other hand off-diagonal elements are the 
amounts of functions when they are not considered to be 
optimized and are referred as nadir amounts. n is a quasi-
normal vector.  and  are a perpendicular scalar to the utopia 
line and weighted values associated with the Pareto points 
along the Convex Hull of Individual Minima (CHIM). A set of 
points consists of convex combination of each row of the 
payoff table constructs the CHIM that can be expressed as in 
(5):  

1

int( ) , , 1; 0
n

k k
k

Po FR    


       
  

  
(5) 

A near-uniform distribution of the points on the Pareto 
Frontier is attained by solving (4) for each k .    
In order to eliminate units for all objective functions, each 
objective function is normalized as follows:  

( )( )
U

k k
k N U

k k

OF X OFOF X
OF OF

 
  

  
  

(6) 

where, N
kOF and U

kOF are indicating Nadir and Utopia points 
of k-th objective functions, respectively.  

The Nadir ( 1 ,..., ,...,
TN N N N

k nOF OF OF OF    ) and Utopia 

( 1 1( ),..., ( ),..., ( )
TU

k k n nOF OF X OF X OF X         ) points are 

defined as the points where all the objective functions are in 
their worst and best possible values, respectively. ( )k kOF X   
represents the individual minimum of k-th objective function 
[22], [23]. Illustrative representation of the NBI mechanism 
for two objective functions can be shown as in Fig. 1. As it 
can observed, any point P(ρଵ, ρଶ) in the normalized space on 
the CHIM can be formulated as P(ρଵ, ρଶ) =

൤ρଵΦ
ഥଵଵ + ρଶΦഥଵଶ

ρଵΦഥ ଶଵ + ρଶΦഥ ଶଶ
൨. The distance ϒ between the utopia line and 

the Pareto surface for a specific amount for  ρଵ and ρଶ is 

calculated as Υ ൤nොଵnොଶ
൨ = ቈρଵΦ

ഥଵଵ + ρଶΦഥଵଶ −OFതതതതଵ(X)
ρଵΦഥ ଶଵ + ρଶΦഥ ଶଶ − OFതതതതଶ(X)

቉. By (4) the 

main optimization problem can be detached to a number of 
single objective optimization problems for different values of 
ρଵ and ρଶ.    

 
III. MODEL DESCRIPTION AND PROBLEM FORMULATION 
In this section, the mathematical formulation of the 

proposed bidding strategy problem is demonstrated. First the 
deterministic model is built-up. Afterwards the risk-
constrained IGDT based structure is presented. Both robust 
and opportunistic frameworks are developed according to 
uncertainties associated with microgrid load and market price 
deviations. Finally, the corresponding multi-objective 
portfolio is denoted. In this paper, it is assumed that the 
microgrid can participate into a joint energy and spinning 
reserve market. The MGCC is responsible for maximizing the 
total daily benefit of the microgrid.  

 
Fig. 1.  The NBI mechanism for two-objective functions  
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A. Deterministic bidding strategy model  
The objective function comprises of two main terms 

including market participation revenue and operational cost 
functions as represented in (7). The associated functions of the 
microgrid day-ahead revenue and cost can be characterized by 
(8) and (9), respectively.  

 max maxMG MG MGBENEFIT REV ENUE COST    (7) 

Re

1

H
mgEn ex SR ex tail

MG h h h h h h
h

REVENUE P R SL  


       
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  
     (9) 

The MGCC is in the task to supply the microgrid energy 
and reserve demands reliably. According to (8), the MGCC 
can gain revenue from selling energy and reserve in the 
wholesale market and at the same time from selling electricity 
to the consumers in accordance with the microgrid retail rate. 
Since, ex

hP is a free variable, the MGCC should reconcile 
between maximizing revenue of  selling to and minimizing 
cost of buying energy from the main grid. Besides, the MGCC 
must minimize the microgrid operational costs which consist 
of the costs corresponding to the DGs (DG_COST) including 
start-up, shut-down, energy and reserve procurement costs of 
the DGs. The next term in the cost function represented by (9), 
is the cost associated with the policy of increasing RES 
penetration and mitigating associated imbalances 
(RES_COST). The ESS degradation cost during 
charging/discharging cycles is also added to the microgrid 
daily costs (ESS_COST). Moreover, with respect to the load 
demands, the MGCC should pay an incentive cost to motivate 
the DRRs (DRR_COST) for effective participation of the end-
user customers and while on the other hand predicting a 
payback cost to minimize the involuntary load shedding risks 
imposed to the end-user consumers (Payback_LSH_COST) 
[4], [9].   

The operational constraints associated with DGs are as 
follows:       

min max
, , , ; ,i i h i h i i hP w P P w i I h H        (10) 

, , 1 , 1 , , 1

max
,(1 ); ,

up up
i h i h i h i h i hi i

i i h

P P RMP w ST w w

P w i I h H

       

     
  

(11) 

, , 1 , , 1 ,

max
, 1(1 ); ,

dn dn
i h i h i i h i i h i h

i i h

P P RMP w SH w w

P w i I h H

 



     

     
 

(12) 

, 1 , 1 ,. 0; ,on MUP
i h i i h i hT T w w i I h H 

           
  

(13) 

, 1 , 1 ,. 0; ,off MDN
i h i i h i hT T w w i I h H 

           
 

(14) 

, , 1; ,i h i hr t i I h H     
 

(15) 

max
, , , ; ,i h i h i i hP R P w i I h H       (16) 

max
, ,0 ; ,i h i i hR R w i I h H        (17) 

Constraint (10) stands for physical energy generation 
restriction of the DGs. Ramp up/down limitations are 
developed precisely by (11) and (12). Minimum up/down time 
limitations are described by (13) and (14). Constraint (15) 
avoids concurrent starting-up or shutting-down of a DG. 
Spinning reserve procurement constraints are represented by 
(16) and (17). Interdependency of the energy and reserve 
capacities is explained by (16) and (17) shows the admissible 
reserve capacity limitation. Through (17), the MGCC take a 
conservative strategy for participating in reserve market while 
ensuring the microgrid reliability-based reserve requirements 
[4]. Notably, in this paper, it is assumed that the microgrid 
resources such as ESSs, DRRs and DGs are not participated 
directly into markets. Since the energy and reserve capacities 
are managed coordinately in a centralized manner by the 
MGCC to provide a unified bidding strategy for the whole 
microgrid concerning the energy balance and reliability 
restrictions of the microgrid particularly in the face of 
unexpected severe uncertainties and at the same maximizing 
its benefit.         

The ESS operational restrictions are demonstrated as:   

, , 1 , , / ; ,ch dch
s h s h ch s h s h dchE E P P s S h H          (18) 

max
, ,0 ; ,ch ch ch

s h s s hP P s S h H        (19) 

max
, ,0 ; ,dch dch dch

s h s s hP P s S h H       (20) 

, , 1; ,ch dch
s h s h s S h H        (21) 

min max
, ; ,s s h sE E E s S h H        (22) 

, ,0 ;s H sE E s S    (23) 
The ESS energy balance model is captured in (18). Constraint 
(18) indicates the stored energy in the ESS for each hour.  The 
ESS is charged with the power ௦ܲ ,௛

௖௛ with the charging 
efficiency ߟ௖௛ and discharges with the power ௦ܲ ,௛

ௗ௖௛ and the 
discharging efficiency of ߟௗ௖௛. It is worth to mention that the 
charging interval is assumed to be 1 hour. ܧ௦,௛ expresses the 
stored energy in scenario s and for hour h. Constraints (19) 
and (20) depict the limits of the charging and discharging 
power of the ESS. The operation logic of the ESS is ensured 
by (21). It indicates that the ESS can operate whether in the 
charging or discharging state and it cannot operate in both 
modes simultaneously. Upper and lower energy limit of the 
ESS is stated by (22). In other words, the amount of stored 
energy is imposed by (22) for the ESS. Constraint (23) 
presents that ESS has equal initial and final energy levels. 
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Equation (23) forces that the amounts of stored energy in the 
initial and final hours to be identical to ensure the amount of 
required stored energy during the operation time horizon.  

 The microgrid end-user consumers can be participated in 
providing energy and reserve services. They can submit their 
energy reduction offers to the MGCC in the context of an 
interruptible/curtailable demand response program. If it is 
required to utilize the DRR capability, the MGCC is in charge 
to pay as their submitted offers. In this paper, a simple piece-
wise demand reduction model of the DRRs is developed. Fig. 
2, shows the represented price-demand piece-wise offer 
package of the DRRs.  

Mathematical formulations associated with the DRRs can be 
simply described by (24) to (27):   

, , , , ; , 1,d l h d l hP d D l h H      
  

(24) 

, , , , , 1, ; , 2,..., ,d l h d l h d l hP d D l L h H         
  

(25) 

, , ,
1

; ,
L

d h d l h
l

P P d D h H


      
(26) 

, , , , ; , ,d h d h d l hP R d D l L h H       
 

(27) 

The microgrid energy and reserve exchange with the main 
grid should be managed according to the interconnection 
capacity as explained by (28). The microgrid reserve bid 
consists of aggregated reserves procured from the DGs and 
DRRs as stated by (29).     

;ex ex
h h mgP R EXC h H      (28) 

, ,
1 1

;
I D

ex
h i h d h

i d

R R R h H
 

      
(29) 

 
Microgrid hourly energy balance is presented by (30) and 

(31). Besides, according to (32), the admissible hourly amount 
of the load shedding is restricted by the MGCC to the 
forecasted value of the microgrid hourly load.    In order to 
preserve the microgrid system sustainability, maximum 
reserve requirement should be satisfied as depicted by (33).  

,
1

;
D

mg mgFRC
h d hh h

d

SL LOAD LSH P h H


             
(30) 
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1 1 1
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1 1

/

;

I D S
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h i h d h s h dch ch s h

i d s
W V
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w h v h h h

w v

P P P P P

P P SL LSH h H

 
  

 

   

     

  

 
  

(31) 

mg FRC
hhLSH LOAD h H     (32) 
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1 1
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    

  

    

 



  

(33) 

B. IGDT-based risk-constrained bidding strategy model  

The IGDT-based risk-constrained models corresponding to 
the market price and load variation uncertainties are 
formulated in the robust and opportunistic structures by (34) to 
(37).  

 Market price uncertainty 
max
. . (9) (33)

(1 )

(1 )

price
robust

pricerobust
MG MGrobust

pricerobust
MG MGrobust

s t to

REVENUE REVENUE

BENEFIT BENEFIT







 

 

  

(34) 

  
min

. . (9) (33)

(1 )

(1 )

price
opportunistic

opportunistic price
MGMG opportunistic

opportunistic price
MGMG opportunistic

s t to

REVENUE REVENUE

BENEFIT BENEFIT







 

 

 

(35) 

where, robust
MGREV ENUE and  robust

MGBENEFIT are the risk-
averse daily revenue and benefit of the microgrid, respectively. 

opportunistic
MGREV ENUE and  opportunistic

MGBENEFIT are the risk-
seeker daily revenue and benefit of the microgrid, respectively. 

 Microgrid load consumption  uncertainty 

,
1

max
. . (8) (29) (31) (33)

(1 ) ;
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D
mg mgLoad FRC
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,
1
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. . (8) (29) (31) (33)
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D
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
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(37) 

Worth to be mentioned that an analogous IGDT-based 
optimization framework can also be applied concerning the 
RES output power uncertainties. In this paper, for the sake of 
the notational conciseness and more emphasizing on the 

 
Fig. 2.  A four-step DRR price-demand piece-wise offer package  
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model conceptual understanding, it is assumed that the MGCC 
has sufficient data about the RES productions and besides 
through providing appropriate promising in-site imbalance 
control strategies can effectively mitigate the associated 
intermittencies [24]. A portion of the dedicated operational 
costs to the RESs can be assigned to the associated uncertainty 
management strategies.    

C. MOMP IGDT-based bidding strategy model 
The proposed IGDT-based MOMP problem can be written 

in the form of a Mixed Integer Non-Linear Programming 
(MINLP) framework which can be solved using the NBI 
method considering to a particular UB. The robust and 
opportunistic multi-objective models taking the uncertainties 
relating to the market price and the microgrid load 
consumption deviations into account is developed by (38) and 
(39), respectively. The corresponding payoff tables are built 
through solving the single objective problems provided by 
(34) to (37).  
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(39) 

IV. ILLUSTRATIVE IMPLEMENTATIONS  
The proposed IGDT-based risk constrained bidding strategy 

decision-making approach is tested on a typical low-voltage 
microgrid shown in Fig. 3. The MINLP problems about the 
deterministic, the IGDT-based single objective and the 
MOMP demonstrated models are solved by DICOPT under 
General Algebraic Modeling System (GAMS) [25]. The 
derived formulations have been performed on a platform with 
Intel Core 2 Duo CPU and 4 GB of RAM. The forecasted 
values of the day-ahead energy and reserve market prices, 
retail-rate prices, WT and PV output active power generations 
and load consumption are represented in Fig. 4. The 
operational costs related to WTs and PVs are 10.63 and 54.84 
$/kWh, respectively [4], [26]. The microgrid installed capacity 
of the WTs and PVs are 250 and 140 kW, respectively. 
Besides, the portfolio of the considered microgrid, consists of 
five DGs, two DRRs, and an ESS. The technical and economic 
parameters of the DGs including two Micro-Turbines (MTs), 
two Fuel Cells (FCs) and a Gas Turbine (GT) are summarized 

in Tables II and III, respectively [4], [26]. The DRRs’ price-
demand offer packages are also listed in Table IV. In this 
paper, the incentive based Demand Bidding/Buyback (DB) 
demand response program type is considered which has high 
dispatchability and compatibility characteristics [27]. The 
value of the microgrid lost load (ܸܮܮ௠௚) is set to 300 $/kWh. 
The main grid interconnection exchange capacity is limited to 
800 kW. The capacity of the ESS has been chosen as 90 kWh 
and the charging and discharging maximum values are set 
equal to 90 kW. The charge and discharge efficiencies are set 
equal to 0.95. The minimum and maximum admissible energy 
stored in the ESS is set to 10 and 90 kWh, respectively. The 
degradation cost of the ESS is 5 $/kWh [4]. The State-Of-
Charge (SOC) of the ESS is defined as the ratio of the stored 
energy and the ESS capacity. The initial ESS stored energy is 
30 kWh. It is also assumed that all the DGs and RESs are 
operating such a way the technical voltage/reactive power 
requirements are satisfied and the associated power factors are 
fixed at unity. Furthermore, since the microgrid is small and 
resources are considered close together, the active power 
losses and thermal stresses can be neglected. The expected 
value of the microgrid daily benefit (BENEFIT୑ୋ) derived by 
solving the deterministic model is 3457.69$.  

 

 

 
The robust and opportunistic optimization frameworks 

regarding to the only market price uncertainty has been solved 
according to (34) and (35), respectively. Fig. 5 shows the 
variations of the price robustness index (α୰୭ୠ୳ୱ୲୔୰୧ୡୣ ) concerning 
the changing of the UB (σ୰୭ୠ୳ୱ୲୔୰୧ୡୣ ) and the changes of the daily 
benefit versus to the corresponding robustness index. 
Obviously, in the robust strategy, by decreasing the wholesale 
market prices, it is expected that the total benefit is also 

Fig. 3. A typical microgrid test system with various energy resources  
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TABLE IV 
DRR OFFER PACKAGES 

DRR1 
Demand (kW) 0-25  25-65 65-95 95-120 

Offered Price ($) 0.3 0.48 0.60 0.75 

DRR2 
Demand (kW) 0-40 40-60 60-85 85-135 

Offered Price ($) 0.25 0.45 0.65 0.80 

TABLE III 
TECHNICAL CHARACTERISTICS OF THE DGS 

DG P୫୧୬ 
(kW) 

P୫ୟ୶ 
(kW) 

RMP୳୮/RMPୢ୬ 
(kW) 

ST୳୮/SHୢ୬  
(kW) 

T୑୙୔/T୑ୈ୒ 
(h) 

MTs 30 150 250 100 2 
FCs 20 100 250 100 2 
GT 35 200 280 120 2 

 

TABLE II 
ECONOMIC CHARACTERISTICS OF THE DGS 

DG a($) b($/kWh) SUC($) SDC($) SRC($/kW) 
MTs 85.06 4.37 9 8 2.20 
FCs 255.18 2.84 16 9 1.50 
GT 212.00 3.12 12 8 1.70 
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reduced. Worth mentioning, in α୰୭ୠ୳ୱ୲୔୰୧ୡୣ  equals to 0.0381, the 
microgrid benefit becomes zero. Likewise, for the 
opportunistic case, it is assumed that by increasing the market 
prices, the microgrid day-ahead benefit becomes higher. The 
increasing trend of the benefit function versus to the price 
opportunity index (α୭୮୮୭୰୲୳୬୧୲୷୔୰୧ୡୣ ) is depicted in Fig. 6. It seems 
that after the point in which UB (σ୭୮୮୭୰୲୳୬୧୲୷୔୰୧ୡୣ ) is 0.283, the 
increasing trend of the benefit function is saturated and has no 
changes. It is because of the techno-economic operational 
constraints of the microgrid environment. In this point, the 
microgrid daily benefit is 4436.19$.   

 

  
The IGDT-based robust and opportunistic optimization 

results regarding the only load consumption uncertainty are 
illustrated in Figs. 7 and 8, respectively. According to (36), 
through increasing the microgrid load consumption level, it is 
expected that the benefit lessens. The main restrictions are the 
hourly supply-demand balance and interconnection capacity 
limitation constraints which limit the revenues gained from 
selling energy to the end-user customers. The microgrid 
benefit reaches zero when load robustness index (α୰୭ୠ୳ୱ୲୐୭ୟୢ ) is 
equal to 0.1731. Analogously, the trends of the microgrid 
benefit versus to the load opportunity index (α୭୮୮୭୰୲୳୬୧୲୷୐୭ୟୢ ) is a 

growing one, which saturates when UB (σ୭୮୮୭୰୲୳୬୧୲୷୐୭ୟୢ ) reaches 
to 1.3950, which corresponds to the point in which 
α୭୮୮୭୰୲୳୬୧୲୷୐୭ୟୢ  equals to 0.5326. In this point, microgrid total 
benefit is 8281.11$. Generally, in OS strategies, the higher 
feasible UBs lead to greater benefits while in the RA strategies 
higher UBs provide more conservative decisions. Therefore, 
the MGCC should utilize a decision regarding to the risk 
variations of the uncertainty budgets.  

 

   
The RA and OS MOMP IGDT-based problems are solved 

according to (38) and (39), respectively. The associated payoff 
tables regarding to the price and load uncertainties in either 
robust or opportunistic structures can be simply extracted 
using the aforementioned single objective frameworks. The 
selected UBs in robust and opportunistic problems are 0.4 and 
0.2, respectively. The Pareto front has been carried out using 
the NBI methodology. The best compromise solutions are 
acquired by applying the fuzzy decision making approach 
[23]. The day-ahead microgrid energy and spinning reserve 
bid quantities corresponding to the RA and OS MOMP IGDT 
based optimization problems are represented in Figs. 9 and 10, 
respectively. Evidently, in the hours the energy in the 
wholesale market is inexpensive, the MGCC imports energy to 
the microgrid. Furthermore, in the peak hours with higher 
energy market and lower reserve market prices, the bidding 
strategy is directed at strengthening the microgrid energy 
market participation role. During peak hours (hours 17 to 23), 
prices in reserve market are downtrend while the energy prices 
ascend. Consequently, the MGCC allocates the resource 
capacities to further participating in the energy market. As a 
result, the reserve bids in these hours become zero.  
The scheduled values of energy and reserve resources in 
MOMP frameworks are depicted in Figs. 11 and 12. 
Obviously, in hours 17 to 23, according to the higher energy 
prices, amounts of the generated energy by DGs and DRRs 

Fig. 8. Variations of (a) load opportunity index versus uncertainty budget and 
(b) microgrid daily benefit versus load opportunity index 

Fig. 7. Variations of (a) load robustness index versus uncertainty budget 
and (b) microgrid daily benefit versus load robustness index 

Fig. 6. Variations of (a) price opportunity index versus uncertainty budget 
and (b) microgrid daily benefit versus price opportunity index 

  

 
Fig. 5. Variations of (a) price robustness index versus uncertainty budget 

and (b) microgrid daily benefit versus price robustness index 

 
Fig. 4. Forecasted values of (a) microgrid RES and load (b) market prices. 
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have been increased and the ESS has discharged. Hence, the 
microgrid can attain higher revenues. Likewise, in off-peak 
hours (hours 2 to 6), the resource capacities have been mainly 
allocated for reserve procurement. ESS has been charged 
accordingly. Worth mentioning that, state of charge (SOC) of 
the ESS is managed according to safe energy variation range 
during the charging/discharging procedures.   

 

 

 
The breakdown of the microgrid benefit function is 
represented in Table V.  Both the RA and OS strategies are 
solved for the particular UBs concerning the price and load 
uncertainties simultaneously. For instance, in the RA strategy, 
for UB equal to 0.4, the robustness indices corresponding to 
price and load uncertainties have been calculated within 
0.0065 and 0.0367, respectively. Total benefits of the 
microgrid during the RA and OS strategies are 2072.8$ and 
4149.1$. It can be recognized that the MGCC can 
optimistically manage the microgrid market participation role 
while at the same minimizing the operational costs without 
imposing involuntary load shedding to the consumers. To 
verify the IGDT-based results, the bidding strategy model is 

solved using MCS methodology. First, 1000 random scenarios 
are generated concerning to the load and price uncertainties.  

 

   
The histograms of the generated scenarios for the price and 

load variations are represented in Figs. 13 and 14, 
respectively. Comparing the derived results by the IGDT with 
the average values of the MCSs, presents that each UB can be 
whether economic, conservative or opportunistic. For instance, 
in the case of the price uncertainty, the strategies with RA-
UBs equal to 0.003 and 0.03 are economic and conservative, 
respectively. Likewise, the strategies with OS-UBs equal to 
0.001 and 0.009 are economic and opportunistic, respectively. 
From Fig. 14, it can be observed that while UBs reaches to 
higher values in both OS and RA strategies, the decision 
makings change from the economic to the niggardly or greedy 
ones. The MGCC with OS-UB equals to 0.02, makes an 
economic decision while for 1.39, he takes a perfect risk 
seeking strategy. A fully conservative decision making can be 
obtained for RA-UB equals to 0.15. Generally, higher 
distances from the MCS average values yield to more 
conservative or opportunistic strategies. UBs lead to economic 
strategies which are closer to the MCS average values.   

V. CONCLUSION 
In this paper, an innovative risk-constrained bidding 

strategy for the microgrids in joint energy and reserve markets 
has been proposed. The uncertainties associated with the 
wholesale and retail market prices and the microgrid load 
consumption variations were taken into account. In this work, 
the IGDT method was employed to model precisely the 
uncertainty resources and provide an effective non-
probabilistic handling strategy. The corresponding 
optimization problem has been solved using an MINLP 

TABLE V 
BREAKDOWN OF THE MICROGRID MOMP DAILY BENEFIT FUNCTIONS 

ASSOCIATED WITH THE BEST COMPROMISE SOLUTIONS 

IGDT-based Operational Index σ୭୮୮୭୰୲୳୬୧ୱ୲୧ୡ୑୓୑୔ = 0.2 
OS strategy 

σ୰୭ୠ୳ୱ୲୑୓୑୔ = 0.4 
RA strategy 

α୔୰୧ୡୣ     0.0004 0.0065 
α୐୭ୟୢ   0.0377 0.0367 
DG Energy Cost 47416.16 47535.03 
RES Cost 46399.93 46399.93 
ESS Cost 586.01 526.25 
DRR Energy Cost 1260.33 1321.27 
DG Reserve Cost 7480.00 7480.00 
DRR Reserve Cost 1795.04 1673.69 
Payback LSH Cost 0 0  
Energy Market Revenue  53850.79 51075.15 
Reserve Market Revenue 34664.62 33447.28 
Retail Rate Revenue  20571.22 22486.56 
Total Cost  104937.47 104936.17 
Total Revenue  109086.63 107008.99 
Total Benefit  4149.16 2072.82 

 

 
Fig. 12. Hourly values of (a) energy and (b) reserve of DGs (solid), DRRs 

(dotted) and ESS (dashed), (c) SOC of the ESS in the opportunity case 
 

 
Fig. 11. Hourly values of (a) energy and (b) reserve of DGs (solid), DRRs 

(dotted) and the ESS (dashed), (c) SOC of the ESS in the robust case 

Fig. 10. Microgrid day-ahead (a) energy and (b) reserve bid quantities in the 
opportunistic case 

Fig. 9. Microgrid day-ahead (a) energy and (b) reserve bid quantities in the 
robust case 
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formulation in single and multi-objective frameworks. The 
NBI technique was utilized to generate the Pareto front.  The 
key findings of the paper can be summarized as follows: 
 The MGCC can effectively reconcile between benefits 

margins and uncertainty budgets;  
 The microgrid market participation was optimized by 

providing a coordinated management of the coupled 
energy and reserve resources procured by DERs;     

 Severe uncertainties stem from price and load fluctuations 
were managed through conducting a new IGDT-based 
multi-objective auction strategy which has been verified 
using a proficient stochastic MCS-based comparison;     

  

 For the future researches, the microgrid bidding strategy 
problem can be optimized subject to system security 
constraints such as voltage limitations, frequency security 
issues and in the line of the DSO certain requirements.  
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Fig. 14. MG benefit function using MCS and IGDT considering load 

uncertainty 
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