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Abstract We have analysed the output pulse characteristics of semiconductor optical
amplifier (SOA). It is shown that they can be modified due to the variation of input parame-
ters, such as, gain, input pulsewidth, input pulse energy and effects imposed by the medium.
Therefore, the influence of these parameters are analysed on the output pulse shape, spec-
trum, chirp and pulsewidth. We have used the nonlinear propagation equation taking into
account the gain spectrum dynamics, gain saturation which depends on carrier depletion,
carrier heating, spectral hole-burning, group velocity dispersion, self-phase modulation and
two photon absorption. We have used the finite-difference beam propagation method to simu-
late the wave evolution both in time and spectral domain in the SOA. We have also simulated
the four-wave mixing characteristics between pulses for various input pulses. An accurate
output pulse shape can be achieved by controlling the mentioned parameters. To the authors
knowledge, pulse shaping in co-propagation regime due to medium effect and input pulse
shapes in presence of all nonlinear effects relevant to picosecond regime have been studied
comprehensively, for the first time in this work.

Keywords Semiconductor optical amplifier · Finite-difference beam propagation
method · Nonlinear effects · Four-wave mixing · Pulse shaping

1 Introduction

Currently, semiconductor optical amplifiers (SOAs) have significant practical interest in data
communication applications, because of their small size, high optical gain, low input power
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requirement, faster response time and large bandwidth (Aghajanpour et al. 2009; Rafailov
et al. 2003; Razaghi et al. 2009a,b). Nonlinear effects are the basis of many schemes in
ultrahigh-speed optical communication systems and devices, such as, all-optical modulators,
demultiplexers and 3R regenerators that require very fast dynamics in fibre and semiconduc-
tor devices. SOA is one of the fundamental parts of the large-scale integration and nonlinear
effects play an important role in pulse shaping process in it (Razaghi et al. 2009a,b).

The main objective of paper is to investigate, how the medium internal loss, input pulse-
width and input energy affect the characteristics of the SOA’s output pulse. To reach our
goal, we have numerically simulated the optical wave propagation in the SOA. The beam
propagation method (BPM) is widely used for the analysis of the field distribution in optical
waveguides and optical pulse propagation in fibers (Agrawal and Olsson 1989). Based on
the simulation time and results, we used the FD-BPM, because of short convergence time
and excellent accuracy of the results (Razaghi et al. 2009a,b; Agrawal and Olsson 1989;
Fernandez et al. 2006).

This paper is organized as follow; Sect. 1 is Introduction, Sect. 2 is Theory of the model,
the equations which govern the dynamics of the amplification process, Sect. 3 is Simulation
Results and Discussion and finally Conclusions are in Sect. 4.

2 Theory of the model

The model we have used is based on modified nonlinear Schrödinger equation, which explains
the propagation of optical pulses in the SOA’s medium (Das et al. 2000).
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where, V (z, τ ) is the complex envelope function of an optical pulse. The definitions of some
parameters in the equation are as follow:
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where, τ = t − z/vg is the frame of local time which propagates with the group velocity of
the optical pulse at central frequency. The slowly varying envelope function approximation
is used in Eq. (1), where the temporal change of the complex envelope function is very slow
compared with the cycle of an optical field. |V (z, τ )|2 represents the optical power of an
optical pulse, β2 is the group velocity dispersion (GVD), γ is linear loss, γ2p is the two-pho-
ton absorption coefficient, b2(= ω0n2/cA) is the instantaneous self-phase modulation term
due to the Kerr effect, n2 is an instantaneous nonlinear refractive index, ω0(= 2π f0) is the
center angular frequency of the pulse, c is the velocity of light in vacuum, A (= wd/
)

is the effective area (d and w are the thickness and width of the active region, respectively,
and 
 is the confinement factor). gN (τ ) is the saturated gain due to carrier depletion, g0 is
the linear gain, Esat is the saturation energy, τs is the carrier lifetime, f (τ ) is the spectral
hole-burning function, Pshb is the spectral hole-burning saturation power, τshb is the spectral
hole-burning relaxation time, αN and αT are the linewidth enhancement factor associated
with the gain changes due to the carrier depletion and carrier heating, respectively. �gT (τ )

is the resulting gain change due to the carrier heating and two-photon absorption, u(s) is the
unit step function, τch is the carrier heating relaxation time, h1 is the contribution of stimu-
lated emission and free-carrier absorption to the carrier heating gain reduction, and h2 is the
contribution of two-photon absorption. Finally, A1 and A2 are the slope and the curvature of
the linear gain at ω0, respectively, while B1 and B2 are constants describing the changes in
these quantities with saturation (Das et al. 2000; Hong et al. 1992).

As our model includes the dynamic gain change terms, i.e. the first- and second-order gain
spectrum terms which are the last two terms of the right side in Eq. (1), we cannot separate
the linear propagation term (GVD term) and phase compensation terms (other than GVD,
first- and second-order gain spectrum terms). Hence, we have used the finite difference beam
propagation method (FD-BPM) (Conte and de Boor 1981). If we replace the time derivative
terms of Eq. (1) by the central-difference approximation Eq. (8) and integrate Eq. (1) with
the small propagation step �z, we obtain the tridiagonal simultaneous matrix Eq. (9),

∂

∂τ
Vk = Vk+1 − Vk−1

2�τ
,

∂2

∂τ 2 Vk = Vk+1 − 2Vk + Vk−1

�τ 2 (8)

−ak(z + �z)Vk−1(z + �z) + {1 − bk(z + �z)} Vk(z + �z)

−ck(z + �z)Vk+1(z + �z)

= ak(z)Vk−1(z) + {1 + bk(z)} Vk(z) + ck(z)Vk+1(z) (9)

where, Vk = V (τk), Vk+1 = V (τk + �τ), Vk−1 = V (τk − �τ) and k = 1, 2, 3, . . . , n.

ak(z) = �z

2

[
iβ2

2�τ 2 + i
1

4�τ

∂g(τ, ω, z)

∂ω

∣∣∣∣
ω0,τk

− 1

4�τ 2

∂2g(τ, ω, z)

∂ω2

∣∣∣∣
ω0,τk

]
(10)

bk(z) = −�z

2

[
iβ2

�τ 2 + γ

2
+

(γ2p

2
+ ib2

)
|Vk(z)|2 − 1

2
gN (τk, ω0, z) (1 + iαN )

−1

2
gN (τk, ω0, z) (1 + iαT ) − 1

2�τ 2

∂2g(τ, ω, z)

∂ω2

∣∣∣∣
ω0,τk

]
(11)

123



732 S. R. Hosseini et al.

-3 -2 -1 0 1 2 3
0

2

4

6

8

10

12

14
 P

ow
er

 (
W

) 

α
int

 = 0 

α
int

 = 1000 (1/m)

α
int

 = 2000 (1/m)

α
int

 = 3000 (1/m)

α
int

 = 4000 (1/m)

α
int

 = 5000 (1/m)

G
0
 = 30 dB

E
in

 = 1pJ

τ
0
 /τ

s
 =0.01

-3 -2 -1 0 1 2 3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

τ /τ
0

τ /τ
0

 P
ow

er
 (

W
)

α
int

 = 0 (1/m)

α
int

 = 1000 (1/m)

α
int

 = 2000 (1/m)

α
int

 = 3000 (1/m)

α
int

 = 4000 (1/m)

α
int

 = 5000 (1/m)

G
0
 = 30 dB

τ
0
 /τ

s
=1

E
in

 = 1pJ

(a) (b)

Fig. 1 The output pulse shape for several values of medium loss, for this case, the Gaussian input pulse
energy and width are: a Ein = 1 pJ, τ0/τs = 0.01 and b Ein = 1 pJ, τ0/τs = 1. Output power decreases
by increasing the internal losses
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where, �τ is the sampling time and n is the number of sampling. If we know Vk(z),
(k = 1, 2, 3, . . . , n) at position z, we can calculate Vk(z + �z) at position z + �z which is
the propagation of a step �z from position z, by using Eq. (9). It is not possible to directly cal-
culate Eq. (9) because it is necessary to calculate the left-side terms ak(z + �z), bk(z + �z)
and ck(z + �z) of Eq. (10) from the unknown Vk(z + �z). Therefore, we have initially
defined ak(z + �z) ≡ ak(z), bk(z + �z) ≡ bk(z) and ck(z + �z) ≡ ck(z) and obtained
V (0)

k (z + �z), as the zeroth order approximation of Vk(z + �z) by using Eq. (9). Then,

we have substituted V (0)
k (z + �z) in Eq. (9) and obtained V (1)

k (z + �z) as the first-order
approximation of Vk(z +�z) and finally obtained an accurate simulation results by iteration
(Das et al. 2000).

3 Results and discussion

We have used the parameters of a bulk SOA (AlGaAs/GaAs, double heterostructure) with a
wavelength of 0.86 µm in our simulation. The parameters are listed in Table 1 (Das et al.
2000). The following results are achieved, when the input pulses have sech2 form and they
are Fourier transform limited. The simulation results are verified by comparison with previ-
ously published works (Razaghi et al. 2009a). G0 = exp (g0 L) is an unsaturated single-pass
amplifier gain, which is usually between 0 and 40 dB (Agrawal and Olsson 1989).

Figure 1 shows the output pulse shapes for several values of medium internal loss: (a)
Ein = 1 pJ, τ0/τs = 0.01 and (b) Ein = 1 pJ, τ0/τs = 1. It has shown clearly that the tem-
poral output pulse shapes in Fig. 1a are more asymmetric and compressed further, which is
due to the effect of self-phase modulation (SPM). When the input pulsewidth is very shorter
than the carrier lifetime, the leading edge of the pulse saturates the amplifier and the trailing
edge experiences a lower gain, so the pulse shape becomes asymmetric. But in Fig. 1b, the
input pulsewidth is equal to carrier lifetime. In this case, the trailing edge experiences approx-
imately comparable gain to the leading edge and the pulse shape becomes more symmetric
and broadened. Furthermore, when the internal loss of the SOA is increased, the output pulse
power is decreased. But this relation is not linear. It has shown that the higher internal loss,
leads to more symmetric output pulse shape. This is because the propagated pulse experiences
lower influence by the saturation phenomena.
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Table 1 List of parameters used in simulation Das et al. 2000

Symbol Quantity Value

L SOA length 500 µm

Ar Effective area 5 µm2

fo Center frequency of the pulse 349 THz

β2 Group velocity dispersion 0.05 ps2cm−1

Esat Saturation energy 80 pJ

αN Linewidth enhancement factor due to the carrier depletion 3.1

αr Linewidth enhancement factor due to the carrier heating 2.0

h1 The contribution of stimulated emis-
sion and free carrier absorption to the
carrier heating gain reduction

0.13 cm−1pJ−1

h2 The contribution of two photon absorption 126 fs cm−1pJ−2

τs Carrier lifetime 200 ps

τch Carrier heating relaxation time 700 fs

τshb Spectral -hole burning relaxation time 60 fs

Pshb Spectral -hole burning relaxation power 28.3 W

γ Linear loss 11.5 cm−1

n2 Instantaneous nonlinear Kerr effect −0.70 cm2 TW−1

γ2p Two photon absorption coefficient 1.1 cm−1 W−2

A1 0.15 fs µm1

A2 Parameters describing second order Taylor −80 fs

B1 Expansion of the dynamically gain spectrum −60 fs2 µm1

B2 0 fs2

Figure 2 shows the normalized spectrum of the output pulse shapes: (a) normalized spec-
trum corresponding to the pulse shapes shown in Fig. 1a, b normalized spectrum correspond-
ing to the pulse shapes shown in Fig. 1b. It has shown that the output spectrum widths are
broadened due to the increase of input pulsewidths. This effect has the same explanation
described before, and it is mainly due to SPM. The oscillatory structures in the pulse spectra
which is obvious in Fig. 2a, b, results from interference phenomena that is common to SPM
in all nonlinear media (Agrawal and Olsson 1989). Moreover, the medium loss significantly
shifts the spectrum (e.g. in the case of Ein = 1 pJ, τ0/τs = 0.01, there is 100 GHz shift for
αint = 0 to αint = 5000 (1/m)).

Figure 3 shows the effect of input pulse and medium loss on the output pulse chirp
(�ν = −1/2π×∂�/∂t) (Agrawal and Olsson 1989). The output chirp imposed by SOA
is shown for: (a) Ein = 1 pJ, τ0/τs = 0.01 and (b) Ein = 1 pJ, τ0/τs = 1. Output chirp
decreases for higher medium losses. It has shown in Fig. 3a, for picoseconds pulses, due to
the effects of carrier depletion, negative chirp imposed to the entire amplified pulse. As the
pulsewidth increases to tens of picoseconds negative chirp only imposed on the leading edge
of the amplified pulse, but the trailing edge experiences positive chirp. This is because the
gain can recover to its initial value.

In the following, we will study the width of output pulse. Figure. 4 shows: (a) the FWHM
of output pulses for different values of unsaturated single pass gain (G0) and (b): Normalized
FWHM of the output pulses for different values of input pulse energies. It is shown that, when
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Fig. 2 The normalised output pulse spectrum corresponding to the pulse shapes that shown in Fig. 1. a Nor-
malized spectrum corresponding to the pulse shapes shown in Fig. 1a. b Normalized spectrum corresponding
to the pulse shapes shown in Fig. 1b. Medium loss causes a blue shift in spectrum
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Fig. 3 The output pulse chirp for variety of medium loss values in the case of Gaussian input pulse. The
energy and width of input pulse are : a Ein = 1 pJ, τ0/τs = 0.01 and b Ein = 1 pJ, τ0/τs = 1. Output chirp
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Fig. 4 The output pulse’s FWHM, a output pulse FWHM for variety of medium loss values, the energy and
width of the input pulse are, Ein = 1 pJ, τ0/τs = 1. b The Normalized FWHM of the output pulse for variety
of input pulse widths values when the input pulse is Gaussian

the SOA’s internal loss increases then the FWHM decreases and as the input pulse energy
increased, the amplified output pulse broadened more. This is due to the stronger carrier
depletion occurred by higher input energy. Furthermore, the output pulses FWHM variations
increased due to the wider input pulses. For this case, carriers have enough time to recover the
population inversion in conduction band then the output pulse energy and FWHM increased
more.

In the following, we analyze the effect of input pulses on the FWM signal. FWM signal
pulse has many applications in optical communication systems. Fast and high conversion
efficiency converter is a fundamental requirement for future optical communication systems.
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Fig. 5 a The waveform of generated FWM pulse for several values of input pump pulse energies. b The
generated FWM signal spectrum for the waveforms that shown in a

An analytical approach is essential in order to design a high efficiency and high-speed FWM
conversion devices and clarify the fast FWM interaction processes. When two optical pulses
with different central frequencies of f p(pump) and fq (probe) are injected into the SOA
simultaneously, the FWM signal is generated in the SOA at a frequency of 2 f p − fq (Das
et al. 2000). The input probe pulse energy is kept constant at 100 fJ. Figure 5 shows the
temporal waveform and spectrum of the FWM signal for several values of input pump pulse
energies.

It has shown clearly that the energy of the generated FWM signal increases and its shape
becomes wider when the input pump pulse energy increases. The FWM signal intensity is
proportional to I 2

P Iq . Here, IP is the pump intensity and Iq is the probe intensity (Das et al.
2000). Therefore, when the energy of the input pump pulse increases, the FWM signal shape
becomes more asymmetric and the spectrum becomes oscillatory due to gain saturation. In
the following, we analyze the generated FWM signal characteristics.

Figure 6 illustrates the characteristics of the generated FWM signal that shown in Fig. 5a.
It has shown clearly in Fig. 6a that the peak of the FWM pulse experienced a greater shift
when the input pump pulse energy increased. This phenomenon is mainly caused by the SPM.
As it was clear in Fig. 6b, the FWHM of the FWM signal increases due to the increment
of input pump pulse energy. But, for the higher input pump energies carrier depletion effect
limit the increasing rate. It is shown in Fig. 6c, the energy of the FWM signal is increasing
when the input pump pulse energy is increased. The FWM energy is saturated about 0.03 pJ
(or 30 fJ). This comes from gain saturation phenomenon that occurs in SOA for higher input
energy regime. In Fig. 6c, we also found that, for such probe pulse, the maximum FWM
signal energy is about 0.03 pJ and it cannot be increased by increasing the input pump pulse
energy furthermore.

4 Conclusion

In this work, the effects of gain, input pulsewidth, input pulse energy and SOA internal loss are
analysed in detail on the output pulse shapes of the SOA. It has shown that the output power
decreased when internal loss increased and its shape became broader for a wider input pulse-
width. The output spectrum has experienced a blue shift when the internal loss is increased.
It also became broader for the wider input pulsewidth. Furthermore, the chirp imposed to the
output pulse was negative for a shorter input pulsewidth and decreased when the internal loss
increased. But, for wider input pulsewidth, the chirp experienced both positive and negative
values. The output pulsewidth was also sensitive to internal loss, input pulsewidth and gain.
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Fig. 6 The characteristics of generated FWM signals that shown in Fig. 5. a The peak shift of the generated
FWM signal, b the FWHM of generated FWM signal and c the generated FWM signal energy

It has also depicted that FWHM of the output pulse is inversely proportional to the internal
loss. Moreover, when the input pulse energy is increased, the output pulses FWHM value
saturated faster. Besides, the effect of input pump pulse energy was also analysed on the
FWM characteristics. The FWM signals FWHM, peak shift and energy is increased when
the energy of the pump pulse is increased. The energy of the FWM signal remains constant
when the SOA is saturated. Based on our simulation results, we conclude that the output
pulse characteristics could be modified by controlling the medium internal loss, SOA gain
and the pulsewidth and energy of the input pulses.
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