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Abstract: This paper presents the pulse propagation and gain saturation characteristics 

for different input optical pulse shapes with different energy levels in semiconductor 

optical amplifiers (SOAs). Finite-difference beam propagation method (FD-BPM) is used 

to solve the modified nonlinear Schrödinger equation (MNLSE) for the simulation of 

nonlinear optical pulse propagation and gain saturation characteristics in the SOAs. In 

this MNLSE, the gain spectrum dynamics, gain saturation are taken into account those 

are depend on the carrier depletion, carrier heating, spectral hole-burning, group velocity 

dispersion, self-phase modulation and two photon absorption. From this simulation, we 

obtained the output waveforms and spectra for different input pulse shapes considering 

different input energy levels. It has shown that the output pulse shape has changed due to 

the variation of input parameters, such as input pulse shape, input pulse width, and input 

pulse energy levels. It also shown clearly that the peak position of the output waveforms 

are shifted toward the leading edge which is due to the gain saturation of the SOA. We 

also compared the gain saturation characteristics in the SOA for different input pulse 

shapes. 
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1. Introduction 

In recent years, high-speed communication systems and all-optical signal processing 

techniques play an important role to avoid electro-optic conversions which may create 

data-flow bottlenecks. Semiconductor optical amplifiers (SOAs) are widely used in many 

functional applications, such as wavelength conversion, optical switching, optical signal 

processing pulse reshaping, and power limiting. SOAs are the key component for short 

optical pulse amplification and optical switching at a very high speed communications 

because of their small size, a low switching energy, non-linear characteristics and ability 

to integrate with other optical devices [1-4].  

The purpose of modelling an SOA is to relate the internal variables of the amplifier 

with external variables, such as the output signal power and output saturation power [3]. 

When a short input optical pulse is injected into the active region of the SOA, stimulation 

emission takes place resulting in optical signal amplification. Therefore, the carrier 

density reduces and causes a drop of the SOA gain [2]. The amplification rate and gain 

saturation varies according to the input pulse shapes. The modified nonlinear Schrödinger 

equation (MNLSE) is used in most pulse propagation models that include the SOA non-

linearities [5]. Pulse propagation through an SOA is strongly dependent on the input 

pulse shape [6].  

The main objective of this paper is to investigate the nonlinear optical pulse 

propagation and gain saturation characteristics depending on different types of input 

pulse shapes and energy levels in SOAs for high speed communication systems. This 

analysis is based on the MNLSE considering the non-linearities in SOA, such as self-

phase modulation (SPM), two-photon absorption (TPA), group velocity dispersion 

(GVD), carrier depletion (CD), carrier heating (CH), spectral-hole burning (SHB), gain 

spectrum dynamics, and gain saturation in the SOA [5, 7]. To solve the MNLSE, finite-

difference beam propagation method (FD-BPM) is used because of its short convergence 

time and excellent accuracy of the simulated results [8-16]. For simulation of pulse 

propagation with small propagation steps, FD-BPM is considered as the best method 



compared to others [8-14]. In this paper, we have numerically investigated and compared 

the output waveforms or propagated pulses characteristics and the gain saturation 

characteristics for different types of input pulse shapes in SOAs. The input pulse shapes 

were considered as, (i) Secant hyperbolic pulse, (ii) Gaussian pulse, and (iii) Lorentzian-

shaped pulse.  

 

2. Modified Nonlinear Schrödinger Equation (MNLSE) for SOA Modelling 

The theoretical model of short optical pulses propagation in SOAs will be briefly 

described in this section. Starting from Maxwell’s equations, we reach to the propagation 

equation of short optical pulses in SOAs which are governed by the wave equation in the 

frequency domain [15, 17-22]:  
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where, ( , , , )E x y z ω is the electromagnetic field of the pulse in the frequency domain, c is 

the velocity of light in vacuum and rε  is the non-linear dielectric constant which is 

dependent on the electric field in a complex form. By using the slowly varying envelope 

approximation and integrating the transverse dimensions, the pulse propagation equation 

in SOAs is [15, 23]: 

[ ]
1

2

0
( , ) 1 ( ) ( , ) ( , )m

V z i N V z
z c
ω ω c ω c ω β ω∂  = − = + Γ − ∂  

                       (2) 

where, ( , )V zω is the Fourier-transform of ( , )V t z  representing pulse envelope, ( )mχ ω  is 

the background (mode and material) susceptibility, ( )mχ ω  is the complex susceptibility 

which represents the contribution of the active medium, N  is the effective population 

density, 0β  is the propagation constant. The quantity Γ represents the 

overlap/confinement factor of the transverse field distribution of the signal with the active 

region as defined in [15].  

Using mathematical manipulations [19, 23], which includes the real part of the 

instantaneous non-linear Kerr effect as a single non-linear index 2n  and by adding the 

TPA term, the MNLSE for the phenomenological model of semiconductor laser and 

amplifiers is obtained [24].  



For this modelling, equation (3) [9-14] is used for the simulation of pulse propagation 

with different input pulse shapes in SOAs. The MNLSE uses the complex envelope 

( , )V zτ  function of an optical pulse which is given in equation (3).  
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We introduce the frame of the local time  /( )gt z vt = −  which propagates with the 

group velocity gv  at the centre frequency of an optical pulse. The slowly varying 

envelope approximation is used in (3), where the temporal variation change of the 

complex envelope function is very slow compared with the cycle of an optical field. In 

(3), ( , )V zτ  is the time domain complex envelope function of an optical pulse and 
2| ( , ) |V zτ  corresponds to the optical intensity or power, and 2β  is the GVD. γ  is the linear 

loss, 2 pγ  is the TPA coefficient, 2 0 2( / )b n cAω= is the instantaneous SPM term due to the 

instantaneous nonlinear refractive index 2n  (Kerr effect), 0 0( 2 )fω π=  is the centre angular 

frequency of the pulse, c is the velocity of light in vacuum, ( / )A wd= Γ  is the effective 

area (d and w are the thickness and width of the active region, respectively, and Γ  is the 

confinement factor). )(τNg  is the saturated gain due to CD, 0g  is the linear gain, sW  is the 



saturation energy, sτ  is the carrier lifetime, )(τf  is the SHB function, shbP  is the SHB 

saturation power, shbτ  is the SHB relaxation time, and Nα  and Tα  are the line width 

enhancement factor associated with the gain changes due to the CD and CH. )(τTg∆  is 

the resulting gain change due to the CH and TPA. ( )u s  is the unit step function, chτ  the 

CH relaxation time, 1h  is the contribution of stimulated emission and free-carrier 

absorption to the CH gain reduction, and 2h  is the contribution of TPA. Finally, 1A  and 

2A  are the slope and the curvature of the linear gain at 0ω  respectively, while 1B  and 2B  

are constants describing changes in these quantities with saturation. In this simulation, the 

gain spectrum of an SOA is approximated by the following second-order Taylor 

expansion in ω∆ : 
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ωωτ ∂∂ g  are related to A1, A2, B1 and B2 as given by 

(7) and (8). We assumed the same values of A1, A2, B1 and B2 as for an AlGaAs/GaAs bulk 

SOA [9-14].  

 

Generally, the fast Fourier transformation BPM (FFT-BPM) is used for analysis of the 

optical pulse propagation in optical fibers by successive iterations of the Fourier 

transformation and the inverse Fourier transformation. In the FFT-BPM, the linear 

propagation term (GVD term) and phase compensation terms (other than GVD, first- and 

second- order gain spectrum terms) will be separated in the nonlinear Schrödinger 

equation for the individual consideration of the time and frequency domain for the optical 

pulse propagation. However, in our model, (3) includes the dynamic gain change terms, 

i.e., the first- and second- order gain spectrum terms which are the last two terms of the 

right side in (3). Therefore, it is not possible to separate (3) into the linear propagation 

term and phase compensation term, and it is difficult to calculate (3) using the FFT-BPM. 

For this reason, we have used the FD-BPM [9-14] to solve this MNLSE.  

 

 



Table-I: List of the parameters used in simulation [5, 10-14]. 

Parameters Symbols Values Units 

Length of SOA  L 500 µm 

Effective area A 5 µm2 

Centre frequency of the pulse f0 349 THz 

Linear gain g0 92 cm-1 

Group velocity dispersion β2 0.05 ps2 cm-1 

Saturation energy Ws 80 pJ 

Linewidth enhancement factor due to the carrier 

depletion 

αN 3.1  

Linewidth enhancement factor due to the carrier 

heating 

αT 2.0  

The contribution of stimulated emission and free 

carrier absorption to the carrier heating gain 

reduction 

h1 0.13 cm-1 pJ-1 

The contribution of two-photon absorption h2 126 fscm-1 pJ-2 

Carrier lifetime τs 200 ps 

Carrier heating relaxation time τch 700 fs 

Spectral-hole burning relaxation time τshb 60 fs 

Spectral-hole burning saturation power Pshb 28.3 W 

Linear loss g 11.5 cm-1 

Instantaneous nonlinear Kerr effect n2 -0.70 cm2 TW-1 

Two-photon absorption coefficient g2p 1.1 cm-1W-1 

Parameter describing second-order Taylor 

expansion of the dynamically gain spectrum. 

A1 

B1 

A2 

B2 

0.15 

-80 

-60 

0 

fs µm-1 

fs  

fs2 µm-1 

fs2  

 

3. Simulation Results and Discussion 

In this section, simulation results of single pulse propagation and gain saturation 

characteristics are discussed and compared for different input pulse shapes in SOAs. The 



parameters of a bulk SOA (AlGaAs/GaAs, double heterostructure) is used for the 

simulation as listed in Table-I [5, 10-14]. The length of the SOA is 500-µm. We have 

obtained all the results with a propagation step z∆ of 10-µm. 

 

3.1 Optical Pulse Propagation Characteristics for Different Input Pulse Shapes 

Optical pulse propagation in SOAs has attracted much more attention due to its 

potential applications in high-speed optical communication systems, such as wavelength 

converter and switching. There are several applications in all optical signal processing, 

such as clock recovery and optical time division demultiplexing, where the SOAs are 

used to amplify high energy optical pulses with the pulse width of the order of 

picoseconds [6].  

In this subsection, optical pulse propagation characteristics for different input pulse 

shapes in SOAs are discussed. For the simulation of optical pulse propagation 

characteristics, different types of input pulse shapes are considered for the simulation in 

SOAs, such as (i) Secant hyperbolic pulse, (ii) Gaussian pulse, and (iii) Lorentzian-

shaped pulse). The mathematical formulations of different input pulse shapes in time 

domain are as follows: 
(i) Secant hyperbolic pulse shape: 

( ) ( )0 0( ) / 2 sech /inP t E t t t=  
 

(ii) Gaussian pulse shape: 

( ) ( )2 2
0 0( ) / exp / 2inP t E t t tp= −  

 
(iii) Lorentzian pulse shape: 

( ) ( ) 12 2
0 0( ) 2 / 1 /inP t E t t tπ

−
= +  

 
where, inE  is the input pulse energy in pJ, t  is time in s, and 0t  is the parameter that 

controls the width of the input pulse in s.  

 

Figure 1 illustrates the simulation model for the propagation of optical pulses in an 

SOA.  An optical pulse is injected into the input facet of the SOA, where the input pulse 

position is at z = 0. The pulse propagated over the SOA length 500-µm SOA. 



 

Figure 2 shows the simulation results of optical pulse propagation characteristics in an 

SOA, when the input pulse width is 10 ps. Output waveforms for Secant hyperbolic pulse 

shape, (Gaussian pulse shape and Lorentzian pulse shape are observed in figure 2(i), 

when the input pulse energies are (a) 2 pJ, (b) 1 pJ and (c) 500 fJ. The considered 

sampling time step (∆t) is 0.025 ps. The output pulse energy increases with the increase 

of input pulse energy level. It is clearly observed that higher output pulse energy is 

achieved by Gaussian pulse and lower output pulse energy is achieved by Lorentzian 

pulse for all considered input pulse energies (high to low). The calculated peak output 

powers are 4.2693 W, 4.5268 W, and 4.0091 W for Secant hyperbolic, Gaussian and 

Lorentzian pulses, respectively when input energy is 2 pJ. The calculated peak output 

powers are 2.89 W, 3.06 W and 2.71 W for Secant hyperbolic, Gaussian and Lorentzian 

pulses, respectively when input energy is 1 pJ. When input energy is low (such as 500 fJ), 

the calculated peak output powers are 1.77 W, 1.88 W, and 1.66 W for Secant hyperbolic, 

Gaussian and Lorentzian pulses, respectively. From this calculation it can be concluded 

that, higher output energy can be achieved for higher input energy for all those three 

pulse shapes and vice versa. As the input pulse width is very shorter than the considered 

carrier lifetime, the leading edge of the pulse saturates the amplifier and the trailing edge 

experiences a lower gain, so the output pulse shape becomes asymmetric. Comparing all 

three pulse shapes with respect to different input pulse energy levels, it can be observed 

that, the output pulse shapes become more asymmetric for higher input energy and less 

asymmetric for lower input energy.  

Figure 2(ii) shows the frequency spectra of propagated output pulses for Secant 

hyperbolic pulse shape, Gaussian pulse shape and Lorentzian pulse shape when the input 

pulse energies are (a) 2 pJ, (b) 1 pJ and (c) 500 fJ. Frequency spectra were obtained by 

performing the FFT on the temporal pulse shapes as shown in Fig. 2 (i). Output spectral 

shape shifting is observed toward the lower frequency side, which is due to the gain 

saturation of the SOA and SPM effects. For weak input pulse energies (i.e., ≤500 fJ), 

none of the output frequency spectra has been shifted toward the lower frequency side. It 

can be clearly seen from the figure that the amount of frequency shift is ~ -8.3 GHz for 

Secant hyperbolic and Gaussian pulses when the input pulse energy is 2 pJ and 1 pJ.  



From the simulated results, it has confirmed that there is no red shifting occurs for 

Lorentzian pulse for the considered input pulse energies (i.e., 500 fJ ~ 2 pJ). From this 

observation it can be said that, red shifting has been occurred for higher input pulse 

energy levels (i.e., 1 pJ ~ 2 pJ) for Secant hyperbolic and Gaussian pulse shapes. A wider 

spectral broadening is observed for Gaussian pulse when input energy 2 pJ. Besides that 

some oscillatory structures (i.e., dips) are observed in the upper frequency side of the 

frequency spectra, which is due to the SPM effects [9, 10, 15]. The physical mechanism 

behind the spectral shift and distortion is the SPM, occurring as a result of index 

nonlinearities induced by the gain saturation [9-16]. 

 

3.2 Gain Saturation Characteristics for Different Input Pulse Shapes 

In this subsection, gain saturation characteristics for different input pulse shapes in 

SOAs are discussed. Fig. 3 shows the saturated gain versus the output pulse (waveform) 

energy characteristics for the input pulse shapes: (a) Secant hyperbolic, (b) Gaussian, and 

(c) Lorentzian. These pulse shapes are Fourier transform limited. The FWHM of the 

input pulses are varied from 0.5 ps to 10 ps. The saturation behaviour is different for 

short (such as, <1 ps) and long (such as, >1 ps) pulses. With the low input pulse energies 

(such as, ~0.1 pJ), the gain is unsaturated (i.e., a linear gain). Also, when the input pulse 

duration is short (i.e., <1 ps) then the gain saturates at low output energies and it is true 

for all the three pulse shapes. It is observed clearly that the gain saturation is pulsewidth 

dependent and output saturation energy increases with the increase of pulsewidth. 

Comparing among the three pulse shapes, it is observed clearly that gain saturates at 

higher output energy for the Lorentzian input pulse shape with particular input pulse 

energy and achieve higher gain for all pulse widths.  

Fig. 4 shows comparison of the gain saturation among the different input pulse shapes, 

when (a) FWHM = 0.5 ps, (b) FWHM = 3 ps and (c) FWHM = 10 ps. For shorter pulse 

width (such as, ~0.5 ps), gain saturates at lower output energy for all three pulse shapes. 

From this observation, it can be said that, the output saturation energy is dependent on the 

input pulse width. Output saturation energy increases with the increase of input pulse 

width and decreases with the decrease of input pulse width (shorter pulse). Also the linear 

gain is very similar for all the pulse shapes when the input pulse energy is low (such as, 



~0.5 pJ). From the figures, we can see that, Gaussian pulse reaches to saturation quicker 

(green solid line) than the other two pulses. It can be also observed that, with the increase 

of pulse duration (i.e., pulsewidth), the gain saturation characteristics are becoming 

similar for Secant hyperbolic and Gaussian pulse shapes.  

When the pulse width is very short i.e., ~0.5 ps (as shown in Fig. 4(a)), the gain 

saturates at lower output pulse energies for all three input pulse shapes (i.e., low input 

pulse energies at the linear region) but the output saturation energy varies significantly 

for different input pulse shapes (i.e., higher input pulse energies at the nonlinear region). 

Hence, it is noted that the variation of output pulse energy is not much significant for low 

input pulse energies as it is in the linear region. However, the variation of output pulse 

energy varies significantly for higher input pulse energies as it is in the nonlinear region. 

These effects are clearly shown in Fig. 4(a) for different short input pulse shapes. In 

addition, when the input pulse widths increased to 3-ps and 10-ps (i.e., Figs. 4(b) and 

4(c)), then the output pulse energy variation is not significant for different input pulse 

shapes even for higher input pulse energies at the nonlinear region. These effects are 

clearly shown in Fig. 4(b) and 4(c) for different input pulse shapes. Therefore, for short 

input pulses i.e., 0.5 ps, it is clear that three identical lines for three different input pulse 

shapes (i.e., similar trend but not overlapped).  

However, with the increase of input FWHM (such as, 3 ps ~ 10 ps), the gain saturation 

characteristics is becoming very similar (i.e., mostly overlapped) for Secant hyperbolic 

and Gaussian pulses. That means with the increase of pulsewidths (>1 ps), the gain 

saturation characteristics has become more similar for Secant hyperbolic and Gaussian 

pulse. For all considered FWHM, higher gain saturation i.e., higher output energy has 

been obtained for Lorentzian pulse shape.  

 

4. Conclusion 

In conclusion, optical pulse propagation and gain saturation characteristics in an SOA 

are analyzed for different input pulse shapes. It can be observed from the output 

waveforms that the peak positions are shifted toward the leading edge due to the gain 

saturation of the SOA and higher output power has been calculated for Gaussian pulse at 

all considered input energies. Red shifting is occurred with higher input energy (1pJ-2 pJ) 



for Secant hyperbolic and Gaussian pulses but not for Lorentzian pulse.   That means the 

gain is not saturated (linear gain) for Lorentzian pulse at 2 pJ input energy. Lorentzian 

pulse requires more input energy than other two pulses to reach in saturation. However, 

for lower input energy (such as 500 fJ), no red shifting is occurred for any of the three 

pulses. Several dips can be observed at the higher frequency side of the output spectra 

due to the SPM effect. Also it can be observed that the highest output pulse energy was 

obtained by the Lorentzian pulse shapes. At low input pulse energies, the gain is 

unsaturated but with increasing of input pulse energies, the gain reaches to the saturation. 

The saturated output pulse energy increases with increasing of pulsewidth for all 

considered pulse shapes. The Gaussian pulse shape is reaching to the gain saturation 

faster compared to the Secant hyperbolic and Lorentzian pulses. Moreover, the gain 

saturation characteristics for Secant hyperbolic and Gaussian pulses are very similar 

when the pulsewidth is >1 ps.  

 

ACKNOWLEDGEMENT 

This research is supported by the Faculty of Science and Enginering, Curtin University, 

Perth, WA, Australia and Curtin University Postgraduate Student Association (CUPSA) 

for providing the postgraduate student travel support to attend the International 

Conferences in Spain and Singapore for paper presentation. 

 

 

References 

[1] P. P. Baveja, A. M. Kaplan, D. N. Maywar, G. P. Agrawal, “Pulse amplification in 

semiconductor optical amplifiers with ultrafast gain-recovery times,” in proc. of the 

SPIE 7598, Optical Components and Materials VII, vol. 7598, pp. 2-11, February, 

2010. 

[2] A. A. E. Aziz, W. P. Ng, Z. Ghassemlooy, M. H. Aly, and M. F. Chiang, 

“Optimisation of the key SOA parameters for amplification and switching,” in proc. 

of the 9th Annual Postgraduate Symposium on the Convergence of 

Telecommunications, Networking and Broadcasting, PGNET, Liverpool, pp. 107-

111, 2008. 



[3] A. A. Shalaby, “Characterisation and optimisation of the semiconductor optical 

amplifier for ultra-high speed performance,” Doctoral Dissertation, Northumbria 

University, Newcastle, UK, 2012. 

[4] X. Yang, Q. Weng, and W. Hu, “High-speed all-optical switches based on cascaded 

SOAs,” Selected Topics on Optical Amplifiers in Present Scenario, Dr Sisir Garai 

(Ed.), InTech, pp. 25-46, 2012. 

[5] M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, and P. J. Delfyett, 

“Subpicosecond pulse amplification in semiconductor laser amplifiers: Theory and 

experiment,” IEEE J. Quantum Electron., vol. 30, pp. 1122–1131, 1994.  

[6] M. J. Connelly, L. P. Barry, B. F. Kennedy, D. A. Reid, “Numerical analysis of 

picoseconds pulse propagation in a tensile-strained semiconductor optical amplifier 

with parameter extraction using frequency resolved optical gating,” Optical and 

quantum electronics, vol. 40, Issue. 5-6, pp. 411-418, April 2008. 

[7] Y. Said and H. Rezig “SOAs nonlinearities and their applications for next 

generation of optical networks,” Advances in Optical Amplifiers, Edited by Prof. 

Paul Urquhart, InTech, pp. 27-52, 2011. 

[8] S. D. Conte and Carl de Boor, Elementary Numerical Analysis: An Algorithmic 

Approach, Third Edition, McGraw-Hill Book Company Co., Singapore, 1980.  

[9] M. Razaghi, V. Ahmadi, and M. J. Connelly, “Comprehensive finite-difference 

time-dependent beam propagation model of counter-propagating picosecond pulses 

in a semiconductor optical amplifier,” IEEE/OSA Journal of Lightwave Tech., vol. 

27, No. 15, pp. 3162–3174, August 2009. 

[10] N. K. Das, Y. Yamayoshi, and H. Kawaguchi, “Analysis of basic four wave mixing 

characteristics in a semiconductor optical amplifier by the finite-difference beam 

propagation method,” IEEE Journal of Quantum Electronics, vol. 36, No. 10, pp. 

1184-1192, October 2000. 

[11] N. K. Das and N. C. Karmakar, “Nonlinear propagation and wave mixing 

characteristics of pulses in Semiconductor optical amplifiers,” Microwave and 

Optical Tech. letters, vol. 50, No. 5, pp. 1223-1227, May 2008. 

[12] S. R. Hosseini, M. Razaghi, and N. K. Das, “Analysis of ultrafast nonlinear 

phenomena’s influences on output optical pulses and four-wave mixing 



characteristics in semiconductor optical amplifiers,” Opt. Quantum Electron, vol. 

42(11–13), pp. 729–737, April 2011. 

[13] S. R. Hosseini, M. Razaghi, and N. K. Das, “Analysis of non-linear refractive index 

influences on four-wave mixing conversion efficiency in semiconductor optical 

amplifiers,” Opt. Laser Tech., vol. 44(3), pp. 528–533, April 2012. 

[14] N. K. Das, M. Razaghi, and S. R. Hosseini, “Four-wave mixing in semiconductor 

optical amplifiers for high speed communication,” in proc. of the 5th International 

conference on Computers and Devices for Communication 2012 (CODEC2012), 

Kolkata, India Dec. 16-19, 2012.  

[15] G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening 

of optical pulses in semiconductor laser amplifier,” IEEE Journal of Quantum 

Electronics, vol. 25, No. 11, pp. 2297-2306, November 1989.  

[16] P. Borri, S. Scaffetti, J. Mørk, W. Langbein, J. M. Hvam, A. Mecozzi, and F. 

Martelli, “Measurement and calculation of the critical pulsewidth for gain 

saturation in semiconductor optical amplifiers,” Optics Communications, vol. 164, 

pp. 51-55, June 1999. 

[17] G. P. Agrawal, “Nonlinear Fiber Optics”, Academic Press, Calif., San Diego, 1989.  

[18] A. Yariv, “Optical Electronics,” 4th Edition, Saunders College Publishing, San 

Diego, 1991.  

[19] E. G. Sauter, “Nonlinear Optics,” John Wiley & Sons, Inc. New York, 1996.  

[20] S. Kai, M. Premaratne, “Effects of SPM, XPM, and four-wave-mixing in L-band 

EDFAs on fiber-optic signal transmission,” IEEE Photonics Technology Letters, 

vol. 12, no. 12, pp. 1630-1632, Dec. 2000. 

[21] C. Dissanayake, M. Premaratne, I. Rukhlenko, and G. Agrawal, “FDTD modeling 

of anisotropic nonlinear optical phenomena in silicon waveguides,” Optics 

Express, vol. 18, pp. 21427-21448, 2010.  

[22] M. Premaratne and G. P. Agrawal, “Light Propagation in Gain Media: Optical 

Amplifiers,” Cambridge University Press, 2011.  

[23] A. Dienes, J. P. Heritage, C. Jasti, and M. Y. Hong, “Femtosecond optical pulse 

amplification in saturated media,” J. Opt. Soc. Am. B, vol. 13, pp. 725-734, 1996.  



[24] M. Y. Hong, Y. H. Chang, A. Dienes, J. P. Heritage, P. J. Delfyett, Sol Dijaili, and 

F. G. Patterson “Femtosecond self- and cross-phase modulation in semiconductor 

laser amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, 

no. 3, pp. 523-539, 1996.  

 

Fig. 1. Schematic diagram for the simulation of nonlinear pulse propagation in SOAs. 

Here, |V (τ, 0) |2 and |V (τ, z) |2 are the input and output (after propagating a distance z) 

pulses power or intensity of the SOA. 

 

Fig. 2 (i). Output waveforms for Secant hyperbolic pulse, Gaussian pulse and Lorentzian 

pulse when input pulse energy levels are (a) 2 pJ, (b) 1 pJ and (c) 500 fJ. 

 

Fig. 2 (ii). Output spectra for Secant hyperbolic pulse, Gaussian pulse and Lorentzian 

pulses when input pulse energy levels are (a) 2 pJ, (b) 1 pJ and (c) 500 fJ. 

 

Fig. 3. Gain saturation characteristics for different input pulse shapes with different 

FWHM, such as 0.5-ps to 10-ps. The input pulse shapes are: (a) Secant hyperbolic pulse, 

(b) Gaussian pulse, and (c) Lorentzian pulse. 

 

Fig. 4. Comparison of gain saturation characteristics for different types of input pulse 

shapes, when (a) FWHM = 0.5 ps, (b) FWHM = 3 ps and (c) FWHM = 10 ps. 
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