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Abstract—We consider the joint allocation of receiver, bit, and
power to subcarriers in the downlink of multicell orthogonal
frequency-division multiple-access (OFDMA) networks. Assum-
ing that the cells share the entire bandwidth and that the
rates are discrete, we formulate the joint allocation problem
as a nonlinear mixed integer program (MIP), which however
has exponential worst-case complexity. We capitalize on the
capability of the receivers to measure the interference-plus-noise
on every subcarrier and decompose the joint problem into a set
of smaller-scale linear MIPs solved by individual base stations.
Accordingly, we propose a distributed algorithm with linear
complexity, in which the base stations participate in the problem
solution in a round-robin manner. Simulation results demonstrate
the effectiveness of the proposed algorithm in comparison with
the iterative waterfilling algorithm and the successive optimal
solution, by means of standard branch-and-cut solvers, of the
individual MIPs.

I. INTRODUCTION

Multicarrier transmission in the form of orthogonal

frequency-division multiple access (OFDMA) has emerged as

a promising technique towards high data transmission in the

next generation wireless networks [1]. OFDMA mitigates the

frequency selectivity of the broadband channel by dividing

the bandwidth into a set of non-interfering narrowband sub-

carriers. Owing to independent subcarrier channel gains for

different users, it is possible to dynamically assign subcarriers

to users with adaptive power allocation. To fully realize the

advantages of OFDMA, resource allocation schemes for the

single-cell downlink have been extensively studied [2]–[5].

Employing OFDMA in the context of multicell networks

is the promising technique towards ubiquitous and high data

rate transmission in the next generation networks [6]. We

study the resource allocation problem in the downlink of

multicell OFDMA networks. Differently to the single-cell

case, the resource allocation in multicell networks needs to

take advantage of spectrum sharing among adjacent cells to en-

hance the aggregate capacity. As a consequence of frequency

reuse, the generated intercell interference couples the resource

allocation in different cells and therefore the allocation is

more challenging. Hence, the single-cell schemes cannot be

directly applied to multicell OFDMA networks, since they

This work has been performed in the framework of the European research
project SAPHYRE, which is partly funded by the European Union under its
FP7 ICT Objective 1.1 - The Network of the Future.

do not take into account the intercell interference. Also,

the need of practical OFDMA resource allocation schemes

necessitates optimization models that can be efficiently solved

in a distributive manner.

From an optimization viewpoint, jointly optimizing resource

allocation across an OFDMA network is a nonlinear MIP,

which is NP-hard to solve in general [7]. Significant research

work has been conducted to reduce the complexity either in a

centralized or distributed manner. The search for decentralized

solutions motivated significant work within the framework of

non-cooperative game theory [8]–[10]. However, due to the

selfish behavior of the transmitters as game players, co-channel

interference degrades the network performance significantly.

Alternatively, price or tax-based algorithms have been used to

charge the transmitters for their transmit power or the number

of allocated subcarriers.

In this paper, we assume that the transmission rate on each

subcarrier is chosen from a finite set of discrete levels. We

first formulate the sum-rate maximization in the downlink of

multicell OFDMA networks as a nonlinear MIP. The discrete

bit levels make the formulation more efficient for practical

implementations. Moreover, the formulation takes multicell

multiuser diversity into account to establish an adaptive reuse

factor on subcarriers. Using the fact that each receiver is able

to measure the interference-plus-noise on every subcarrier, we

then decompose the joint resource allocation to individual

linear MIP problems, one for each BS. Based on the proposed

solution, we propose a low-complexity distributed subcarrier,

power, and bit level (DSPB) allocation algorithm, which adapts

to the variable channel gains.

The paper is organized as follows. The system model and

problem formulation are given in Section II. The solution to

the resource allocation problem of a single BS is presented in

Section III. The distributed algorithm is proposed in Section

IV. Numerical results are given in Section V and the paper is

concluded in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider downlink transmission in a multicell OFDMA

network with a set L , {i : i = 1, . . . , L} of BSs and a

set K , {k : k = 1, . . . ,K} of receivers, where every BS

is assumed to serve the same number of receivers, i.e. K/L.

The ith BS serves the receivers within the set Ki , {(i −



1)K/L+1, . . . , iK/L}. The network bandwidth is shared by

all BSs and it is divided into a set N , {n : n = 1, . . . , N}
of orthogonal subcarriers. The channel of each subcarrier is

flat, since its bandwidth is chosen small enough compared to

the coherence bandwidth. The number of bits loaded on each

subcarrier is chosen from a finite set Q , {q : q = 1, . . . , Q}.

We define the binary allocation variables xn,q
k , where xn,q

k =
1 if subcarrier n is assigned to receiver k with rate q and

xn,q
k = 0 otherwise. To avoid intracell interference, each

subcarrier can be used by at most one receiver per cell. Hence,

for BSi and subcarrier n we have the constraint

∑

k∈Ki

Q
∑

q=1

xn,q
k ≤ 1. (1)

The sum in the left-hand side of (1) equals to zero when BSi

does not allocate any receiver to subcarrier n.

Let Gn
i,k denote the gain of the channel between BSi and

receiver k on the nth subcarrier. The signal-to-interference-

plus-noise ratio (SINR) of receiver k, served by BSi on

subcarrier n with transmit power pni , is

γn
k ,

Gn
i,kp

n
i

Ink (p
n
−i)

. (2)

In (2), the interference generated by simultaneous transmis-

sions throughout the network on subcarrier n plus the AWGN

noise variance σ2
k is denoted

Ink (p
n
−i) ,

L
∑

j=1,j 6=i

Gn
j,kp

n
j + σ2

k, (3)

where pn−i , [pn1 , . . . , p
n
i−1, p

n
i+1, . . . , p

n
L] is the vector of all

interfering transmit powers.

Assuming Gaussian signaling, let Tq denote the threshold

that the SINR should reach to load q bits, i.e., log2(1 + γ) =
q ⇔ γ = 2q − 1 , Tq. When BSi decides to serve receiver

k ∈ Ki with q bits on subcarrier n, i.e. xn,q
k = 1, then, due to

(2), in order to have γn
k = Tq the required transmit power is

pni = Ink (p
n
−i)Tq/G

n
i,k. Due to (1), this power is given, for an

arbitrary subcarrier and bit allocation, by

pni =
∑

k∈Ki

Q
∑

q=1

xn,q
k Ink (p

n
−i)Tq/G

n
i,k. (4)

Moreover, we assume that the total transmit power of every

BS cannot exceed the maximum budget P , i.e.
N
∑

n=1
pni ≤ P .

The objective is to maximize the achievable sum-rate in the

network, i.e., the sum of bit rates of all subcarriers over all

cells, subject to the aforementioned constraints. Consequently,

the joint resource allocation problem is stated as

max
X,P

L
∑

i=1

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

qxn,q
k (5)

s.t.
∑

k∈Ki

Q
∑

q=1

xn,q
k ≤ 1 ∀i ∈ L, ∀n ∈ N ,

(6a)

pni =
∑

k∈Ki

Q
∑

q=1

xn,q
k Ink (p

n
−i)Tq/G

n
i,k ∀i ∈ L, ∀n ∈ N ,

(6b)

N
∑

n=1

pni ≤ P ∀i ∈ L. (6c)

Problem (5)–(6) is a MIP with KNQ binary allocation vari-

ables X = {xn,q
k ∈ {0, 1}}n∈N, q∈Q

k∈K and LN continuous

power variables P = {pni ∈ R+}
n∈N
i∈L . This problem is

NP-hard in general [11]. The formulation is nonlinear due

to the right-hand side of (6b) which involves, due to (3),

bilinear products of the optimization variables. Finding the

optimal solution requires an exhaustive search with worst-

case complexity exponential in the total number of variables.

The complexity is prohibitive for modern broadband networks

which have hundreds of subcarriers. This motivates the low-

complexity distributed approach that we are proposing in

Section IV.

III. SINGLE-CELL RESOURCE ALLOCATION

The most significant challenge in the solution of problem

(5)–(6) is due to the interference-plus-noise terms {Ink (p
n
−i)}

in (6b) that couple the resource allocation performed in differ-

ent cells. However, the fact that each receiver is able to sense

and measure the interference-plus-noise on subcarriers moti-

vates us to decompose the global problem into subproblems

solved by individual BSs. In other words, BSi takes as input

the values {Ink }
n∈N
k∈Ki

collecting them from the receivers in its

cell, when the other BSs have already performed the resource

allocation. Hence, the coupling among the resource allocation

problems in different cells is eliminated. Consequently, the

joint problem (5)–(6) decouples into L sub-problems, each

solved separately by a different BS. The problem correspond-

ing to BSi is

max
Xi,Pi

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

qxn,q
k (7)

s.t.
∑

k∈Ki

Q
∑

q=1

xn,q
k ≤ 1 ∀n ∈ N , (8a)

pni =
∑

k∈Ki

Q
∑

q=1

xn,q
k Ink Tq/G

n
i,k ∀n ∈ N , (8b)

N
∑

n=1

pni ≤ P. (8c)

Problem (7)–(8) is a MIP with KNQ/L binary variables

Xi = {xn,q
k ∈ {0, 1}}n∈N, q∈Q

k∈Ki
and N continuous variables

Pi = {pni ∈ R+}n∈N . Not only this problem has L times

smaller dimension than the joint one, but also it is linear,

since the constraints (8b) have now, for given {Ink }, become



linear. There exist several solvers, implementing branch-and-

cut techniques, that find the optimal solution of linear MIP

problems frequently avoiding exhaustive search. However,

the worst-case complexity of these techniques still increases

exponentially with the number of variables and becomes im-

practical for large problem sizes, as experienced in a previous

work [12]. This motivates us to investigate low-complexity

solutions to (7)–(8). Due to the binary variables, this problem

is nonconvex. Existing solutions to this problem of single-cell

resource allocation typically exploits the relaxation of binary

variables so that the problem can be solved using convex

linear programming [13]. The disadvantage is that rounding

off the variables into binary ones takes the solution far from

the optimal solution. Herein, we take advantage of the seminal

contribution on multicarrier systems in [14], which has shown

that, using dual optimization, the duality gap decreases as

the number of subcarriers increases. The large number of

subcarriers in practical OFDMA networks therefore motivates

us to solve (7)–(8) in the dual domain.

In the following, we focus on the resource allocation

problem in the ith cell, assuming that the allocation has

been already performed in the other cells, i.e. for some

given {Ink }
n∈N
k∈Ki

. Inspecting (8b), we observe that the transmit

powers Pi depend entirely on the variables Xi, provided that

they also meet the bound (8c). Hence, substituting (8b) into

(8c), we can rewrite problem (7)–(8), with respect to only the

optimization variables Xi, as

max
Xi

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

qxn,q
k (9)

s.t.
∑

k∈Ki

Q
∑

q=1

xn,q
k ≤ 1 ∀n ∈ N , (10a)

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

xn,q
k Ink Tq/G

n
i,k ≤ P. (10b)

This enables us to solve the MIP (7)–(8) in two steps. First,

we solve the linear binary problem (9)–(10) to determine the

subcarrier and bit level allocation, and then plug the solution

into (8b) to compute the transmit powers.

The solution to (9)–(10) would be straightforward if we

decouple the power budget constraint in (10b) and perform the

optimization per subcarrier. This motivates the incorporation

of (10b) into the objective function and form a Lagrangian

function as

Li(Xi, λi) =

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

qxn,q
k (11)

− λi

(

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

xn,q
k Ink Tq/G

n
i,k − P

)

and the corresponding dual function as

Di(λi) = sup
Xi

{Li(Xi, λi) : (10a)} , (12)

where λi is the Lagrange multiplier. This multiplier is obtained

in the dual domain for a given Xi by solving the corresponding

dual problem

min
λi≥0

Di(λi). (13)

This problem can be solved by the subgradient method, i.e.,

beginning with an initial λi(0), given λi(t) at iteration t, we

obtain Pi from Xi using (8b). We then update the Lagrange

multiplier as

λi(t+ 1) =

[

λi(t)− α

(

P −
N
∑

n=1

pni

)]+

, (14)

where P −
N
∑

n=1

pni is the subgradient of Di(λi) with respect to

λi and α is a step size that should be small enough to ensure

the convergence [15]. The aforementioned approach therefore

enables individual BSs to contribute the solution of the original

problem separately.

To evaluate Di(λi) for a given λi in (12), BSi substitutes

Li(Xi, λi) in (12) with (11) and forms an optimization prob-

lem represented by

max
Xi

N
∑

n=1

∑

k∈Ki

Q
∑

q=1

xn,q
k fn,q

k (15)

s.t.
∑

k∈Ki

Q
∑

q=1

xn,q
k ≤ 1 ∀n ∈ N , (16)

where fn,q
k , q − λiI

n
k Tq/G

n
i,k. Due to (16), each subcarrier

can be used by at most one receiver, with a single bit rate,

within cell i. This statement along with the decomposable form

of (15)–(16) enables separate allocation for each individual

subcarrier. The solution is therefore obtained by assigning each

subcarrier n to receiver kn ∈ Ki with bit rate qn as

(kn, qn) = argmax
(k,q):k∈Ki,q∈Q

fn,q
k (17)

provided that fn,qn
kn

> 0. In other words, for each subcarrier in

cell i, we go over the QK/L possible receiver-bit assignments

and select the one giving the largest positive value. Hence,

xn,q
k = 1 if k = kn and q = qn, otherwise xn,q

k = 0. Due

to (8b), the transmit power is pni = Ink Tq/G
n
i,k in the former

case and pni = 0 in the latter case. However when fn,qn
kn

≤ 0,

then xn,q
k = 0 for all k ∈ Ki, q ∈ Q, and accordingly pni = 0.

IV. DISTRIBUTED RESOURCE ALLOCATION ALGORITHM

Given the solution for the allocation problem of each

BS, presented in Section III, in the sequel we propose a

distributed subcarrier, power, and bit level (DSPB) allocation

algorithm for the downlink of multicell OFDMA networks.

The DSPB algorithm is based on the iterative update of the

Lagrange multiplier in (14). We assume that there is a network

coordinator, which synchronizes the BSs so that they know

their order in the algorithm. This coordinator, also, terminates

the algorithm upon satisfaction of the convergence condition.

During the algorithm iterations, the channel gains are assumed



to be constant. In addition, there is a mechanism to feedback,

for all subcarriers, the channel gains and perceived interference

from all receivers in each cell to the corresponding BS.

Algorithm 1 Distributed Subcarrier, Power, and Bit level

allocation (DSPB)

1: Initialization: t = 0, λi(0) = λinit ∀i ∈ L, pni =
δP/N ∀i ∈ L, ∀n ∈ N

2: while
∑

i∈L

|
∑

n∈N

pni − P | ≥ ǫ do

3: t = t+ 1
4: Network coordinator chooses BSj in a round-robin

order.

5: BSj measures {Ink (p
n
−j)}

n∈N
k∈Kj

.
6: BSj determines Xj and Pj using (17) and (8b) respec-

tively.

7: BSj updates λj(t) using (14).

8: end while

At first, every BS initializes the Lagrange multiplier and

distributes uniformly a part of the power budget on all

subcarriers (step 1, where δ < 1). The network coordinator

continues the iterations till the aggregate differential power

in the network would be less than an accuracy threshold ǫ
(step 2). This condition characterizes the satisfaction of the

power constraints (8c). At each iteration, a BS is chosen in

a round-robin manner to update its subcarrier, power, and bit

level allocation subject to the measured interference from the

other BSs (steps 4, 5, and 6). Using the new power settings,

the chosen BS updates its Lagrange multiplier (step 7).

The DSPB algorithm takes advantage of two decomposition

levels to overcome the exponential complexity of exhaustive

search methods over the NQK binary variables. First, de-

coupling the original resource allocation problem (5)–(6) into

subproblems, we decrease the exponential complexity to be

linear in L. The linearity is due to the Lagrange multiplier

update in (14). Second, the complexity O((QK/L)N ) of

subcarrier and rate allocation within each cell is decreased

to O(NQK/L) by dual decomposition in Section III, as we

came up with an optimization per subcarrier. In overall, the

complexity is O(NQK), linear in the number of subcarriers,

bit levels, and users. On the other hand, the algorithm burdens

some signalling overhead. The network coordinator notifies

the BSs of their order in the algorithm and finally terminates

the algorithm. At the end of every iteration, the chosen BS

has to send to the coordinator its updated aggregate transmit

power.

V. PERFORMANCE EVALUATION

We consider downlink transmission in a network with four

cells of radius R = 1 Km and 8 users. Every BS, located at

the center of the corresponding cell, serves 2 users, randomly

placed within the cell. The path loss (in dB) at a distance

d from a BS is given by L(d) = L(d0) + 10α log10(d/d0),
where for the reference point it is d0 = 50 m, L(50) = 0, and

the path loss exponent is α = 3.5. The shadowing effect is

modeled as an independent log-normal random variable with 8

dB standard deviation. The channel on each link is assumed to

be Rayleigh fading, modelled by a six-tap impulse response

with exponential power delay profile indicated by ge−(l−1),

where g = 1 is the first path’s average power gain and l is

the path index. Moreover, the root-mean-square delay spread

is 0.9 µs. The transmission budget of each BS is P = 5
W and the noise variance is assumed to be σ2

k = −90 dBm

for all receivers. The bit level on each subcarrier is chosen

from the set Q = {1, 2, ..., 5}, so that the corresponding SINR

thresholds are Tq = {1, 3, 7, 15, 31}, respectively.

Firstly, to investigate the performance of DSPB for a typical

number of subcarriers, e.g. N = 64, we show in Fig. 1 the

sum-rate achievement (in bits per OFDM symbol) of each cell

versus the iteration number. It is seen that with the convergence

of the transmit powers (ǫ = 0.1), the cell sum rates attain their

final values.

In the following, we compare, in the aforementioned setup,

the performance of DSPB with the result obtained by solving

the individual MIP (IMIP) (7)–(8) at individual BSs. The

optimal solution in the primal domain of each IMIP is obtained

calling the GNU linear programming kit (GLPK) [16]. In

this scheme, similar to DSPB, beginning with uniform power

allocation, the individual problems at BSs are solved optimally

in a round-robin manner. As a lower bound, we also include

the sum-rate values achieved from the iterative waterfilling

algorithm (IWF) [17], [18] customized to OFDMA systems

using joint subcarrier and power allocation as in [3] and

[4]. Since the subcarrier rates in IWF are assumed to be

continuous, we round off each achievable rate to the largest

integer value not greater than that rate. We compare the overall

sum-rate of the aforementioned schemes with different number

of subcarriers, i.e. N . For each value of N , we obtain the

sum rates for 50 realizations of the fading channel gains and

show the average sum rates in Fig. 3. We observe that DSPB

outperforms both IMIP and IWF schemes. The performance

gap between DSPB and IWF becomes larger as the number

of subcarriers increases. This is due to the degradation effect

of the rounding operation in IWF which increases with the

number of subcarriers.

The performance difference between IMIP and DSPB is due

to the fact that, in IMIP, each BS adopts the optimal solution in

(7)–(8) to maximize its own sum rate. This optimal strategy

most likely generates a large interference and therefore de-

grades the performance of other BSs significantly. However,

in DSPB, each BS assigns each subcarrier as in (17), where

fn,q
k can be written as fn,q

k = (q − λip
n
i ). In other words, in

addition to the achieved rate q, DSPB also takes the required

transmit power pni into account in subcarrier allocation via the

Lagrange multiplier acting as power price. Apparently, DSPB

tends to minimize the generated interference on the other cells

and therefore they undergo small rate degradation at the last

iteration.
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VI. CONCLUSION

We formulated the spectrum, power, and rate allocation

problem that maximizes the sum rate of multicell OFDMA

networks as a nonlinear MIP, which is computationally in-

tractable. The capability of the receivers to measure the

perceived interference-plus-noise enabled us to decouple the

global problem into individual linear MIPs. These problems

can be solved optimally, in a sequential manner by the BSs,

using branch-and-cut techniques, albeit with worst-case com-

plexity exponential to the number of variables. We proposed

a distributed algorithm, in which the BSs participate in a

round-robin manner to the solution of the whole problem,

by performing the optimization per subcarrier and updating a

Lagrange multiplier at each iteration. The complexity of this

solution in every iteration is linear to the number of allocation

variables of each BS. We demonstrated with numerical results

the proposed algorithm outperforms the sequential solution of

the individual MIPs and the IWF algorithm.
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