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ON THE DESIGN OF EVENT-TRIGGERED SUBOPTIMAL
CONTROLLERS FOR NONLINEAR SYSTEMS
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ABSTRACT

In this paper, two suboptimal event-triggered control techniques are proposed for both the regulation and the
tracking problems in a broad class of nonlinear networked control systems. The proposed techniques are based on the
state-dependent Riccati equation (SDRE) methodology. In the case of the regulation problem, the asymptotic stability
of the origin of the closed-loop system under the proposed event-triggered control law is investigated. In addition, for
the tracking problem, it is proved that the tracking error between the system output and its desired trajectory converges
asymptotically to zero under some mild conditions. It is shown that the proposed methods can considerably reduce the
information exchange between the controller and the actuator. Due to the implementation procedures of the proposed
techniques, no Zeno behavior is occurred. Three numerical simulations are provided to demonstrate the design procedure
and the flexibility of the proposed event-triggered control techniques.

Key Words: Nonlinear networked control system, suboptimal event-triggered controller, state-dependent Riccati
equation (SDRE) technique.

I. INTRODUCTION

In the traditional time-triggered control scheme, the
control law is sent from the controller to the actuator at
every sampling instant. However, in modern control sys-
tems, required signals may be transmitted from one place
to another using a communication network since its com-
ponents (the plant, the controllers, the sensors, and the
actuators) might be located in different places. Therefore,
many algorithms have been developed recently to han-
dle important challenges in the field of networked control
systems (NCS) such as packet dropout, network-induced
delays, and disorder caused by limited network band-
width [1–7]. The event-based aperiodic sampling and
control appears to relieve the computational burden and
to decrease the network resource utilization. The main
idea of this recent approach is to sample and send the
data only when required [2]. Just like a time-triggered
control scheme, the stability of the system is the most
important issue in an event-triggered control system.
By selecting the necessary samples which must be sent
from the sensors to the controller and/or from the con-
troller to the actuator, an event-triggered mechanism
should be designed in such a way that the stability of the
closed-loop system is guaranteed.
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Performance of the system is another essential issue
which should be taken into account in an event-triggered
control design procedure. Hence, the problem of the opti-
mal regulator design for networked control systems has
recently gained extensive progresses, see [8–10]. Due to
the practical importance of the optimal trajectory track-
ing problem, an event-triggered technique for a class of
nonlinear dynamical systems has been proposed in [11].
However, one can note that less attention has been given
to the development of the event-triggered control algo-
rithms for nonlinear optimal control problems.

The state-dependent Riccati equation (SDRE) tech-
niques were developed to solve many different control
engineering problems in some broad classes of nonlin-
ear systems [12–16]. The key idea behind an SDRE
technique is in representing the nonlinear system dynam-
ics as a state-dependent linear system which is called
the pseudo linearization, extended linearization, and/or
state-dependent coefficient (SDC) matrix representation
[17]. The SDRE based methods were successfully applied
to many different problems such as drug administra-
tion in cancer treatment [18] and optimal spacecraft
attitude control [19]. Some reported reasons for this pop-
ularity are as follows [20]: (i) the SDRE techniques are
based on simple concepts directly inherited from the
well-established linear theories; (ii) they preserve the non-
linearities of the system without neglecting any nonlin-
ear terms; (iii) by selecting two weighting matrices, the
overall system performance can be directly affected with
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predictable outcomes; (iv) the SDRE techniques have
robustness properties with respect to parametric uncer-
tainties, unmodeled dynamics, and system disturbances;
(v) these techniques provide the possibility of dealing
with high dimensional systems. Two comprehensive sur-
veys of the SDRE techniques and the related theories are
[17] and [21].

This paper focuses on the design of optimal (sub-
optimal) regulators and tracking controllers for a wide
class of nonlinear networked control systems. To bene-
fit from the above mentioned properties of the SDRE
techniques, two new SDRE based event-triggered meth-
ods are proposed to solve the optimal regulation and
the optimal trajectory tracking problems. Toward this
end, two general nonlinear optimal control problems
(an infinite-time quadratic regulation problem and a dis-
counted infinite-time trajectory tracking problem) are
defined and their suboptimal solutions in the SDRE
framework are reviewed. Using these solutions, two
event-triggered control strategies are proposed to apply
in a broad class of nonlinear networked control systems.
It is proved that the proposed event-triggered regulator
stabilizes the origin of the closed-loop system if some
necessary conditions on the SDC representation of the
system are held. In the trajectory tracking problem, it is
proved that the tracking error between the system out-
put and its desired trajectory converges asymptotically to
zero under some mild conditions. Paying attention to the
implementation procedures of the proposed techniques,
no Zeno behavior can be occurred.

The rest of the paper is organized as follows. In
Section II, two optimal control problems, an optimal
regulation problem and an optimal trajectory track-
ing problem, are defined for a broad class of nonlinear
dynamical systems. In Section III, using the SDRE tech-
niques, two event-triggered methods are proposed to
drive suboptimal solutions of the defined nonlinear opti-
mal control problems. In Section IV, simulation results
of applying the proposed methods to three nonlinear sys-
tems (jet engine compressor, power converter-based DC
microgrid, and the Vander Pol’s oscillator) are presented.
Finally, Section V concludes the paper.

Throughout this paper, the following notation will
be used. R stands for the set of all real numbers. The sym-
bol R+ denotes the set of all positive real numbers greater
than 0.Rn is the Euclidean space of all n-dimensional real
vectors. Rn×m is the space of all n×m real matrices. In rep-
resents the n × n identity matrix. A matrix P ∈ Rn×n is
said to be positive definite (positive-semidefinite), if for
any nonzero vector x ∈ Rn, it satisfies xTPx > 0 (xTPx ≥
0). The set Z+ = {0, 1, 2, ...} contains the nonnegative
integers.

II. SYSTEM DESCRIPTION AND PROBLEM
STATEMENTS

Consider the following nonlinear dynamical system:

ẋ(t) = f (x(t)) + b(x(t))u(t), x(0) = x0,

y(t) = h(x(t)),
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the con-
trol input, y(t) ∈ Rq is the system output, and x0 is the
initial condition. f (x(t)) ∶ Rn → Rn, b(x(t)) ∶ Rn → Rm,
and h(x(t)) ∶ Rn → Rq are assumed to be smooth func-
tions, f (0) = h(0) = 0, and b(x(t)) ≠ 0 for all x(t)
∈ Rn.

For the above nonlinear system, two control prob-
lems are defined below. Then, in Section III, two
event-triggered techniques will be developed based on the
SDRE solutions of these problems.

2.1 Optimal regulation problem

Consider the nonlinear dynamical system (1). The
optimal regulation problem seeks to find a feedback con-
trol law u(t), t ≥ 0 such that the system state x(t) is set to
zero as t tends to infinity and the following infinite-time
horizon cost function is minimized:

J(x0, u(t)) =
1
2 ∫

∞

0

(
xT(t)Qx(t)+uT(t)Ru(t)

)
dt, (2)

where Q ∈ Rn×n and R ∈ Rm×m are respectively
positive-semidefinite and positive-definite symmetric
matrices.

2.2 Optimal trajectory tracking problem

Consider the nonlinear dynamical system (1). The
optimal trajectory tracking problem is to find the control
input u(t), t ≥ 0 such that the system output y(t) tracks
the desired trajectory yd(t) as t tends to infinity and the
following discounted infinite-time horizon cost function
is minimized:

J(x0, u(t), yd(t)) =
1
2 ∫

∞

0
e−2𝛾t((y(t) − yd(t))TQ1

(y(t) − yd(t)) + uT(t)Ru(t)
)
dt

(3)

where 𝛾 > 0 is the discount factor, Q1 ∈ Rq×q and
R ∈ Rm×m are respectively positive-semidefinite and
positive-definite symmetric matrices. It is assumed that
the desired trajectory has the nonlinear dynamics:
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ẋd(t) = fd(xd(t)), xd(0) = xd0,

yd(t) = hd(xd(t)),
(4)

where xd(t) ∈ Rnd and yd(t) ∈ Rq are the state and the
output of the desired trajectory system (4). fd(xd(t)) ∶
Rnd → Rnd and hd(xd(t)) ∶ Rnd → Rq are two smooth
functions and fd(0) = hd(0) = 0.

III. EVENT-TRIGGERED CONTROLLER
DESIGN METHODOLOGY

In this section, two techniques are proposed to
reduce the communication rate between the controllers
and the actuators in a nonlinear networked control sys-
tem. These techniques are based on the SDRE solutions
of the optimal control problems described in Section II.

3.1 Event-triggered SDRE regulator

In order to use the SDRE technique to solve the
optimal regulation problem, defined in Subsection 2.1,
the function f (x(t)) should be rewritten in its SDC rep-
resentation as f (x(t)) = A(x(t))x(t), where A(x(t)) ∶
Rn → Rn×n. Then, it is possible to show that the feed-
back control law u(t) = −R−1bT(x(t))P(x(t))x(t) leads to a
closed-loop system with suboptimal performance, where
P(x(t)) is the unique symmetric, positive-definite solution
of the following state-dependent Riccati equation [17]:

AT(x(t))P(x(t)) + P(x(t))A(x(t))−
P(x(t))b(x(t))R−1bT(x(t))P(x(t)) + Q = 0.

(5)

Note that (5) has a unique symmetric,
positive-definite solution if the triple (A(x(t)), b(x(t)),
Q1∕2) is point-wise stabilizable and point-wise detectable
for all x(t) in a region containing the origin [17].

Finding the solution of the state-dependent Ric-
cati equation (5) is the central component in the design
procedure of the SDRE regulator. This equation can be
solved using a sampled-data method, represented in [21].
In this method, the SDRE (5) is solved at the sampling
instant iT (i ∈ Z+) in order to find P(x(iT)), where T
is the sampling time. Next, the control law u(x(iT)) is
calculated using u(x(iT)) = −R−1bT(x(iT))P(x(iT))x(iT)
and it is applied to the system in the time interval [iT ,

(i+1)T[. These calculations are periodically repeated and
the control input is updated at the next sampling time
(i + 1)T .

The above described implementation technique
needs to send messages from the SDRE regulator to the
actuator at each sampling instant and therefore, the uti-
lized network is always used to update the computed con-

trol input. To reduce the communication rate between the
SDRE regulator and the actuator, a new event-triggered
regulator is proposed. In this method, a triggering condi-
tion is monitored at every sampling instant iT and when
violated, the new control signal is sent from the controller
to the actuator through the channel.

Theorem 1 below represents the main results of
this proposed event-triggered algorithm, called the event-
triggered SDRE regulator.

Theorem 1. Consider the nonlinear dynamical sys-
tem (1). Assume f (x(t)) = A(x(t))x(t) and the triple
(A(x(t)), b(x(t)),Q1∕2) is point-wise stabilizable and
point-wise detectable in a bounded open set Ω ∈ Rn

containing the origin. Assume further that a basic
sample and hold strategy is applied when no control
input is transmitted (i.e. u(t) = u(tk), t ∈ [tk, tk+1[)
and the system is under the following control law with
u(t0) = −K(x(t0))x(t0):

u(t) =
{

u(tk), 𝜇(x(t)) < 0
−K(x(t))x(t), 𝜇(x(t)) ≥ 0

, (6)

where t0 = 0 is the initial time, tk ∈ R+ is the instants
at which the control input has to be transmitted
from the controller to the actuator (k ∈ Z+),
K(x(t)) = R−1bT(x(t))P(x(t)) is the feedback gain. The
matrix-valued function P(x(t)) is the unique positive-
definite symmetric solution of the state-dependent Ric-
cati equation (5) at time t, and 𝜇(x(t)) is defined as
follows:

𝜇(x(t)) =
[
xT(t) eT(t)

]
Ψ(x(t))

[
x(t)
e(t)

]
. (7)

In the above equality, e(t) = b(x(t))K(x(t))x(t) − b(x(t))
K(x(tk))x(tk)) and Ψ(x(t)) is given by:

Ψ(x(t)) =
[
Ψ1,1(x(t)) P(x(t))
PT(x(t)) 0

]
, (8)

where Ψ1,1(x(t)) = (𝜎(x(t)) − 1)(Q + KT(x(t))R K(x(t)))
and 𝜎(x(t)) ∶ Rn → [0, 1] is called the triggering function.
Then, the origin of the system (1) is locally asymptotically
stable.

Proof. Consider the Lyapunov function V (x(t)) =
xT(t)P(x(t))x(t). For sufficiently small values of x(t),
the derivative of V (x(t)) along the trajectory ẋ(t) =
A(x(t))x(t) − b(x(t))K(x(t))x(t) = Acl(x(t))x(t) is given
as [17]

V̇ (x(t)) = −xT(t)
(
Q + KT(x(t))RK(x(t))

)
x(t),
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and the following Lyapunov equation is held:

AT
cl(x(t))P(x(t)) + P(x(t))Acl(x(t)) =
− (Q + KT(x(t))RK(x(t))).

(9)

The origin of the system (1) is locally asymptotically
stable if the following weaker inequality is satisfied:

V̇ (x(t)) ≤ −𝜎(x(t))xT(t)
(
Q+KT(x(t))RK(x(t))

)
x(t).
(10)

Let tk shows the instants at which the control input
is computed and transmitted through the communication
channel to the actuator (𝜇(x(tk)) ≥ 0). In the time interval
[tk, tk+1[, the closed-loop system dynamics is as follows:

ẋ(t) = A(x(t))x(t) − b(x(t))K(x(tk))x(tk). (11)

By defining e(t) = b(x(t))K(x(t))x(t) − b(x(t))
K(x(tk))x(tk), (11) can be rewritten as follows:

ẋ(t) = Acl(x(t))x(t) + e(t).

On the other hand, for sufficiently small values of
x(t), it is possible to approximate P(x(t)) with its value
at the origin and therefore, the derivative of V (x(t)) is as
follows:

V̇ (x(t)) = xT(t)
(
AT

cl(x(t))P(x(t))
+ P(x(t))Acl(x(t))

)
x(t) + 2xT(t)P(x(t))e(t).

Now, using the Lyapunov equation (9), inequal-
ity (10), and the above equality, the triggering times are
obtained when the following inequality is violated:

[
xT(t) eT(t)

]
Ψ(x(t))

[
x(t)
e(t)

]
< 0,

where Ψ(x(t)) is defined by (8). This completes the proof.

Remark 1. To implement the proposed event-triggered
regulator, the time-triggered SDRE implementation
technique, represented in [21], is extended. To this end,
the positive-definite solution of the sampled-data alge-
braic Riccati equation

AT(x(iT))P(x(iT)) + P(x(iT))A(x(iT))−
P(x(iT))b(x(iT))R−1bT(x(iT))P(x(iT)) + Q = 0

is computed periodically with the sample time T .
Then, the control action u(x(iT)) = −R−1bT(x(iT))
P(x(iT))x(iT) is obtained at the current state x(iT). To
determine whether this computed control must be sent to
the actuator or not, the obtained event-triggering condi-
tion (7) is checked at this current sampling instant t = iT .
If 𝜇(x(iT)) ≥ 0, the computed control input u(iT) is sent

to the actuator and tk+1 is set to iT . Therefore, differ-
ent from the methods where the triggering condition is
continuously evaluated, the inter-event times of the pro-
posed event-triggered method are always greater than or
equal to the sampling time T . As a result, the proposed
event-triggered SDRE regulator overcomes the challeng-
ing problem of the minimum inter-event time and the
Zeno free execution of the control updating instants
is always guaranteed. From a practical point of view,
this implementation procedure is so important since the
event-triggering condition is periodically evaluated.

Remark 2. According to [21], it is possible to apply
the SDRE technique to the following class of nonlinear
dynamical systems:

ẋ(t) = f (x(t)) + g(x(t), u(t)), (12)

where f (x(t)) ∶ Rn → Rn and g(x(t), u(t)) ∶ Rn × Rm →
Rm. Toward this end, an integral control is first defined
as follows:

u̇(t) = Cu(t) + Dũ(t), (13)

where ũ(t) ∈ Rm is an auxiliary input, C ∈ Rm×m and
D ∈ Rm×m are two arbitrary user-defined matrices. Next,
(12) and (13) can be augmented with each other in order
to have an affine nonlinear system in the form (1) as
follows [21]:[

ẋ(t)
u̇(t)

]
⏟⏟⏟

Ẋ (t)

=
[

f (x(t)) + g(x(t), u(t))
Cu(t)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F(X (t))

+
[

0
D

]
⏟⏟⏟
B(X (t))

ũ(t),

where X (t) = [xT(t) uT(t)]T. Using this technique, the
event-triggered SDRE regulator can be also applied to
the nonaffine nonlinear system (12).

3.2 Event-triggered SDRE tracking controller

In this section, using the proposed SDRE tech-
nique in [16,22], an event-triggered tracking controller
is developed to solve the optimal trajectory tracking
problem defined in Subsection 2.2. The main results
of this proposed event-triggered algorithm, called the
event-triggered SDRE tracking controller, are repre-
sented in the following theorem.

Theorem 2. Consider the nonlinear optimal tracking
problem defined in Subsection 2.2. Assume that the triple
(A(e𝛾tX (t)),B(e𝛾tX (t)),Q1∕2(e𝛾tX (t))) is point-wise stabi-
lizable and point-wise detectable in a bounded open set
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Ω ∈ Rn+nd , where

A(e𝛾tX (t)) =
(
− 𝛾I +

[
F(x(t)) 0

0 Fd(xd(t))

])
,

B(e𝛾tX (t)) =
[

b(x(t))
0

]
,

Q(e𝛾tX (t)) =
[

H(x(t)) −Hd(xd(t))
]T

Q1

[
H(x(t)) −Hd(xd(t))

]
.

F(x(t)) ∶ Rn → Rn×n, H(x(t)) ∶ Rn → Rq×n,
Fd(xd(t)) ∶ Rnd → Rnd×nd , and Hd(xd(t)) ∶ Rnd →
Rq×nd are the SDC representations of f (x(t)), h(x(t)),
fd(xd(t)), and hd(xd(t)), respectively. Then, the following
control law with u(t0) = −K(e𝛾t0 X (t0))X (t0) leads to a
closed-loop system such that ē(t) = exp(−𝛾t)(y(t) − yd(t))
asymptotically tends to zero:

u(t) =
{

u(tk), 𝜇(X (t)) < 0
−K(e𝛾tX (t))X (t), 𝜇(X (t)) ≥ 0

, (14)

where t0 = 0 is the initial time, tk ∈ R+ is the
times at which the control input has to be transmit-
ted from the controller to the actuator, K(e𝛾tX (t)) =
−R−1BT(e𝛾tX (t)) P(e𝛾tX (t)) is the state-dependent gain.
P(e𝛾tX (t)) is the unique positive-definite symmetric solu-
tion of the state-dependent Riccati equation

AT(e𝛾tX (t))P(e𝛾tX (t)) + P(e𝛾tX (t))A(e𝛾tX (t))
− P(e𝛾tX (t))B(e𝛾tX (t))R−1BT(e𝛾tX (t))P(e𝛾tX (t))
+ Q(e𝛾tX (t)) = 0,

and 𝜇(e𝛾tX (t)) is given by:

𝜇(e𝛾tX (t)) =
[
XT(t) ET(t)

]
Ψ(e𝛾tX (t))

[
X (t)
E(t)

]
.

In the above, E(t) = B(e𝛾tX (t))K(e𝛾tX (t)) X (t) −
B(e𝛾tX (t))K(e𝛾tk X (tk))X (tk)) and the matrix-valued
function Ψ(e𝛾tX (t)) is as follows:

Ψ(e𝛾tX (t)) =
[
Ψ1,1(e𝛾tX (t)) P(e𝛾tX (t))
PT(e𝛾tX (t)) 0

]
,

where Ψ1,1(e𝛾tX (t)) = (𝜎(X (t)) − 1)(Q(e𝛾tX (t)) + KT(e𝛾t

X (t))RK(e𝛾tX (t))) and 𝜎(X (t)) ∶ Rn → [0, 1].

Proof. By defining U(t) = e−𝛾tu(t), X (t) = e−𝛾t
[
xT(t)

xT
d (t)

]T
, and using the SDC representations f (x(t)) =

F(x(t))x(t), h(x(t)) = H(x(t))x(t), fd(xd(t)) = Fd(xd (t))
xd(t), and hd(xd(t)) = Hd(xd(t))xd(t), the optimal track-
ing problem defined in Subsection 2.2 is converted to an
optimal regulation one with the following infinite-time

quadratic cost function [16,22]:

J(X0,U(t)) = 1
2 ∫

∞

0

(
XT(t)Q(e𝛾tX (t))X (t)

+ UT(t)RU(t)
)
dt,

(15)

and the dynamics of the augmented state X (t) is as
follows [16,22]:

Ẋ (t) =
(
− 𝛾I+

[
F(x(t)) 0

0 Fd(xd(t))

])
X (t)

+
[

b(x(t))
0

]
U(t)=A(e𝛾tX (t))X (t)+B(e𝛾tX(t))U(t).

(16)

Since the triple
(
A(e𝛾tX (t)),B(e𝛾tX (t)),Q1∕2

(e𝛾tX (t))
)

is assumed to be point-wise stabilizable
and point-wise detectable, it is possible to apply the
event-triggered SDRE regulator, proposed in Subsec-
tion 3.1, to the latter optimal problem (15) and (16).
Using the results of Theorem 1, one can conclude that
the augmented state X (t) asymptotically tends to zero
under the control law (14). Therefore, the tracking error
ē(t) = exp(−𝛾t)(y(t) − yd(t)) =

[
H(x(t)) − Hd(xd(t))

]
X (t) tends to zero as t tends to infinity. The proof is
completed. □

Based on the above theorem, using the proposed
event-triggered tracking controller leads to a closed-loop
system such that ē(t) = exp(−𝛾t)e(t) is guaranteed to tend
to zero. Nevertheless, it is of our interest to make sure
that the tracking error e(t) asymptotically tends to zero.
To achieve this aim, the discount factor 𝛾 must be selected
small, i.e. 𝛾 → 0. However, according to the results of
Theorem 2 in [22], the discount factor 𝛾 must be selected
in such a way that it is greater than the maximum value of
the real parts of the eigenvalues of Fd(xd(t)) for all xd(t).
Therefore, in some cases, we have to select larger values
for the discount factor 𝛾 which causes error in the track-
ing. However, the observed error can be decreased by
selecting larger values for the elements of the user-defined
weighing matrix Q1. It is worth mentioning that if the
desired trajectory is generated by a stable or marginally
stable system, the maximum value of the real parts of the
eigenvalues of Fd(xd(t)) are not positive and therefore, the
discount factor 𝛾 can be any small positive numbers.

IV. SIMULATION RESULTS

In this section, the proposed event-triggered SDRE
techniques are applied to three physical nonlinear sys-
tems.
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4.1 Jet engine compressor

The mathematical model of the jet engine compres-
sor is as follows [23]:

ẋ1(t) = −x2(t) −
3
2

x2
1(t) −

1
2

x3
1(t),

ẋ2(t) = x1(t) − u(t),
(17)

where x1(t) is the mass flow, x2(t) is the pressure rise, and
u(t) is the throttle mass flow. The problem is to find a feed-
back control law u(t) such that the origin of the obtained
closed-loop system is asymptotically stable. To solve this
problem using the proposed event-triggered SDRE regu-
lator, an SDC representation of (18) should be considered
such that its corresponding pair (A(x), b(x)) is point-wise
stabilizable. One can see that the following SDC has this
property:

ẋ(t)=
[
− 3

2
x1(t)−

1
2
x2

1(t) 1
1 0

]
x(t) +

[
0
−1

]
u(t). (18)

By selecting Q = I2, the point-wise detectability of
the pair (A(x),Q1∕2) is satisfied. Therefore, the proposed
event-triggered SDRE regulator stabilizes the origin of
the system (18). Fig. 1 shows the obtained control input
using the event-triggered SDRE regulator for the sam-

Fig. 1. Graphs of the throttle mass flow u(t). [Color figure can
be viewed at wileyonlinelibrary.com]

Fig. 2. Evolution of the system state variables x1(t) and x2(t).
[Color figure can be viewed at wileyonlinelibrary.com]

pling time T = 0.1 s, the input weighting parameter R =
0.1, and the triggering function 𝜎(x(t)) = max{(|x1(t)| +|x2(t)|)∕7, 1}. In this figure, the obtained control input
using the SDRE technique, which is equivalent to the
proposed event-triggered regulator with 𝜎 = 1, is also
depicted. Fig. 2 shows the system state variables where it
can be seen that the proposed event-triggered SDRE reg-
ulator stabilizes the origin of the system (18). It should
be mentioned that the values of the corresponding cost
functions J are 2.780 and 4.109 for 𝜎 = 1 and 𝜎((x(t)) =
max{(|x1(t)| + |x2(t)|)∕7, 1}, respectively. Fig. 3 depicts
the corresponding inter-event intervals where each pulse
represents the occurrence of an event that leads to a data
transmission. In this figure, the magnitude of each pulse
specifies the length of time period between that event and
the previous one. Fig. 4 shows the triggering condition
𝜇(x(t)), where red circles depict times of sending the con-
trol input from the controller to the actuator through the
channel. In this example, the proposed method reduces
76% of messages that need to be sent from the controller
to the actuator which is equal to an average sampling
interval of 0.416 s.

Fig. 3. Inter-event intervals corresponding to the event-
triggered tracking controller for Example 1. [Color
figure can be viewed at wileyonlinelibrary.com]

Fig. 4. Graph of 𝜇(x(t)) corresponding to Example 1: Red
circles depict times of sending the control input from
the SDRE controller to the actuator through the
channel. [Color figure can be viewed at
wileyonlinelibrary.com]
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Fig. 5. Schematic diagram of the DC microgrid. [Color figure
can be viewed at wileyonlinelibrary.com]

Remark 3. From (10) and the results of this example, one
can conclude that selecting a triggering function 𝜎(x(t))
with smaller values leads to more reduction of sending
messages from the controller to the actuator. However,
the price of this reduction is a decrease in the perfor-
mance of the closed-loop system. Indeed, the triggering
function 𝜎(x(t)) can be used to make a trade-off between
the communication rate reduction and the value of the
corresponding cost function.

4.2 Power converter-based DC microgrid

A DC Microgrid composed of one DC source inter-
faced with an LC filter supporting a constant power load
(CPL), as shown in Fig. 5, is considered. The dynamics
of this system is as follows [24]:

ẋ1(t) =
r
L

x1(t) −
1
L

x2(t) +
1
L

Vdc(t),

ẋ2(t) =
1
C

x1(t) −
P

Cx2(t)
,

(19)

where r = rdc +rL, x1(t) and x2(t) are the inductor current
and the capacitor voltage, respectively.

The utilized parameters of the above model are
r = 1.1 Ω, L = 39.5 mH, C = 500 𝜇F, and P =
300 W. The control problem is to find Vdc(t), t ≥ 0
such that the capacitor voltage x2(t) is set to the con-
stant desired value x2d. To solve this problem using the
proposed event-triggered SDRE tracking controller, the
following SDC representation of the augmented state
X (t) = e−𝛾t

[
x1(t) x2(t) x2d

]T
is used:

Ẋ (t)=
⎡⎢⎢⎣
−𝛾+ r

L
− 1

L
0

1
C

a22(X (t)) 0
0 0 −𝛾

⎤⎥⎥⎦X (t) +
⎡⎢⎢⎣

1
0
0

⎤⎥⎥⎦U(t), (20)

where a22(X (t)) = −𝛾 − P
Cx2

2(t)
and U(t) = e−𝛾tVdc(t).

Paying attention to Theorem 2, the SDC (20) should
be point-wise stabilizable to apply the proposed
event-triggered tracking controller. One can see that
this property is satisfied. On the other hand, by select-

Fig. 6. Graphs of the control input Vdc(t). [Color figure can
be viewed at wileyonlinelibrary.com]

Fig. 7. Graphs of the capacitor voltage x2(t). [Color figure
can be viewed at wileyonlinelibrary.com]

ing Q1 = 1000, the point-wise detectability condition
is also held. Therefore, it can be concluded that the
event-triggered SDRE tracking controller can be applied
to find a solution of the above trajectory tracking prob-
lem based on the SDC representation (20). Since the
desired trajectory is generated by a stable system, the
discount factor 𝛾 can be any positive real numbers.
For the initial condition

[
x1(0) x2(0)

]
=

[
1.5 190

]
,

𝛾 = 0.01, the weighting parameters Q1 = 1000 and
R = 0.001, and the sampling time T = 50 𝜇s, the
obtained control input by applying the SDRE tracking
controller, which equivalent to 𝜎 = 1, is depicted in
Fig. 6. In this figure, the obtained control input using the
event-triggered SDRE tracking controller for the trig-
gering function 𝜎(x(t)) = max{(10 + |x2(t) − x2d|)∕20, 1}
is also depicted. Fig. 7 shows the graphs of the cor-
responding capacitor voltage x2(t). In this example,
the proposed event-triggered method leads to 56 trig-
gering and the communication rate reduction between
the controller and the actuator is 72%. Although this
reduction is considerable, Fig. 7 shows that the tracking
error between x2(t) and its desired value asymptot-
ically tends to zero. The values of the discounted
cost functions J are 23.46 and 29.08 for 𝜎 = 1 and
𝜎(x(t)) = max{(10 + |x2(t) − x2d|)∕20, 1}, respectively.
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4.3 Vander Pol’s oscillator

Consider the dynamical model of a controlled
Vander Pol’s oscillator as follows [16]

ẋ(t)=
[

x2(t)
−x1(t)+𝛼(1 − x2

1(t))x2(t)

]
+
[

0
1

]
u(t),

y(t) = x1(t).
(21)

It is assumed that the control objective is to find u(t)
such that the system output y(t) tracks the desired sinu-
soidal trajectory yd(t) = sin(t). As a result, the following
dynamics are considered for the desired trajectory:

ẋd(t) =
[

0 1
−1 0

]
xd(t),

yd(t) =
[
1 0

]
xd(t).

(22)

To apply the proposed event-triggered tracking con-
troller for solving the above problem, the following SDC
representation is used in our simulations:

Ẋ (t) =
⎡⎢⎢⎢⎣
−𝛾 1 0 0
−1 a22(X (t)) 0 0
0 0 −𝛾 1
0 0 −1 𝛾

⎤⎥⎥⎥⎦
X (t)+

⎡⎢⎢⎢⎣
0
1
0
0

⎤⎥⎥⎥⎦
U(t), (23)

Fig. 8. Graphs of the control input u(t). [Color figure can be
viewed at wileyonlinelibrary.com]
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Fig. 9. Graphs of the system output y(t). [Color figure can be
viewed at wileyonlinelibrary.com]

Table I. Results of changing the triggering factor 𝜎.

𝜎 Reduction percentage Cost function (J)

1 0 38.21
0.75 58.40 41.92
0.5 75.20 46.15

where X (t) = e−𝛾t
[
x1(t) x2(t) xT

d (t)
]T

, U(t) = e−𝛾tu(t),
and a22(X (t)) = 𝛼(1 − x2

1(t)) − 𝛾. To check the
state-dependent stabilizability of the SDC representation
(23), let us find its state-dependent controllability matrix

Φc =
⎡⎢⎢⎢⎣

0 1 ⋆ ⋆

1 𝛼(1 − x2
1(t)) − 𝛾 ⋆ ⋆

0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
,

where ⋆ is used to show the uncalculated elements.
One can see that while the first two state variables are
point-wise controllable, the states of the trajectory are
not. Nevertheless, for any 𝛾 > 0, these states are sta-
bilizable and therefore, the point-wise stabilizability of
the SDC representation (23) is guaranteed. Note that
the desired trajectory is generated by a marginally stable
system and therefore, the discount factor 𝛾 can be any
positive real numbers. In the following simulations, the
tuning gains and the user-defined parameters are selected
as Q1 = 20, R = 0.1, 𝛾 = 0.1, and the sampling time
T = 0.1 s. For x0 = [2, 1]T, 𝛼 = 0.9, and three val-
ues of the triggering factor the obtained control inputs
of applying the proposed event-triggered tracking con-
troller are depicted in Fig. 8. Fig. 9 shows the evolution
of the system outputs y(t), which achieve appropriate
tracking of the desired trajectory. The values of the reduc-
tion percentages of sending messages from the controller
to the actuator and the corresponding cost function (3)
are reported in Table I. As it is stated in Remark 3, the
percentage of the reduction is decreased by increasing 𝜎

which leads to a larger value of the cost function.

V. CONCLUSIONS

By defining two optimal control problems (a
quadratic regulation problem and a discounted trajectory
tracking problem) and using the SDRE techniques, two
event-triggered control methods have been proposed to
reduce the information exchange between the controller
and the actuator in a nonlinear networked control sys-
tem. It has been proved that the origin of the closed-loop
system under the proposed event-triggered regulator is
asymptotically stable provided that the SDC representa-
tion of the nonlinear system is point-wise stabilizable and
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point-wise detectable. For the proposed event-triggered
tracking controller, it has been proved that the tracking
error between the system output and its desired trajec-
tory asymptotically tends to zero under some condi-
tions on the SDC representation and the discount factor.
Numerical simulations have confirmed that the proposed
event-triggered controllers are so effective and can be
applied in a wide variety of applications.
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