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a b s t r a c t

The electrical energy systems suffer from several problems of operation including production of
greenhouse gas emissions and low energy efficiency in fossil fuel-based power plants as well as high
energy losses in transmission and distribution networks. Transition from the traditional centralized
power generation into distributed power generation, via distributed energy resources, is introduced as a
solution to deal with these problems. Micro-grid concept, as a cluster of distributed energy resources and
local loads, is introduced to effectively realize distributed power generation. In standalone mode, micro-
grid operator faces uncertainties which should be appropriately tackled into the operation problem
formulation. For this purpose, a new decision making framework is proposed in this paper which gua-
rantees optimal scheduling of distributed energy resources to simultaneously provide energy and
reserve. The proposed modeling framework, which is visualized through a new risk-based stochastic
approach, controls the risk of micro-grid operator in decision-making by Conditional Value at Risk
method. Numerical results demonstrates the effectiveness of the proposed framework to model the
operation problem of a standalone micro-grid under different uncertainties. Moreover, sensitivity
analysis reveals that by increasing the percentage of invoked reserve the expected total cost of micro-
grid operator increases to manage the uncertainties.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Technical merits of Micro-Grids (MGs) make them attractive to
fulfill the increasing needs for electrical energy. MGs, as clusters of
Distributed Energy Resources (DERs), could operate in standalone
or grid connected modes. Aside from significant benefits of MGs,
they introduce new uncertain parameters which in turn may affect
MG/power system performance. This paper focuses on standalone
MG operation formulation to simultaneously schedule energy and
reserve with the aim of compensating for uncertainties.

1.1. Motivation

Currently, carbon dioxide (CO2) emissions from industrial pro-
cesses and fossil fuel combustion, especially in large power plants,
produce 65% of the emissions [1]. Global warming, as an important
environmental issue, skews policy makers attention towards low-
ra).
carbon emissions energy systems to realize the goal of sustainable
development [2]. In this way, Renewable Energy Sources (RESs) are
introduced as efficient and emission-free solution in power industry
to supply the increasing demand [1]. This leads to energy saving as
conventional power plant with about 33% efficiency would be
replaced by RESs. Moreover, energy saving goal is further achievable
through RESs as the demand would be locally supplied which in
turn decreases network energy losses. Of note that, energy saving
concept reaches maturity by introducing of MG concept.

Appropriate modeling of uncertainties is of the high importance
for power system decision-makers and operators. Different ap-
proaches are used by power system decision-makers to deal with
the uncertainties of demand, market prices, and network equip-
ment failures. However, MGs, as a key players in the modern power
systems, manage DERs in the associated network to locally meet
the demand [3]. MGs operate in two different ways namely, grid-
connected and standalone modes. In the grid-connected mode,
the MG Operator (MGO) manages the effect of uncertain parame-
ters on the energy balance by exchanging energy with the main
grid. Indeed, the total operation cost of MG in grid-connectedmode
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Nomenclature

Indices and sets
j; J Index and set of generating units
t;T Index and set of time periods
u;W Index and set of scenarios
R; C; I Indices of residential, commercial, and industrial

loads, respectively

Parameters

SDN;SUP Maximum upward/downward variation of each type
of loads (%)

ε
R; εC; εI Maximum interruptible load coefficients (%)
gR;gC;gI Percentage of load consumption for providing

reserve (%)
E ;E Max/Min energy stored in the ESS (kWh)
Ei ; Ef Initial/Final energy stored in the ESS (kWh)
hCH;hDCH Charging/Discharging efficiency of the ESS
PESS Maximum charging/discharging power limits (kW)

PWT
u;t Output power of wind turbine generation in scenario

u and period t (kW)

PPVu;t Output power of solar generation in scenario u and
period t (kW)

P
DG
j ;P DG

j Maximum/Minimum output power of DG j (kW)

RRDN
j Ramp-down of DG j (kW/min)

RRUP
j Ramp-up of DG j (kW/min)

PD�RCI�Det
t Deterministic load consumption in period t (kW)

PD�RCI
u;t Probabilistic load consumption in scenario u and

period t (kW)
SRt Spinning reserve requirement in period t (kW)
lu Probability of occurrence of scenario u confidence

level
a Confidence level
b Risk-aversion parameter

CIL�RCI
t Load interruption cost in period t ($/kWh)

Cres
t Providing reserve cost in period t ($)

CDN�RCI
t Load shifting cost in period t ($/kWh)

Cj Fuel cost of DG j ($)
SUj;u;t Start-up cost of DG j in scenario u and period t ($)
SDj;u;t Shut-down cost of DG j in scenario u and period t ($)
CESS Charging/Discharging cost of the ESS ($/kWh)
rt Percentage of reserve invoking (invoked reserve

parameter) in period t (%)

Variables
ETC Expected total cost of the micro-grid ($)
CVaR Conditional value at risk ($)
hu Auxiliary non-negative variable value at risk
x Auxiliary variable value at risk

PCHu;t Charging power of the ESS in scenario u and period t
(kW)

PDCHu;t Discharging power of the ESS in scenario u and
period t (kW)

Eu;t Energy stored in the ESS in scenario u until period t
($/kWh)

PDGj;u;t Output power of DG j for supplying energy in
scenario u and period t

RDG
j;u;t Output power of DG j for supplying reserve in

scenario u and period t

PIL�RCI
t The amount of interruptible loads for supplying

energy in period t

RIL�RCI
t The amount of interruptible loads for supplying

reserve in period t

PDN�RCI
t The amount of responsive loads which shift

downward in period t

PUP�RCI
t The amount of responsive loads which shift upward

in period t

UDG
j;u;t Binary variable (¼1, if DG j is online in scenario u and

period t;¼ 0 otherwise)

XCH
u;t Binary variable (¼1, if ESS is charging in scenario u

and period t;¼ 0 otherwise)

XDCH
u;t Binary variable (¼1, if ESS is discharging in scenario u

and period t;¼ 0 otherwise)
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is minimized using a deterministic decision-making problemwhich
changes the load pattern and penetration level of RESs, see for
example [4]. To deal with uncertainties in the operation problem of
MGs, robust optimization approaches would be employed in which
optimal scheduling of DERs and exchanging energy with the main
grid are determined, see for example [5]. However, modeling
operation problem of a standalone MG considering uncertainties is
significantly different from those of grid-connected mode. In
standalone mode, MGO needs appropriate decision-making
frameworks for optimal scheduling of resources to manage un-
certainties which is the main aim of this paper.
1.2. Literature review and contributions

This sub-section aims to review recent advances in the field of
standalone MG operation. An optimal two-level approach is
introduced in Ref. [6] to simultaneously minimize the operation
costs and emission. While the early stage stands for providing an
economic operating scheme, the later tackles technical constraints
of the MG, such as voltage limits and power flow, into the problem
formulation. A real-time operation problem of an MG is formulated
by a deterministic model in Ref. [7]. Binary Particle Swarm Opti-
mization (PSO) algorithm is used to minimize energy cost and
pollutant emission and to maximize the available power of RESs.
Since the deterministic model is independent of scenarios, it suffers
from lack of control over uncertainties. Deterministic unit
commitment problem which minimizes economic cost and emis-
sion pollution without modeling uncertainties is discussed in
Ref. [8]. A double-layer, including schedule and dispatch layers,
coordinated control approach is proposed in Ref. [9] for MG energy
management. In the schedule layer, MG operation is performed in
respect of the forecasted data. Then, generated power of dis-
patchable units are determined according to the real-time data in
the dispatch layer. An optimal control scheme based on combined
dispatch strategies is developed to realize the minimal operation
cost of MG [10]. Amixed integer programming is derived in Ref. [11]
for optimal operation of a standalone DC MG, inwhich the model is
deterministic and MGO cannot control uncertain parameters and
manage risk. Amulti-objective linear programmingmethodology is
proposed in Ref. [12] to determine the operating points of various
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generating units in compliance with minimum energy cost and
greenhouse emissions. An optimal dispatch strategy is presented in
which battery and diesel fuel consumption costs are tackled into
the minimization of total operation cost [13]. Operation of a
standalone MG, consisting RESs, DGs, and ESS, is modeled by a
multi-objective optimization problem which minimizes the oper-
ation cost of the power resources while maximizes the useful
lifetime of the ESS [14]. A deterministic energy management
method is modeled for a standalone MG which maximizes the
duration of power supply under high penetration of RESs [15]. A
novel fuzzy system-grey wolf optimization based method is pre-
sented for optimal energy management as well as ESS sizing in a
standalone MG [16]. An optimal energy scheduling model which
tackles uncertainties of the output power of PV as well as demand
into problem formulation is investigated in Ref. [17]. Error of
forecasting of output power of PV and demand in the operation
problem of a standalone MG is managed by allocating reserve ca-
pacity [18]. A two-stage deterministic robust model predictive
control based approach is defined to model the operation problem
of an isolated MG [19]. A two-stage deterministic mixed integer
linear programming model is formulated for the purpose of oper-
ational as well as financial optimization of a RES-based standalone
MG [20]. A modified Tribe-PSO method is employed for managing
power of a MG in both grid-connected and standalone modes [21].
The authors of [22] built an experimental set-up of solar-hydrogen
system to validate theoretical model for operation of MGs to meet
power and hot water demand for a remote household in southern
Australia. Generally stated, operation problem of a standalone MG
is modeled as deterministic problem in Refs. [7e11,14e22] without
modeling the uncertain parameters.

A robust, in respect to wind power uncertainty, optimization
model is presented in Ref. [23] to optimize MG operation. Time
series based Autoregressive Integrated Moving Average (ARIMA)
model is used to visualize the wind power and solar power un-
certainties. The model fails to consider risk index which manages
probabilistic decision-making of risky operator.

A comprehensive analysis for a hybrid MG energy management,
consisting of Demand Response (DR) and internal power market, is
done by comparing the deterministic and probabilistic program-
ming approaches [24]. While it defines a specified constraint for
providing required reserve, optimal reserve scheduling of the re-
sources is neglected. Moreover, the risk of MGO's decision-making is
not modeled in problem. A probabilistic multi-objective problem is
used for optimal scheduling of a standalone MG considering the
uncertainties of RESs and demand [25]. A comprehensive probabi-
listic model is presented to tackle DERs, associated uncertainties and
hourly interruptible loads for a variety of costumers into MG oper-
ation problem [26]. The operation problem of a standaloneMGwith
pumped storage hydro unit is modeled using a probabilistic pro-
gramming approach [27]. A two-stage stochastic programming
approach is used for energy scheduling in a MG with DERs consid-
ering the uncertainties of RESs, load, and energy price [28]. Both
price-based and incentive-based DR strategies are utilized in the
model with the aim of obtaining the minimum operation cost as
well as optimal energy scheduling of resources. The detailed review
of so far researches is reported in Table 1. Although the recent
studies deal with operation problem of standalone MGs, there are
several immature points that should be deal with. These points are:

� In the so far researches, only the energy scheduling is modeled
for the operation problem of standalone MGs. While several
studies try to model reserve and uncertain parameters, they add
the reserve to the demand in the power balance constraint. This
in turn causes MGO increases the optimal scheduled power of
DERs rather than scheduling of reserve.
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� In the studies, the operation problem of MG is modeled using
deterministic and probabilistic approaches. In the early one, the
uncertain parameters are not mathematically modeled in the
problem and in the later, the expected of the scenarios is
considered in each time-step. Moreover, different operation
strategies, visualized by dispatchable DERs, are introduced to
cover the uncertainties. Generally, the so far researches could
not model risk of MGO decisions.

The present paper aims to overcome the above crudities by
simultaneous modeling of energy and reserve. Therefore, the main
contributions of this paper are twofold:

1) Proposing a new mathematical model in which the problem of
energy scheduling of DERs is jointly optimizedwith the problem
of reserve scheduling of the resources. Of note that reserve is
formulated to model uncertainties of equipment failures or
unpredicted events.

2) Proposing a risk-based two-stage stochastic optimization
approach to model the uncertain behavior of RESs and demand
in the operation problem of a standaloneMG and controlling the
risk level of MGO in decisions by Conditional Value at Risk
(CVaR) method. The uncertainties of the parameters are
modeled by generating different scenarios using the associated
Probability Distribution Functions (PDFs). The first-stage output,
preceding the occurrence of operation scenarios, is optimal
First Step: In
Demand consumption, required reserve, capacity of responsive l

responsive loads, scenario generation (WT and PV uncertainties ch
sources, technical and operation cost data of distr

Objective Fu
Minimizing expected total cost (cost o

Step Two: Setting CVaR index and reserve invoking parameters
- Confidence-level and risk-aversion parameters
- Percentage of reserve invoking

Step Three: First-stage decision-making (independent of scenario)

1- Energy scheduling:
- Optimal load interruption
- Optimal load shifting

Subject to:
- Demand response constraints (interruptible load and load shifting)

2- Reserve scheduling:
- Optimal load interruption

Subject to:
- interruptible load constraints

Fig. 1. Two-stage stochastic decision-making stru
contracts with loads to interrupt and shift for energy manage-
ment and interrupt for reserve management. On the other hand,
optimal scheduling of DGs and ESSs for energy purpose and
optimal dispatching of DGs for reserve purpose, followed by
occurrence of scenarios, are considered as the second-stage
decisions in real-time operation.

2. Problem description

Two main approaches are mathematically formulated to tackle
the uncertainties with known and unknown PDFs into standalone
MG operation problem. In the early one, 24000 scenarios are
generated based on normal, weibull, and irradiance distribution
models, which are used as PDFs of demand, wind speed, and solar
radiation, to model uncertainties of electricity demand and power
generation of RESs. GAMS/SCENRED package and fast-forward
scenario reduction technique are used to reduce the generated
scenarios to 15 scenarios. Each scenario consists of wind speed,
solar radiation, and load consumption data for the time period of
operation. In the later, to appropriately model the uncertainties
with unknown PDFs, such as unpredicted events, an indicated
amount of reserve is considered. The developed framework is a
risk-based two-stage stochastic optimization approach in which
the energy and reserve scheduling of DERs is optimized simulta-
neously. Details of the framework is illustrated in Fig. 1 and
described in what follows.
put Data 
oads (interruptible load and load shifting), incentive cost of 
aracterization), forecasted output power of renewable energy 

ibuted generators and energy storage system

nction:
f energy and reserve scheduling)

Step Four: Second-stage decision-making (dependent on scenario)

1- Receiving optimal decisions related to the first-stage decision-
making

2- Energy scheduling: 
- Optimal output power of distributed generators
- Optimal charging/discharging power of energy storage

Subject to:
- Distributed generators constraints (upper- and lower bound, ramp-
rate, start-up and shut-down cost)
- Energy storage constraints (upper- and lower-bound of charging/
discharging power, state of charge)

3- Reserve scheduling: 
- Optimal output power of distributed generators

Subject to:
- Distributed generators constraints (upper- and lower bound, ramp-
rate, start-up and shut-down cost)

cture for MG energy and reserve scheduling.
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Step 1 Specification of input data. The model requires several input
data, including demand consumption, technical and
economical characteristics of resources, forecasted output
power of RESs as well as generated scenarios to model the
associated uncertainties, and the required reserve.

Step 2 Setting CVaR index and reserve invoking parameters. In the
developed framework, total cost of the MG operation can be
manipulated by the risk-aversion and invoked reserve
parameters.

Step 3 First-stage decision-making. Since the MGO signs contracts
with responsive loads to curtail or shift the associated loads
in the previous day of real operation, these decisions do not
depend on realization of stochastic process and are
considered as the first-stage or here-and-now decisions.

Step 4 Second-stage decision-making. Power generation of DGs
and power charging/discharging of batteries which depends
on realization of each scenario are considered as the second-
stage or wait-and-see decisions. Moreover, interruptible
loads and DGs are considered as the two resources in the
first- and the second-stage decisions, respectively, which
can provide the required reserve for the MGO.

Of note that the decision variables of both the first- and second-
stages are determined considering the associated technical con-
straints (see Fig. 1). Objective function is formulated according to
minimization of expected total cost of energy and reserve of step 3
and step 4.
3. Problem formulation

The operation problem of the MG is formulated as the following
stochastic mathematical model:
3.1. Hypotheses

Two key assumptions are introduced in the proposed frame-
work to model operation of a standalone MG, namely:

� The same reasoning that is used in Wien Automatic System
Planning (WASP) software to formulate generation expansion
planning can be extended to formulate standalone MG opera-
tion problem. In this way, all the resources and demand, asso-
ciated with the MG, are connected to the main bus in the low
voltage distribution network. In this way, the power losses of
the low voltage network and the actual demand of the MG are
aggregated in the demand of the MG which may be forecasted
by the MGO and supplied by MG's resources. Therefore, in this
paper, grid of MG is represented as a single-bus model and the
equality constraint may be described by the balancing between
power generation and demand without considering the power
flow. This common assumption is also considered in several
references, for example [26,29e31].

� Following the same reasoning that is used in power system
operation, the amount of reserve can be determined using the
maximum capacity of generation resources or as the percentage
of the maximum amount of demand [32].
3.2. Expected total cost

The expected total cost (ETC) of MG which is used to simulta-
neously schedule energy and reserve may be formulated as:
ETC ¼
X
uεW

lu

"
CostEDG þ CostEESS þ CostEIL þ CostEDN

þCostRAV þ CostRDG þþCostRIL

#
(1)

CostEDG ¼
X
tεT

X
jεJ

�
Cj:
�
PDGj;u;t

�
þ SUj;u;t þ SDj;u;t

�
(2)

CostEESS ¼
X
tεT

CESS:
�
PCHu;t þ PDCHu;t

�
(3)

CostEIL ¼
X
tεT

CIL�RCI
t :

�
PIL�RCI
t

�
(4)

CostEDN ¼
X
tεT

CDN�RCI
t :

�
PDN�RCI
t

�
(5)

CostRAV ¼
X
tεT

Cres
t :ðSRtÞ (6)

CostRDG ¼
X
tεT

X
jεJ

Cj:
�
RDGj;u;t

�
:rt (7)

CostRIL ¼
X
tεT

CIL�RCI
t :

�
RIL�RCI
t

�
:rt (8)

In the proposed model, Eq. (1), as a stochastic model, describes
the ETC of MG to provide energy and reserve. Eqs. (2) and (7) define
costs of output power of DGs for supplying energy and reserve,
respectively. Eq. (3) shows charging and discharging cost of ESS.
Eqs. (4) and (8) explain cost of load interruption, defines by bilateral
contracts, to supply energy and reserve. Eq. (5) describes cost of
load shifting, defines by bilateral contract, to supply energy. Eq. (6)
defines fixed cost of MG to provide the required reserve which may
be invoked in each time period.

3.3. Risk management

Risk management method is employed to control undesired
effects of uncertainties. Several risk measures, including expected
shortage, variance, value-at-risk, CVaR, are introduced in the liter-
ature to make a trade-off between expected cost and variability
[31,33]. Due to the advantages of CVaR, the MGO's risk-aversion is
modeled using the CVaR in this paper. TheMGO's risk-aversionmay
influence the energy and reserve scheduling. The MGO tackles the
CVaR index into the operation problem formulation and specifies a
parametermeans risk aversion parameter (b) to control the effect of
uncertain values on the operation results in the worst scenarios as
well as to improve the results of such scenarios. In the scenario-
based stochastic optimization approach, the CVaR at the a confi-
dence level (a� CVaR) can be defined as the expected cost in the
(1� a) �100 percent of the worst scenarios which is presented as
follows [34]:

minx;hu
CVaR ¼ xþ 1

1� a

X
uεw

lu:hu (9)

TCu � x� hu � 0 cu (10)

hu � 0 cu (11)

where a is the confidence level, lu is probability of occurrence of
scenario u, TCu is the total cost of the MG in scenario u, x is the
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optimal value of VaR, hu is an auxiliary non-negative variable and
considered as the excess of cost in scenario u over x. Of note that the
excess is positive.
3.4. Objective function

The objective of the model is to minimize the summation of cost
of MG over a given time and scenarios and the CVaR value of cost
multiplied by a risk-aversion parameter (b). Therefore, one could
write the objective function as:

min ETCþ bCVaR (12)

where b represents the risk-aversion parameter. When b is equal to
zero, the MGO is a risk-neutral decision maker. The MGO becomes
more risk-averse as b increases.
3.5. Power balance constraint

Power balance constraint of (13) guarantees the balance be-
tween total generation, including the output power of DGs, wind
turbines, solar panels, discharging power of ESS (Eq. (14)), the
interruptible loads (Eq. (15)), and the loads that will be shifted
down (Eq. (16)), and total load consumption, including residential,
commercial, and industrial loads (Eq. (17)), charging power of ESS
(Eq. (14)) and the loads that will be shifted up (Eq. (18)), in period t
and for scenario u. Accordingly, power balance constraint could be
explained as:X
jεJ

PDGj;u;t þ PWT
u;t þ PPVu;t þ PIL�RCI

t þ PDN�RCI
t

¼ PESSu;t þ PD�RCI
u;t þ PUP�RCI

t cu; t (13)

where

PESSu;t ¼ PCHu;t � PDCHu;t cu; t (14)

PIL�RCI
t ¼ PIL�R

t þ PIL�C
t þ PIL�I

t ct (15)

PDN�RCI
t ¼ PDN�R

t þ PDN�C
t þ PDN�I

t ct (16)

PD�RCI
u;t ¼ PD�R

u;t þ PD�C
u;t þ PD�I

u;t cu; t (17)

PUP�RCI
t ¼ PUP�R

t þ PUP�C
t þ PUP�I

t ct (18)
3.6. Dispatchable distributed generation unit constraints

The operational modeling of DGs should be done according to:

� Output power constraints: Eqs. (19) and (20) describe the upper
and lower bounds of DGs output power (UDG

j;u;t , as a binary var-
iable, specifies the operating state of DGs; 1 shows that the
respective DG is on and 0 stands for vice versa). Furthermore, Eq.
(21) explains the limitations of DGs for providing the required
reserve.

PDGj;u;t þ RDGj;u;t � P
DG
j :UDG

j;u;t cj;u; t (19)
UDG
j;u;t : P

DG
j � PDGj;u;t cj;u; t (20)

0 � RDGj;u;t cj;u; t (21)
� Ramp rate constraints: Eq. (22) defines the dynamic behavior of
DGs in compliance with ramp rate; Eq. (23) affects increasing of
output power of DGs to provide required reserve.

�RRDNj � PDGj;u;t � PDGj;u;t�1 � RRUPj cj;u; t (22)

RDGj;u;t � RRUPj cj;u; t (23)

3.7. Energy storage system constraints

The following equations describe the operational constraints of
ESS [26]:

� Power charge and discharge constraints: Eqs. (24) and (25)
explain the lower and upper bounds of charging/discharging
process.

0 � PCHu;t � PESS : X
CH
u;t cu; t (24)

0 � PDCHu;t � PESS : X
DCH
u;t cu; t (25)
� Energy constraints: Eqs. (26) and (27) define the dynamic
behavior of ESS during time interval of interest and, the mini-
mum/maximum stored energy in ESS, respectively.

Eu;tþ1 ¼ Eu;t þ
�
PCHu;t : hCH

�
�
 
PDCHu;t

hDCH

!
cu; t < T (26)

E � Eu;t � E cu; t (27)
� Initial and final stored energy in energy storage: Eq. (28) reveals
that the charging and discharging of ESS should be determined
in such a way that the initial and final stored energy are equal.

Eu;i ¼ Eu;f ¼ 0:3� �E� cu; i ¼ 1; f ¼ 24 (28)
� Coordination of charging and discharging operation of energy
storage: Eq. (29) assures that the charging and discharging
process of the ESS does not happen simultaneously.

XCH
u;t þ XDCH

u;t � 1 cu; t (29)

At each period t, the ESS can operate in both charging and dis-
charging modes. Therefore, the coordination rule is governed by

the binary variables XCH
u;t and XDCH

u;t .

3.8. Interruptible load constraints

The MG operation problem, including bilateral contracts with
each type of loads (residential, commercial, and industrial) and in
the form of incentive in the first-stage decision-making, aims to
supply energy and reserve in period t. The constraints of the
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interruptible loads are described as:

0 � PIL�R
t þ RIL�R

t � ε
R: PD�R�Det

t ct (30)

0 � PIL�C
t þ RIL�C

t � ε
C :PD�C�Det

t ct (31)

0 � PIL�I
t þ RIL�I

t � ε
I :PD�I�Det

t ct (32)
3.9. Load shifting constraints

Another mechanism to realize demand response is load shifting
from peak-load time to low-load time to flatten the load profile.
This mechanism, which could be visualized through a bilateral
contracts, would be formulated as an incentive in the first-stage
decision-making of the proposed model. The associated con-
straints related to residential, commercial, and industrial loads are
given as:

0 � PDN�R
t � SDN�R:PD�R�Det

t ct (33)

0 � PDN�C
t � SDN�C :PD�C�Det

t ct (34)

0 � PDN�I
t � SDN�I:PD�I�Det

t ct (35)

0 � PUP�R
t � SUP�R:PD�R�Det

t ct (36)

0 � PUP�C
t � SUP�C :PD�C�Det

t ct (37)

0 � PUP�I
t � SUP�I:PD�I�Det

t ct (38)

X
tεT

PDN�R
t ¼

X
tεT

PUP�R
t (39)

X
tεT

PDN�C
t ¼

X
tεT

PUP�C
t (40)

X
tεT

PDN�I
t ¼

X
tεT

PUP�I
t (41)

Eqs. (33)e(38) describe the upper and lower bounds of the load
shifting which should be shifted down and up during the time in-
terval of interest, respectively. Eqs. (39)e(41) are formulated to
control load consumptions over the whole time period, e.g., 24 h.
Indeed, these constraints ensure the load shifting while maintain
the total load consumption at a certain level.
3.10. Reserve scheduling constraints

In grid-connected mode, MG does not require reserve to remain
secure when faces with contingencies. However, for a standalone
MG, an imbalance between the production and consumptionwould
be compensated by the scheduled reserve. The required reserve is
also determined based on the percentage of load. Moreover, the
probability of occurrence of disturbance in the MG and the asso-
ciated impacts on the amount of invoked reserve are modeled
through the invoked reserve parameter in the MGO's decisions. The
constraints of the dedicated reserve for MG operation problem are:
RRt ¼ gR: PD�R�Det
t ct (42)

RCt ¼ gC : PD�C�Det
t ct (43)

RIt ¼ gI: PD�I�Det
t ct (44)

SRt ¼ RRt þ RCt þ RIt ct (45)

X
j2J

RDGj;u;t þ RIL�RCI
t � SRt cu; t (46)

Eqs. (42)e(44) are related to the amount of reserve that is
defined as a percentage of the deterministic load. Eq. (45) explains
the total reserve which is provided by the residential, commercial,
and industrial loads. Eq. (46) represents the total interruptible loads
and output power of the committed DGs to provide reserve (SRt) in
period t and for scenario u.

3.11. Renewable energy sources modeling

� Wind Turbine: The output power of a wind turbine has uncer-
tain behavior and depends on wind speed. The output power of
wind turbine defines as [26,30]:

PWT
t;u ¼

8>><
>>:

0 0 � Vt;u � Vci

aV3
t;u þ bV2

t;u þ cVt;u þ d Vci � Vt;u � Vr
Pr Vr � Vt;u � Vco
0 Vt;u � Vco

(47)

where Pr is the rated output power of wind turbine; Vt;u, Vci, Vr , and
Vco are the forecasted wind speed, cut-in, rated, and cut-out wind
speeds, respectively; and a, b, c, and d are constant parameters of
the wind turbine power curve.

� Solar Panel: The output power of solar panel depends on tem-
perature and irradiance. The output power of solar panel defines
as [35]:

PPVt;u ¼ PSTC :
KAC
t;u

KSTC
:
�
1þ k

�
Tet;u � TSTC

��
(48)

where PPVt;u is the output power of solar panel at irradiance KAC
t;u; PSTC

is the maximum output power under standard test conditions; KSTC
describes the irradiance under standard test conditions; TSTC and
Tet;u describe the standard temperature and cell temperature,
respectively; and k is a temperature coefficient.

The proposed risk-based stochastic mathematical optimization
problem is modeled as a Mixed-Integer Linear Program (MILP). The
model statistics are consisting of 34480 single equations, 25189
single variables, and 13680 discrete variables. The model is
implemented in GAMS environment and solved by CPLEX12 solver
on a 3.2 GHz Intel Core i7 processor based on a 64-bit windows 7
system with 6 GB RAM.

4. Numerical studies

This section begins with a sub-section devoted to specification
of input data, will be continued by analysis of MGO decision-
making framework and will be finalized by analysis of the impact
of the risk-aversion and invoked reserve parameters on the deci-
sion variables of the MGO.



Table 2
Dispatchable unit parameters.

Controllable units PmaxðkWÞ PminðkWÞ Marginal cost ($/kWh) Shut-Down cost ($/kWh) Start-Up cost ($/kWh) Ramp-Rate (kW/h)

1 410 100 0.152 2.75 5.5 200
2 410 100 0.153 2.5 5 200
3 270 50 0.166 2.25 4.5 120
4 270 50 0.165 2.3 4.6 120
5 140 25 0.185 4 8 70
6 140 25 0.187 3.75 7.5 70
7 90 20 0.267 1.8 3.6 50
8 90 20 0.269 1.75 3.5 50
9 65 15 0.297 1.4 2.8 40
10 65 15 0.299 1.42 2.85 40
11 45 10 0.246 1 2 30
12 45 10 0.267 1.02 2.05 30
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Fig. 4. Forecasted solar panel output power.
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4.1. Input data

Efficiency of the proposed model is investigated on a typical MG
[36] with 12 dispatchable DGs (2.04MW). DGs parameters are
given in Table 2. Also, wind turbines with capacity of 0.56MW,
photovoltaic arrays with maximum power of 1.44MWas well as an
ESS with capacity of 1500 kWh are considered in the MG [26,36].
Load consumptions of the MG, including residential, commercial,
and industrial demands, are shown in Fig. 2. The hourly output
power of eachwind turbine and solar panel are shown in Figs. 3 and
4, respectively. The ESS features, maximum load interruption,
maximum load shifting, and percentage of the load consumption,
defines as the required reserve, are given in Tables 3 and 4. More-
over, the probability of occurrence of 15 scenarios which are used to
model the uncertain behavior of wind speed, solar radiation, and
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Fig. 2. Forecasted load consumption profile.
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Fig. 3. Forecasted wind turbines output power.

Table 3
Characteristics of the ESS.

PESSðkWÞ SOC ðkWhÞ SOCðkWhÞ hCH hDCH CESSð$=kWhÞ

400 300 1500 0.9 0.9 0.54

Table 4
The load consumption factors for determining load interruption, load shifting, and
reserve.

gR gC gI SDN�R SDN�C SDN�I

10% 10% 10% 5% 5% 10%

SUP�R SUP�C SUP�I
ε
R

ε
C

ε
I

5% 5% 10% 20% 10% 10%

Table 5
Probability of occurrence of scenarios in decision-making problem.

Number of scenario 1 2 3 4 5
Probability of scenario 0.061 0.049 0.047 0.091 0.051

Number of scenario 6 7 8 9 10
Probability of scenario 0.085 0.077 0.065 0.065 0.064

Number of scenario 11 12 13 14 15
Probability of scenario 0.074 0.087 0.067 0.063 0.054
demand are given in Table 5.
The costs of the load interruption and load shifting are shown in

Figs. 5 and 6, respectively [26,37].
4.2. Results

The total operation cost of the MG in each scenario is given in
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Table 6
The total cost of the MG in each scenario.

Number of scenario 1 2 3 4 5
Total Cost ($) 8054.502 7989.446 8728.921 8595.192 7861.097

Number of scenario 6 7 8 9 10
Total Cost ($) 7362.224 8197.298 8328.930 8427.406 8032.747

Number of scenario 11 12 13 14 15
Total Cost ($) 8147.930 8819.463 7966.576 8728.921 7842.206
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Table 6. In addition, the operation results of the MG for 24 time
steps (e.g., 24 h), for the first scenario (u ¼ 1) with risk-aversion
parameter equal to 0.5, are also presented in the table. The value
of a is 0.85. It means that theMGO trusts to 85% of scenarios and try
to manage the remaining scenarios which are considered as the
worst scenarios. Contribution of each power resources in supplying
the load consumptions is shown in Fig. 7. As the operation cost of
RESs is zero, considerable amount of RESs dispatched to supply load
consumptions. Surplus power of RESs is delivered to the ESS at low-
load hours. As the maximum dispatchable power of DGs is less than
the load consumptions at hours 18e23, responsive loads and ESSs
are committed to meet demand at peak load hours. Output power
of DGs as well as the amount of interrupted loads, which provide
reserve for the first scenario and for the probability of invoking 50%
of the scheduled reserve, are shown in Fig. 8. As DGs are committed
to supply the energy, load interruption is employed to supply
reserve in hours 17e23.

� First-stage decision variables (independent of scenario)

The contribution of each type of responsive loads, in compliance
with the bilateral contracts between the MGO and the loads, to
meet a portion of the energy and reserve are illustrated in Figs. 9
and 10. Concurrency of peak power demand with low output po-
wer of RESs in hours 17e23 justifies the maximum load interrup-
tion and load shifting in the period. The MGO specifies contribution
of each type of responsive loads according to the related load
interruption and load shifting cost (Figs. 5 and 6). Accordingly, the
residential loads have the highest priority to be interrupted and
shifted down. While, at hours 17e22, the industrial loads have the
lowest contribution due to the high load interruption cost, at hour
23, industrial loads play an import role in DR program due to the
low load interruption cost.

� Second-stage decision-variables (dependent on scenario): the
first scenario

Results of the second-stage decision-variables, for the first
scenario, are shown in Figs. 11 and 12. Fig. 11 shows the charging/
discharging power and energy of the ESS. It is clear that the ESS is
charged in low-load hours and committed to supply energy in
peak-load hours.

Fig. 12 shows states of dispatched and non-dispatched DGs
during time interval of interest. Of note that, RESs has the higher
priority in decision-making of the MGO, as the DGs are accompa-
nied with operation costs, fuel consumption cost, start-up and
shut-down costs.

4.3. Sensitivity analysis

The ETC of the MG and MGO decisions are affected from the
modeling of the problem and the associated parameters. Accord-
ingly, a sensitivity analysis is performed to assess effects of math-
ematical model parameters, including percentage of reserve
invoking, risk-aversion parameter, and percentage of load shifting,
on the ETC. Results of the sensitivity analysis are shown in
Figs. 13e17 and Table 7.

Fig. 13 reveals that by increasing the invoked reserve parameter,
the costs of DGs and interruptible loads increase, which in turn
increase the ETC. Therefore, the invoked reserve may affect MGO's
decisions regarding scheduling of the energy and the reserve.

On the other hand, Fig. 14 shows that by increasing the invoked
reserve parameter the DGs output power increase and the amount
of load interruption decrease. This could be justified through the
fact that the cost of load interruption is greater than those of DGs
and the cost of probabilistic reserve invoking is included in the
objective function. Therefore, using the interruptible loads to pro-
vide reserve, specifically for peak-load hours, increases the cost of
the MG.

Fig. 15 represents the appraisal of the ETC versus CVaR for
different values of risk-aversion parameter. It can be observed that
the ETC increases and CVaR decreases as the risk-aversion param-
eter increases. In other words, the risk-averse operator accepts
more ETC to enhance the expected cost of the worst scenarios and
vice-versa for the risky operator.

Fig. 16 represents the trend of the MGO behavior, in first-stage
and second-stage decisions, in response to increasing risk-
aversion parameter. The results show that a risky operator relies,
with the aim of achieving the lowest ETC, on the second-stage
decisions. On the other hand, a risk-averse operator plays accord-
ing to the first-stage decisions to control/avoid risk. This means that
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reliance on the first-stage decisions makes the ETC to increase
while the CVaR declines. On the other hand, reliance on the second-
stage decisions makes CVaR or the expected cost in the (1� a)
�100 percent of the worst scenarios to increase.
Table 7 demonstrates the impacts of the risk-aversion and the

invoked reserve parameters on the MGO's decisions. Fig. 14 reveals
that by increasing the invoked reserve parameter, the first-stage
decision, which meets a portion of the reserve, decreases. The re-
sults also show that by increasing the risk-aversion parameter, the
output power of DGs as well as the interrupted loads, as the first-
stage decisions increase. For the invoked reserve parameter of
100% and the risk-aversion parameter of 0.3, the amount of load
interruption for supplying a portion of the energy decreases as it
may be allocated to the scheduled reserve.

Fig. 17 shows that shifting the load consumptions from peak-
load hours to low-load hours decreases the ETC. Moreover, the
demand profile is more flat in comparison with the case that the
load shifting approach is neglected. Therefore, DSM method is a
suitable way to decrease the operation cost of MGs.

5. Conclusions

In this paper, a new approach is proposed to tackle the uncertain
parameters into the operation of standalone MGs formulation.
Indeed, uncertainties of equipment failures or unpredicted events
are modeled by a specified reserve capacity which in turn leads to
simultaneous scheduling of energy and reserve of DERs. Moreover,
uncertain behavior of RESs and demand are modeled through
generating different scenarios in the operation problem of MGO
which could be dealt by a risk-based two-stage stochastic pro-
gramming approach. Numerical results show that coordination of
DERs and responsive loads decreases the ETC and guarantees the
power balance constraint. Moreover, the percentage of invoked
reserve has significant impact on the MGO's decisions to use
various types of DERs to schedule the energy and reserve. Results
show that by increasing the percentage of invoked reserve, the
output power of DGs and the amount of interrupted loads, increase.

The results of sensitivity analysis reveal that the MGO de-
termines the best decisions in compliance with the first- and
second-stages to simultaneously schedule energy and reserve.
Moreover, the results show that decisions of the risky operator,
considering uncertainties, increase the difference between the
worst and the best scenarios. On the other hand, the risk-averse
operator increases the amount of interruptible loads and shifted
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Table 7
Sensitivity of the MGO's first- and second-stage decision-making to the risk-aversion and reserve invoking parameters (First scenario).

Percentage of reserve invoking (rt ) Reserve scheduling Energy scheduling

P
t
RIL�RCI
t

P
t
RDG
u;t

P
t
ðPIL�RCI

t þ PDN�RCI
t Þ P

t
ðPDGu;t þ PDCHu;t Þ

b ¼ 0 b ¼ 0:3 b ¼ 1 b ¼ 0 b ¼ 0:3 b ¼ 1 b ¼ 0 b ¼ 0:3 b ¼ 1 b ¼ 0 b ¼ 0:3 b ¼ 1

10% 1678.19 1666.90 1682.32 2485.21 2496.50 2481.08 980.26 984.70 1108.93 29600.45 29590.53 29476.17
30% 1536.06 1536.06 1536.06 2627.35 2627.35 2627.35 949.52 966.78 973.04 29713.73 29675.14 29666.20
70% 1251.39 1342.38 1332.32 2912.02 2821.03 2831.09 978.92 996.18 1024.285 29950.48 29811.02 29776.33
100% 177.07 304.09 151.85 3986.33 3859.32 4011.56 2022.71 1840.75 2074.03 28914.56 29091.94 28735.48
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loads to decrease the difference between the worst and the best
scenarios. This in turn leads to a lower CVaR.

Several aspects of the MG operation problem, including plan-
ning of standalone MGs in presence of uncertainties and modeling
the cooperation between several MGs through clearing local energy
and reserve markets deserve further investigation.
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