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Abstract— This paper proposes a new approach for 

preventive/corrective voltage control in smart power systems. 

Previous researches, which were based on deterministic methods, 

cannot be applied in the presence of high uncertainty caused by 

renewable generation and loads. Hence, new frameworks are 

required to handle the stochastic space of the problem. In this 

research, a robust approach based on the information gap 

decision theory (IGDT) is used to handle the uncertain space 

using the risk averse (RA) and opportunity seeker (OS) 

strategies. The RA strategy can provide an operation schedule for 

a given uncertainty budget in real time and with a required 

loading margin. The OS strategy helps to decrease the operating 

costs in view of possible uncertainties. The proposed method was 

implemented according to the IEEE reliability test system. The 

results of this approach give the flexibility to select a degree of 

robustness considering the desired uncertainty budget.   

 
Index Terms - Smart grid, Optimal power flow, Wind power, 

Preventive voltage control, Corrective voltage control, 

Information gap decision theory 

 

 

NOMENCLATURE 

Sets: 

NB      Set of system buses 

 

Indices: 

 

i        Bus index 

 

j        Bus index 

 

G       Generator index 

 

W       Wind farm 
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Variables and Parameters:  

 

   Load at bus i 

 

  
  Wind power generation of wind farm W at bus i  

 

   
     

  Cost of active/reactive power up re-dispatch 

 

   
     

  Cost of active/reactive power down re-dispatch 

 

  
     

  Amount of active/reactive power up re-dispatch 

 

  
     

  Amount of active/reactive power down re-dispatch 

 

 

      
        

 Amount of initial active/reactive power scheduled 

 

         Cost of active/reactive demand response 

 

         Cost of active/reactive interruptible load curtailment 

 

         Active/Reactive demand response at bus i 

 

         Active/Reactive interruptible load at bus i  

 

  
    

  Active/Reactive generation of generator G at bus i 

 

      Voltage Magnitude/Angle of bus i 

 

         Magnitude/Angle of the ijth element of admittance 

matrix 

 

      
        

  Maximum/Minimum active power generation of 

generator at bus i 

 

       
        

  Maximum/Minimum reactive power generation 

of generator at bus i  

 

                 Maximum active/reactive demand 

response at bus i 

 

                 Maximum active/reactive involuntary load 

curtailment at bus i 

 

               Maximum/Minimum allowed voltage at bus i  

 

Information Gap Decision Theory Based 

Preventive/Corrective Voltage Control for Smart 

Power Systems with High Wind Penetration  
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   / ̂   Apparent power of line between bus i and j for the 

base/loading case 

 

        Maximum permitted apparent power of line between 

bus i and j 

 

    Loading margin of the system 

 

      Desired loading margin of the system 

 

  
    

  Rate of change for generation/demand at bus i 

 

 ̂ 
  Reactive power of generators for the loading case 

 

   
   ̂ 

  Voltage of generator buses for the base/loading case  

I. INTRODUCTION 

In recent years, the integration of wind generation in power 

systems has been significantly increased [1-2]. Two main 

aspects of wind farms including low cost of generation and 

environmental advantages make wind generation an 

interesting option for system operators. By the end of 2015 the 

global wind energy installations reached 432GW and by the 

end of 2030 these installations will reach 2000GW, which will 

supply 19% of the global energy [3-8]. While the Danish 

government is planning to produce 50% of  its electricity from 

wind by 2050, the installed capacity of wind will reach 1TW 

in China by that year [9-10]. However, the intermittent 

characteristics of wind generation have to be considered to 

achieve economic and secure operation of the power system 

[11]. Smart grids give the operator many options to handle the 

intermittent operation of wind generation, including storage 

devices [12-13], and responsive loads [14-16]. Intermittency 

mitigation with storage devices includes pumped hydroelectric 

storage (PHS), compressed air energy storage (CAES), and 

battery energy storage systems [4]. Precise wind speed and 

power forecasting are the other methods which are used for 

intermittency alleviation [4]. 

Proper loading margin is one of the important factors for 

power system security [16]. Considering the volatility of wind 

generation [17], and also the load forecasting errors, an 

appropriate scheduling is required in order to provide the 

required loading margin while reducing operating costs in 

different circumstances.  Preventive voltage control (PVC) 

actions are implemented to provide a certain margin for the 

loading of the system. Corrective voltage control (CVC) 

actions are used in order to recover the system from a negative 

loading margin caused by a severe contingency [18-19]. This 

control scheme finds a new equilibrium point for the post-

contingency state.  

 The generation dispatch problem with high penetration of 

wind generation has been studied extensively. In [20], the 

dispatch problem was solved considering the emission tax. 

[21-22] provided novel methods for economic dispatch 

problem in smart grids. However, in these papers, the power 

system security aspects such as the loading margin were not 

considered. Providing power system security has been studied 

in many papers. In [23], a congestion management scheme 

was presented considering the loading margin (LM) of the 

system.  In [18], a preventive/corrective control framework 

was introduced for the demand side participation. A hybrid 

preventive/corrective computational strategy for the security 

constrained optimal power flow problem, without considering 

the system loading margin, was presented in [24]. A market 

based optimal power flow scheme considering voltage security 

constraints was introduced in [25]. [26-27] introduced a 

voltage security pricing scheme for electricity markets. 

Reactive reserve procurement to improve the voltage stability 

margin was suggested in [28]. In all of these references, a 

deterministic framework was used and uncertain generation 

and consumption were neglected.  

When a system faces multiple uncertainties, deterministic 

approaches are not efficient anymore. Hence, in recent years, 

many researchers have addressed different methods to handle 

the uncertain space caused by stochastic variables. In [29-30], 

samples taken from the Weibull distribution function were 

used to estimate the costs of wind spillage or wind deficiency 

penalties. References [31-32] handled the uncertain variables 

using the point estimate method. Yet, these studies focused 

only on the operating costs and the voltage security aspects 

were not studied. In [33], a stochastic framework was used for 

the corrective voltage actions in presence of wind power and 

demand response programs. [34-35] introduced a voltage 

security framework for microgrids, but without considering 

unit outages.  

Recently, the information gap decision theory (IGDT) has 

been applied to many optimization problems with the aim of 

overcoming the uncertain space [36]. While probabilistic and 

stochastic approaches are dependent on precise information of 

the probability density functions and suffer from high 

computational burden, the IGDT method can be implemented 

with the least information about the uncertain variables and it 

has shorter execution times. The IGDT method has been 

examined for many power system optimization problems, 

including bidding strategy [37], unit commitment [38], 

generation expansion planning [39], transmission expansion 

planning [40], congestion management [41], and optimal 

power flow [42]. However, the preventive/corrective voltage 

control (PCVC) actions facing multiple uncertainties have not 

been studied using the IGDT method. In this paper, the 

stochastic space produced by the high wind power penetration 

and load uncertainty is handled using the IGDT method and 

nonlinear programming (NLP) formulation.  

According to latest developments in smart grid 

infrastructure, demand response programs can be used as a 

proper solution for handling the volatility of renewable energy 

resources [43]. For incentive based demand response 

programs, incentives are paid to the demand response 

providers to decrease their load at required time. Emergency 

demand response to provide the required security margin was 

used in [44]. [18] and [45] used  responsive loads, instead of 

involuntary load curtailment, in order to increase the voltage 

stability margin with a lower cost. In this paper, the demand 

response programs were used as a source to provide a portion 

of the required active and reactive power reserve. 

In this work, a new robust model is presented for the 

preventive/corrective voltage control of power system. The 

information decision gap theory (IGDT) is used to provide a 

robust solution for this problem. 
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The main contributions of this paper are: 

1. Providing a robust re-dispatch for the system in order to 

guarantee the required loading margin for a given 

uncertainty budget.  

2. Proposing risk averse and opportunity seeker strategies 

for the preventive/corrective voltage control problem. 

3. Demonstrating the effect of responsive and interruptible 

loads on increasing the robustness of the system and 

overcoming the uncertainty of the problem. 

 

The rest of the paper is organized as follows: In Section II, 

preventive/corrective voltage control actions are described. In 

Section III, the IGDT approach is described. Section IV 

explains the application of IGDT to the PCVC problem. 

Section V presents simulation results and conclusions are 

given in Section VI. 

II. PREVENTIVE/CORRECTIVE VOLTAGE CONTROL 

According to the Western Electricity Coordinating Council 

(WECC) [46], in order to guarantee secure operation for 

power systems, a certain loading margin has to be provided for 

the base case and post contingencies. 

Considering Fig. 1 (a), curve (1) is the pre-contingency 

curve with the operating point A. For different contingencies 

two different states can occur: 

(i) After a severe contingency, the system can become 

unstable and the loading margin becomes negative (curve (2)). 

In this situation, a corrective voltage control is used to recover 

the system with a certain level of loading margin (curve (3)). 

In this figure, B2 is the new operating point and B1 is the 

point which leads to a zero loading margin. 

(ii) After a contingency, the system can still be stable but 

the loading margin may not be adequate (curve (4) and 

        ). In this case, a preventive voltage control action is 

required to provide the required loading margin (curve (5) and 

       ) [18], [33].  

The above explained preventive/corrective voltage actions 

used for a deterministic space. For a system with stochastic 

variables, it is not guaranteed that, for a certain scheduling, the 

required loading margin will be satisfied or the system will 

remain stable. Therefore, in order to provide the required 

margin of the system for different stochastic variables, a 

proper level of active/reactive power re-dispatch has to be 

scheduled and deployed. The formulation presented in the next 

section is used to estimate the appropriate level of 

active/reactive power reserve that has to be provided by 

different sources while minimizing the operating costs. 

III. INFORMATION GAP DECISION THEORY FOR UNCERTAINTY 

HANDLING 

Numerous power system problems in uncertain spaces were 

modeled and controlled with stochastic and probabilistic 

approaches [43], [47-50]. However, in addition to high 

computational burden that these methods require, they are 

dependent on the probabilistic density functions of the 

uncertain variables. Hence, these approaches are inapplicable 

when historical data are not available or not accurate [41].  

Assume an optimization problem as follows: 

 

Where   is the objective function,   and   are the uncertain 

and decision variables.    and   are the inequalities and 

equalities respectively.     ,    , and Ω are the sets of 

inequalities, equalities, and uncertainties. 

The set of uncertainties can be defined as: 

 

      ( ̅  )  {  |
   ̅

 
|   } (5) 

 

Where  ̅ indicates the forecasted value of the uncertain 

parameter.   is the radius of uncertainty and shows by how 

much the uncertain variable can diverge from its forecasted 

value. 

For the base case, the optimization problem is solved using 

the forecasted values. According to the base case objective 

function, the risk averse (RA) and opportunity seeking (OS) 

strategies can be chosen by the decision maker. In the 

following sections, formulations for each strategy are 

provided. 

 

 
Fig. 1. Operating points for (a) Corrective voltage control (b) Preventive 

voltage control 
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A. Risk-averse strategy 

The main goal of this strategy is to provide a decision which 

is robust against excursions of the uncertain variables from 

their forecasted values. In this strategy, the most conservative 

and robust decision occurs when the uncertain parameters 

have the greatest deviation from their expected values. This 

strategy can be formulated as follows: 

 

In (9),   is the deviation factor.   (   ̅) is the objective 

function corresponding to the forecasted values of the 

uncertain variables   ̅. Fig. 2 (a) illustrates the concept of the 

risk averse strategy for the IGDT method. In this figure, the 

solid lines are the forecasted variables and the base re-dispatch 

cost. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Illustration of the IGDT concept, (a) Risk-averse strategy, (b) 

Opportunity seeking strategy 

 

In Section IV, the PCVC formulation based on the risk 

averse strategy is presented. 

B. Opportunity seeker strategy 

In this strategy, the decision maker uses the uncertainty to 

increase the profit or decrease the total costs. In a single level 

optimization framework, this strategy can be formulated as 

follows: 

In the above equations, (14) represents the profit or cost 

reduction that the decision maker is seeking for the uncertain 

variables modeled in (15). Fig. 2 (b) shows the concept of this 

strategy. 

IV. PREVENTIVE/CORRECTIVE VOLTAGE CONTROL BY IGDT 

FORMULATION 

As mentioned in the previous sections, the IGDT is suitable 

for handling uncertainties without probability density 

functions. In this section, the risk averse and opportunity 

seeking formulations for the PCVC problem are presented.  

A. Risk-averse PCVC 

The main goal of the PCVC problem is to provide a new 

operation schedule which is able to increase the loading 

margin (preventive control) or recover the system (corrective 

control) after a severe contingency. In order to handle the 

uncertainty caused by the wind generation and load 

simultaneously, a net load NL is defined as: 

         
                  (16) 

The deviation coefficient factor (1   ) is applied for the net 

load in the constraints. 

The total re-dispatch cost, incorporating the costs of 

responsive and interruptible loads, is defined as (17).  

 

    ∑    
 ((  

  )        
 )

    

    
 (      

  (  
  ))

    
 ((  

  )        
 )

    
 (      

  (  
  ))

 ∑ (               )

    

 ∑ (               )

    

 

(17) 

 

The objective function is limited by the constraints given in 

(18)-(27). These relations represent the normal operating state. 

Equalities (18) and (19) represent the power flow equations. 

The participation of responsive and interruptible loads is 

assumed as a percentage of the total demand. Moreover, the 

reactive powers of the wind farms are set to zero. Inequalities 

(20)-(27) are the constraints for the active power generation 

units, reactive power generation units, active responsive and 

interruptible loads, reactive responsive and interruptible loads, 

voltage buses, and line flows. 

The relations for the loading margin are given in (28)-(40) 

(     ). 

In the relations, (28) is the active power flow equation for the 

loading case. (29)-(32) define the net load, active power 

generation, responsive and interruptible loads for the loading 

state. (33)-(34) are the reactive power flows for this case. (35)-

(37) are the limits for the active power generation, reactive 

power generation, and bus voltages. (38) indicates that the 

generators bus voltages are equal to the pre-contingency state 

[33]. Finally, (39)-(40) are the limits for the line flows and the 

desired loading margins.  
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Using the described equations, the risk averse strategy for the 

PCVC problem can be formulated as a single level 

optimization problem as follows: 

Max   (41) 

    (1   )     (42) 

(16)-(40) (43) 

Where      is the operating cost for the base case, using the 

forecasted parameters. 

B. Opportunity seeking PCVC 

In this strategy, it is presumed that the net load will 

decrease in real time. Hence, the decision maker can use this 

opportunity to decrease the costs of increasing the loading 

margin or recovering the system. Equations in this strategy are 

similar to the equations (17)-(40). The following equations are 

changed in this strategy (     ): 

 

  
  (1   ) (       )

 (1   )   

   ∑         (         )

    

 

 

(44) 

  
  (1   ) (             )

   ∑         (         )

    

 

(45) 

 

 

 ̂ 
  (1   )(  ̂    ̂ )

 (1   )   ̂

  ̂ ∑  ̂       ( ̂   ̂     )

    

 

 

 

(46) 

 ̂ 
    

  (1   ) ̂  

  ̂ ∑   ̂      (  ̂    ̂
    

    ) 

(47) 

Then, the opportunity seeking strategy is formulated as 

follows: 

Min   (48) 

    (1   )     (49) 

(16-17), (20)-(27), (29)-(32), (34)-(40), (44)-(47) (50) 

V. SIMULATION RESULTS 

The proposed strategies were implemented for an IEEE 

Reliability Test System [51], and tested using the CONOPT 

solver [52] run in the GAMS environments on an HP Pavilion 

Computer with a 2.1GHz processor and 4GB RAM.  

The IEEE reliability test system is composed of 32 

generating units and a 2850MW load. The data for this 

system, including cost coefficients, active and reactive power 

limitations, are taken from [51]. In order to show the effect of 

wind power penetration on the system, two wind farms with a 

capacity of 350MW were placed at buses 17 and 24, 

accounting for 25% of the total load. 20% of each load is 

assumed to participate in the demand response programs, 

while the rest of the load at each bus can be curtailed. The 

costs of active and reactive power up (down) re-dispatch for 

generating units are $25/MWh ($5/MWh) and $5/MWh 

($2/MWh) respectively. The prices of responsive loads and 

interruptible loads are changed for different scenarios. 

Initially, the optimal power flow problem is solved for the 

base case. The required loading margin is assumed to be 15% 

for this case. The active and reactive power generations for 

each bus are depicted in Fig. 3.  

The total generation cost is $66,985. All generations are re-

dispatched according to this initial state. In the next sections, 

the re-dispatch cost is calculated according to the forecasted 

values for each contingency. After obtaining the operation cost 

for the base case (    ), the RA and OS problems are solved. 

In the next parts, the risk averse and opportunity seeking 
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strategies are studied. For each case, preventive and corrective 

control actions are investigated. 

 
Fig. 3. Initial generation dispatch 

 

1. Risk-averse strategy 

 

In this case, the outage of unit 18 leads to a loading margin 

of -2.5% (with respect to the deterministic base case dispatch). 

The system has a negative loading margin, hence corrective 

control actions have to be implemented. It is assumed that, 

after a contingency, the loading margin has to be more than 

10%. Therefore, the expected active and reactive powers 

procured by different sources, for reaching the desired amount 

of loading margin for any combinations of wind generation 

and load uncertainty, have to be calculated. These power re-

dispatches are calculated for the generations obtained by 

solving the risk-averse strategy problem and considering the 

determined uncertainty budget. The re-dispatch cost for this 

case, considering the forecasted amounts, is $14,757. 

Fig. 4 shows the robustness values versus the re-dispatch 

cost, for        to   1. The robustness value shown in 

Fig. 4 is the radius, as given in (5). It shows by how much the 

uncertain variable can deviate towards the worst case 

situation, while providing the desired loading margin and 

considering the uncertainty budget ((1   )    ). This 

parameter is obtained by solving the optimization problem 

(41)-(43). Furthermore, it is obvious from Fig. 4 that the 

strategy is able to cover a larger uncertain space for a smaller 

loading margin, and for an identical uncertainty budget.  

As indicated in Fig. 4, for a re-dispatch cost of $14,884 (an 

uncertainty budget of $615), if the net load increases to 

2,448MW (17% increase) the operator will be able to provide 

the required loading margin by re-dispatching the procured 

active and reactive power resources. Additionally, for a 

loading margin of 7.5%, the net load can further increase to 

2,580MW while satisfying the required loading margin. 

Fig. 5 (a) shows the total active and reactive powers re-

dispatch for a loading margin of LM=10% and     1. Fig. 5 

(b) shows the active and reactive power demand response 

participation for this case. 

In order to demonstrate the importance of cost of responsive 

and interruptible loads for a specified amount of uncertainty 

budget (  1), and a loading margin of 10%, the robustness 

value is calculated for different costs (the cost of reactive 

power is 10% of the active power). 

 
Fig. 4. Robustness curve for unit #18 outage 

 

In Table I, the results for different costs of responsive and 

interruptible loads are given. As it can be concluded from 

Table I, by decreasing the cost of responsive loads, the 

participation of these loads increases, which results in 

increasing the robustness value. Hence, a larger portion of the 

uncertainty space can be covered by decreasing responsive 

load costs. It can be guaranteed that for different combinations 

of uncertain parameters (including wind and load), the 

required loading margin will be achieved (for a certain amount 

of uncertainty).  

 

 
Fig. 5. (a) Active and reactive generation re-dispatch for unit 18 outage, (b) 

Active and reactive demand response participation (LM=10% and      ) 
 

Case B: Bus 23 unit outages 

In this case, it is assumed that the unit at bus 23 is removed 

from the system. A robust re-dispatch is required to provide 

the required loading margin (10%) for different conditions of 

uncertainty. Similar to the previous case, the IGDT is used to 
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provide a robust dispatch and guarantee the specified loading 

margin for different combinations of wind generation and load 

in real time. The re-dispatch cost for the base case, according 

to the forecasted parameters, is $24,000. 
 

TABLE I  

COMPARISON OF PARTICIPATION AND ROBUSTNESS VALUE FOR CORRECTIVE 

CONTROL 

 

 

Robustness 

value 

Responsive 

loads active 

power (MW) 

Responsive 

loads reactive 

power (Mvar) 

DR cost=100$/MW 

IL cost=1500$/MW 
 

0.103 22.3 48.2 

DR cost=10$/MW 

IL cost=500$/MW 
 

0.139 378.5 82.4 

 

Fig. 6 illustrates the robustness values against the different 

uncertainty budgets for three different loading margins. 

Similar to the case of unit #18 outage, larger uncertainty levels 

can be handled for smaller loading margin values.  

 
Fig. 6. Robustness curve for bus #23 unit outages 

 

For a re-dispatch cost of $26,160 (additional $2,160 over 

the base case) the robustness value is close to 6%. For the 

outage of  bus  #23 unit, even if the total net load (2,150MW) 

increases to 2,279.5MW,  the system security with the desired 

loading can be provided without requiring additional 

resources. Also, for a loading margin of 5%, an additional 

$1,200 re-dispatch cost (a total re-dispatch cost of $25,200) 

permits a 22.8% deviation of the net load by procuring the 

appropriate resources. The other points in this figure illustrate 

the cost of additional re-dispatch to handle each amount of 

uncertainty. 

Fig. 7 presents the active and reactive power re-dispatches 

(LM=10%,       ) for each bus. All re-dispatches are 

below the permitted amount and can be implemented during a 

short period. 

Same as the corrective control case, to indicate the 

importance of the responsive load costs, the robustness value 

is shown in Table II (LM=10% and       ).  

The results in Table II demonstrate that, when the cost of 

responsive load decreases, the robustness value reaches higher 

values, which is equivalent to better control of the uncertain 

space. 

2. Opportunity seeker strategy  

 

In this section, an opportunity seeker strategy which allows 

the operator to benefit from an uncertain space is proposed. 

Unlike in the RA strategy, in this strategy the total cost has to 

be less than the base operating cost. 

 

 

 
Fig. 7 (a). Active and reactive generation re-dispatch for bus 23 unit outages 

(b) Active and reactive demand response participation (LM=10% and 

      ) 
 

TABLE II  

COMPARISON BETWEEN THE PARTICIPATION AND ROBUSTNESS VALUE FOR 

CORRECTIVE CONTROL 

 

 

Robustness 

value 

Responsive 

loads active 

power (MW) 

Responsive 

loads reactive 

power (Mvar) 

DR cost=100$/MW 
IL cost=1500$/MW 

 

0.08 166 41 

DR cost=25$/MW 
IL cost=750$/MW 

 

0.171 342 45.9 

 

The outage of unit 18 is studied. In this case, the operator is 

optimistic that, in real time, the deviation of wind generation 

and load will lead to a lower re-dispatch cost as compared 

with the base cost obtained for forecasted values. For this 

contingency, the results for the opportunity value versus the 

re-dispatch cost are shown in Fig. 8, for LM=10%. The 

opportunity value   is minimized according to (48)-(50). 

As illustrated in Fig. 8, if the net load decreases to 

2,021MW (6% decrease), the re-dispatch cost will be $13,872, 

which results in $885 profit. The remaining opportunity 

values, which lead to lower re-dispatch costs, are shown in 

Fig. 7. Fig. 9 shows the active and reactive powers re-dispatch 

for          and LM=10%.   
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Fig. 8. Opportuneness values for different re-dispatch costs 

 

3. Model validation and comparison with other benchmarks 

 

In this section, the results obtained from the proposed 

model for two different preventive and corrective control 

actions are validated and compared with three main 

approaches, including deterministic, Monte Carlo simulation 

(MCS), and stochastic programming.  

 
Fig. 9. Active and reactive generation re-dispatch for opportunity seeker 

strategy (LM=10% and        ) 

 

The base re-dispatch cost is obtained using the deterministic 

approach and calculated considering the forecasted amounts. 

In the Monte Carlo simulation approach, 2000 scenarios are 

generated using the Gaussian probability density function for 

wind generation and loads. Table III compares results obtained 

from the IGDT (highlighted in the table) with the three other 

approaches.  

Fig. 10 (a) indicates the distribution of re-dispatch costs for 

the bus #18 unit outages with an expected amount of $14,544, 

obtained by the MCS. The re-dispatch costs calculated by the 

IGDT are also shown. Comparing with the MCS, a decision 

can be made on how much robustness and at what expense can 

be obtained. For instance, while     1 does not result in 

additional costs,        is a completely robust solution. 

Fig. 10 (b) shows the frequency of the re-dispatch costs for 

the bus #23 unit outages. While     1 is an economic 

strategy, opting for        can be a conservative strategy 

for the operator. Indeed, this is another advantage of the 

IGDT, it allows to select the desired strategy. 

 
 

TABLE III  

COMPARISON OF THE RESULTS OBTAINED BY THE IGDT WITH OTHER 

BENCHMARKS 

 

Table III shows the results calculated by the stochastic 

programming approach for the two studied outages. Utilizing 

the normal probability density function, 1000 scenarios are 

generated and reduced to a number of scenarios. For the 

outage of unit #18, this approach leads to a re-dispatch cost of 

$18,769. Fig. 11 (a) illustrates the re-dispatch cost for each 

scenario. The outage of units at bus 23 results in a re-dispatch 

cost of $27,196 and the results are depicted in Fig. 11 (b). For 

a better comparison, the results obtained by the IGDT, for 

different values of  , are also shown in the same figure. 
As illustrated in Table III, the results obtained by the IGDT 

method have lower re-dispatch costs for     1. It is worth to 

mention that, unlike the IGDT which can be applied without 

precise static information, stochastic programming is 

dependent on generated scenarios and probability density 

functions of the uncertain variables.  

 

  
Fig. 10. Re-dispatch costs obtained by the MCS (a) unit #18 (b) bus #23 unit 

outages 

VI. CONCLUSION  

This paper proposed an information gap decision theory based 

approach for the preventive/corrective voltage control 

problem. A framework for two different strategies was 
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(b) 

 
Deterministic 

[25] 
MCS 

Stochastic 

[33] 

IGDT 

(     1) 

Unit #18 outage re-
dispatch cost ($) 

14,757 14,544 18,769 15,556 

Unit #23 outage re-
dispatch cost ($) 

24,000 24,176 27,196 26,160 

𝜎=0.1 𝜎=0.45 

𝜎=0.1 𝜎=0.35 
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presented. In the risk averse strategy, it was assumed that the 

net load increased in real time. A decision which accounted 

for the uncertain variable deviations for a given budget was 

proposed to the operator. The obtained results showed that, 

when the loading margin level increased, the level of 

uncertainty which can be covered by a given uncertainty 

budget decreased. Additional results revealed that by 

increasing the participation of responsive and interruptible 

loads, higher levels of uncertainty can be covered for a given 

level of the loading margin, for both the preventive and 

corrective control actions. 

In the opportunity seeking strategy, the decision maker 

utilized the proposed framework with the presumption that the 

net load would decrease in real time and therefore the 

operating cost could be decreased (negative profit).  

In this paper, the problem was solved using a single objective 

formulation. Nevertheless, other objective functions could be 

considered, resulting in a multi-objective framework.  

Moreover, all of the studies were formulated as a static 

framework. Procuring appropriate resources for providing the 

dynamic voltage stability of a system, facing multiple 

uncertainties, can be a great challenge for future studies. 

Utilizing the potential of other power system elements, such as 

a storage system in a multi-horizon framework, can be another 

direction for future research in this area. 

 

 Fig. 11. Re-dispatch cost obtained by the stochastic programming (a) unit #18 

outage (b) bus unit #23 outages 
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