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Abstract—Energy consumption scheduling to achieve a low
power generation cost and a low peak-to-average ratio load is
a critical component in the next generation of power systems,
known as smart grids. Implementing such a component requires
the knowledge of the whole power demand throughout the
system. However, due to the diversity of power demands, this
requirement is not always satisfied in practical scenarios. To
address this inconsistency, the present paper addresses energy
consumption scheduling in a multi-grid power system (consisting
of a local grid with some neighbor inaccessible grids). The total
cost minimization is formulated as an optimization problem.
In addition to optimal solution, the performed formulation
is provided with online stochastic iterations to capture the
randomness of unknown load adaptively over time. Numerical
results demonstrate the effectiveness of the proposed algorithm
in following the results obtained from the optimal solution.

Index Terms—Energy consumption scheduling, smart grid,
power demand, stochastic load, optimization.

I. INTRODUCTION

Reports on energy consumption reveals the increasing de-

mand for electrical energy world wide [1]. This increasing

demand along with the growing environmental concerns moti-

vates the idea of establishing new power systems with flexible

and intelligent approaches for smart demand side management.

While many of these approaches are still under investigation,

there already exist a number of practical applications in many

countries across the world [2]. Demand side can managed by

either reducing or shifting the consumption of energy. While

the former can be efficient to some extent, the latter proposes

the shift of high-load household consumptions to off-peak

hours in order to reduce peak-to-average ratio (PAR). The

high PAR might lead to degradation of power quality, voltage

problems, and even potential damages to utility and consumer

equipments.

With the advancement of smart metering technologies [3]

and the increasing interest in smart grids with two-way

communications capability [4], load management has been

appeared in form of energy consumption scheduling (ECS)

[5], [6]. In the ECS, the power charging time of household

appliances is optimally scheduled so that demand-side load

management could be managed efficiently. This results in

reducing the risk of getting into a condition that may lead

to blackout. As an incentive that subscribers follow ECS

decisions, intelligent pricing schemes in the form of lower

utility charges should be provided. Consequently, customers

will be encouraged to shift their heavy loads to off-peak hours.

This issue is not only useful to improve the overall system

performance but also to pay less individually.

The proposed ECS algorithms in the literature mainly

perform system-wide load management with the assumption

of the knowledge of the whole system load demands a priori

[7]–[9]. In other words, the system manager should be aware

of the whole system demand exactly. Due to the diversity

of power customers ranging from household to industrial

domains, however, this case is not mostly valid. Alternatively,

a manager who is aware of power demand in a local grid

might be interested in the ECS within its own area. The fact

that power price in the utility is a function of the whole system

demand, the local manager needs to consider the loading

impact of neighbor grids demand.

To investigate the mentioned difficulty, in this paper, we

consider a source of energy shared within a power system

consisting of a local grid (LG) and some neighbor grids (NGs).

The LG includes a set of household appliances, which is

scheduled by an ECS entity. It is assumed that the ECS is

aware of appliances power demands within the LG, but dose

not have the knowledge of power demands in the NGs. In

other words, there is no possibility to access even to predict

the demand of NGs. This motivates the authors to consider

this load as a stochastic process varying over time.

One common objective of the ECS in the context of

next generation power systems is to minimize the cost of

power generation. We model this objective as an optimization

problem and provide it with optimal solution. Moreover,

we propose an adaptive solution to make decisions on the

scheduling of the LG household facilities while taking into

account the NG’s stochastic loading.

The paper is organized as follows. The system model is

described in Section II. The cost minimization formulation

along with its solution are presented in Section III. Numerical

results are given in Section IV and the paper is concluded in

Section V.

II. SYSTEM MODEL

For the sake of energy consumption scheduling, a multi-gird

power system as shown in Fig.1 is considered. This system

consists of an LG controlled by an ECS and some NGs out



of the control of ECS. The aim of the ECS is not to reduce

the energy consumption, but instead to optimally manage and

shift the LG load demand to reduce cost and PAR within the

power system.

Assume that the LG consists of a set N , {n : n =
1, . . . , N} of appliances to be scheduled during a time interval

T , {t : t = 1, . . . , T }. The load demand of each appliance

n ∈ N during this interval is assumed to be a known value En.

On other hand, the load demand by the NGs is unknown. We

consider it as a time varying random variable γ, but without

any knowledge on its probability density function (PDF).

The load demand of the LG is scheduled by the ECS. Let

ltn be the load provided for appliance n ∈ N during time slot

t. The objective of the ECS is to determine load demands

L , {ltn}
t∈T
n∈N to optimize a target performance measure,

and at the same time to provide each appliance n with the

required load En in average. Due to the random variation

of NGs load demand, provided loads within the LG can be

considered as functions of γ. Moreover, many home appliances

have strict minimum and maximum power charging levels. As

an example, the PHEVs can be charged only up to 3.3 kWh

per hour [10]. This imposes the constraint that each ltn must be

within lmin
n and lmax

n , minimum and maximum power levels,

respectively.

In the subsequent section, the ECS synthesis is reduced to

develop an optimization formulation with the objective of cost

minimization within the system.

Fig. 1. A multi-grid power system model

III. COST MINIMIZATION FORMULATION

Pricing of electricity can be used as a mechanism to en-

courage customers to follow a specified load scheduling. Var-

ious pricing schemes have been proposed by economists and

regulatory agencies such as flat pricing, critical-peak pricing,

time-of-use pricing, and real-time pricing. These schemes have

been also used in communications and transportation networks

[11]. Among them, real-time pricing is motivated to be used in

next generation of power systems thanks to its environmental

and economical gains [12], [13]. Following these results, in

the present paper, an energy scheduling approach based on

real-time pricing is proposed.

Let lt =
∑N

n=1
ltn+γ be the total amount of load generated

at time t. The power generation cost at this time can be denoted

as a differentiable and convex function C(lt). Consequently,

the average cost minimization problem is

min
L

1

T

T
∑

t=1

C

(

N
∑

n=1

ltn + γ(t)

)

(1)

s.t.
1

T

T
∑

t=1

ltn ≥ En ∀n ∈ N (2a)

lmin
n ≤ ltn ≤ lmax

n ∀n ∈ N , ∀t ∈ T . (2b)

Constraints (2a) satisfy the average load demands by the

appliances, while constraints (2b) restrict the power levels

within the upper and lower bounds. This problem is convex

and can be solved using convex optimization techniques such

as interior point method (IPM) [14]. This requires the avail-

ability of γ(t) for all t at the beginning of time period T .

However, this assumption is not valid in practice as we do

not aware of NGs load demand in advance. Alternatively, we

consider γ as a random variable varying over time, but without

any assumption on its PDF. Therefore, (1)–(2) can be rewritten

as

min
L

Eγ

[

C

(

N
∑

n=1

ln + γ

)]

(3)

s.t. Eγ [ln] ≥ En ∀n ∈ N (4a)

lmin
n ≤ ln ≤ lmax

n ∀n ∈ N . (4b)

where Eγ denotes the expectation with respect to γ. The

above problem is also a convex optimization. We are interested

in solving this problem progressively over time, when γ is

realized at each time instant t.

The most significant challenge in the solution of problem

(3)–(4) is due to the expectations that couple the scheduling

over time. The solution would be straightforward if one

decouples the energy demand constraints over time slots. This

motivates the incorporation of (4a) into the objective function

and forms a Lagrangian function as

L(L,Λ) = Eγ

[

C

(

N
∑

n=0

ln + γ

)]

(5)

−
N
∑

n=1

λn (Eγ [ln]− En)

and the corresponding dual function as

D(Λ) = inf
L

{L(L,Λ) : (4b)} (6)

where Λ = {λn ≥ 0}n∈N is the set of Lagrange multipliers.

The dual function provides a lower bound on the optimal

solution of (3)–(4). The best lower bound is surely achieved

by the corresponding dual problem as

max
Λ≥0

D(Λ). (7)



Prior to solve the problem in the dual domain, we first need

to evaluate D(Λ). The L(L,Λ) can be rewritten as follows

L(L,Λ) = Eγ

[

C

(

N
∑

n=1

ln + γ

)

−
N
∑

n=1

λnln

]

(8)

+
N
∑

n=1

λnEn.

Therefor, to evaluate D(Λ) in (6) we solve

min
L

Eγ

[

C

(

N
∑

n=1

ln + γ

)

−
N
∑

n=1

λnln

]

(9)

s.t. (4b). (10a)

For each value of γ, this problem is convex and can

be solved using interior point method (IPM) to obtain

{ln
∗(γ)}n∈N . Having obtained {ln

∗(γ)}n∈N , the dual prob-

lem in (7) can be solved using subgradient method. Here,

λn can be interpreted as the marginal benefit of appliance

n. Beginning with an initial λn(0), given λn(t) at time t, the

{ltn
∗
(γ)}n∈N can be obtained from (9)–(10). We then update

the Lagrange multiplier as

λn(t+ 1) = λn(t) + α
(

En − Eγ

[

ltn
∗
(γ)
])+

(11)

where En − Eγ

[

ltn
∗
(γ)
]

is the subgradient of D(Λ) with

respect to λn, and α is a step size.

The above described solution can be summarized as an

adaptive solution in Algorithm 1.

Algorithm 1 Adaptive cost minimization algorithm

1: Initialization: t = 0 and λn(0) = λinit ∀n ∈ N .

2: while t ≤ T do

3: Generate a new NGs load γ(t).
4: Determine {ln

∗(γ(t))}n∈N from problem (9)–(10).

5: Update λn(t) using (11) for all n ∈ N .

6: t = t+ 1.

7: end while

IV. PERFORMANCE EVALUATION

We consider an LG with N = 10 appliances scheduled

by an ECS over an interval of length 6 hours, e.g from

12:00 PM to 6:00 AM. The scheduling is updated every

1 minute, i.e. T=360. Load demands are E = [1:1:10]/T

kWh per unit of time. Minimum and maximum power levels

are lmin=[0:1:9] and lmax=[5:1:14], respectively. The load

demand of the NGs is assumed to be a normal random variable

with mean 100 kWh per unit of time and standard deviation

σ, i.e. γ ∼ N (100, σ). Moreover, the power generation cost

function is considered to be quadratic, i.e. C(.) = (.)2 in (1)–

(2).

With the aim of comparison optimal and adaptive solutions

of the cost minimization, we first generate a set of normal

random variables as NGs load demand at the beginning of

the simulation with σ = 20 kWh. The corresponding optimal

solution in (1) –(2) is shown in Fig. 2. As observed, the optimal

solution regulates LG load such that the system-wide total load

becomes smooth. In fact, the LG load provides a diversity

for the ECS to mitigate the stochastic demand of NGs. The

adaptive cost minimization algorithm 1 is also applied to this

scenario to determine the scheduling of the LG load. The

provided load with this scheduling (adaptive load) is also

shown in Fig. 2. Intuitively, after some initial time units, the

behavior of this curve approximately converges to that of the

optimal solution.
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Fig. 2. System-wide optimal and adaptive load demands

In the following, we compare the optimal and adaptive

solutions of cost minimization in terms of price per kWh and

peak-to-average ratio (PAR). These performances versus the

standard deviation of γ, i.e. σ, are shown in Fig. 3 and Fig.

4, respectively. As another scheduling scheme, the results of

uniform solution are also included. In this solution, the demand

of each appliance is uniformly distributed over the whole time

interval, independent of the objective function. As shown, the

price and PAR performances of adaptive algorithm outperform

those of uniform strategy. This is reasonably expected as the

adaptive algorithm takes advantage of the diversity in NGs

demand to achieve a better performance.

From comparison of adaptive and optimal solution, it is

investigated that the optimal solution achieves lower price.

This is due to the fact that this solution takes into account

the knowledge of NGs demand at the beginning of the in-

terval. However, the adaptive algorithm makes a scheduling

decision per time unit, when the power demand of the NGs

is available in that time unit. Remarkably, the PAR of the

adaptive algorithm is comparable to that of the optimal solu-

tion. This implies that the optimality of production cost does

not necessarily implies the outperforming of the PAR. This

observation motivates the performance evaluation of the PAR

minimization in the following.

V. CONCLUSION

The unpredictable load demand throughout a grid avoids

global and optimal energy consumption scheduling. Alterna-
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tively, we resort to local and suboptimal scheduling schemes

that adaptively perform load scheduling. In this paper, a

stochastic model of load scheduling in a local grid with

the objective of cost minimization has been presented. It is

shown that the optimal scheduling can be followed by an

online iteration that captures the randomness of neighbor grids

demand adaptively. This approach makes scheduling decisions

progressively over time. Indeed, the proposed adaptive algo-

rithm can provide an estimate of the optimal solution.
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