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A Spectrum Allocation Scheme Between Smart
Grid Communication and Neighbor

Communication Networks
Mohammad Fathi, Member, IEEE

Abstract—One key requirement of a smart grid communication
network (SGCN) is to provide wireless-enabled devices with a
frequency spectrum for data transmission. This spectrum can
be partially supplied from existing neighboring communication
networks (NCNs) via spectrum ordering. The scope of this paper is
to propose a coexistence scheme, in which NCNs declare their own
price per frequency channel and allow an SGCN to make decisions
on the number of channels to be ordered. Due to dynamic NCN
conditions and, accordingly, time-varying channel pricing, the
spectrum ordering by an SGCN over a time horizon is formulated
as a stochastic optimization problem. Having decoupled the prob-
lem over time, a dynamic spectrum allocation scheme is proposed.
As a result of this scheme, the required data transmission rate of
an SGCN is provided statistically. Numerical results demonstrate
the effectiveness of the proposed scheme from the viewpoint of the
grid operational cost.

Index Terms—Coexistence, optimization, smart grid communi-
cation, spectrum allocation.

I. INTRODUCTION

THE next power system generation in the form of a smart
grid (SG) is aimed to provide a unified structure of dis-

tributed power sources and consumers. In comparison with the
centralized and conventional model of power generation, an SG
offers several advantages from the perspective of both sources
and consumers [1]. The wide area monitoring and control of a
power system [2], along with the intelligent decision-making
requirement within the SG, necessitate a gridwide SG commu-
nication network (SGCN), through which different entities get
connected. Accordingly, the SG will be integrated with commu-
nication technologies, enabling the two-way information trans-
mission between customers and utilities [3]. This information is
used to enhance the grid flexibility and reliability, and to enable
the incorporation of various components such as renewable
energy resources and distributed microgenerators.

Motivations and challenges behind communication technolo-
gies to be adopted by an SGCN have been reviewed in [4]–[6].
In addition to the discussion of the technical specifications
of these technologies, SGCN requirements including security,
reliability, scalability, and the quality of service have been also

Manuscript received February 10, 2015; revised April 24, 2015; accepted
June 1, 2015.

The author is with the Department of Electrical Engineering, Faculty of
Engineering, University of Kurdistan, Sanandaj 66177-15177, Iran (e-mail:
mfathi@uok.ac.ir).

Digital Object Identifier 10.1109/JSYST.2015.2441637

determined in these works. In comparison with wired commu-
nication technologies, wireless communication can offer an SG
a greater degree of freedom for information collection, dissem-
ination, and processing [6]. For instance, to improve the SGCN
monitoring capability, the application of a wireless sensor net-
work as a monitoring technology was introduced in [7] and [8].
Integrating renewable energy sources using wireless commu-
nication was discussed in [9]. Furthermore, Lu et al. [10]
have addressed the fundamental question on how to design,
implement, and practically integrate efficient communication
infrastructures with power systems.

Several key challenges are imposed on the design of wireless
communication for an SG. On one hand, a large amount of
information is generated by sensors and renewable energy
sources that require a heterogeneous quality of service [11].
On the other hand, there is a shortage on the limited wireless
spectrum with increasing interference. As a consequence, the
literature on this issue have considered a three-tiered structure
for SGCN consisting of a set of home area networks (HANs),
neighborhood area networks (NANs), and wide area networks
(WANs) [12], [13]. A HAN consisting of home appliances pro-
vides energy efficiency management and a demand response. A
NAN connects HANs through wireless-enabled devices, which
are usually known as smart meters (SMs). Finally, a WAN, as
the backbone network, provides the connection between NANs
and the utilities.

Advanced metering infrastructure (AMI) is an important sys-
tem in an SGCN [4]. This system aims at providing consumers
with the knowledge of their energy usage and the capability of
monitoring and control. The SMs installed within consumers’
houses are basic components of the AMI. They act as gateways
between HANs and NANs to gather information from con-
sumer households and to relay information to the corresponding
utilities. In contrast to conventional meters, SMs provide the
network utilities with consumers’ consumption information
and demand profiles. This information is crucial for network
operators to provide economic power dispatching and demand-
side management [14]–[16].

Basically, two types of information flows exist in the AMI.
The first type is from sensors and electrical appliances to SMs,
and the second type is between SMs and the utility data centers.
Although the first data flow can be accommodated through
short-range technologies such as ZigBee, the second data
flow needs broadband cellular technologies [5]. Moreover, this
flow contains heterogeneous traffic such as control commands,
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Fig. 1. Overall network model.

multimedia sensing data, and meter readings that need priority-
based traffic scheduling schemes due to their quality-of-service
requirements [17], [18]. As a result, SMs as transmitting nodes
in a wireless SGCN need to be provided with efficient spectrum
resources.

To address this issue, a cognitive-radio-based SGCN has
been introduced [11], [13]. A cognitive radio refers to the
potentiality that wireless systems opportunistically utilize spec-
trum holes in neighboring networks to mitigate spectrum de-
ficiency. The cross-layer designs of a cognitive-radio-based
SGCN to satisfy differential quality-of-service classes have
been proposed in [19] and [20]. The reliability is low since SG
users as secondary users should leave the spectrum upon the
arrival of primary users. To provide spectrum access diversity, a
joint spatial and temporal spectrum-sharing technique has been
proposed in [21] to enhance spectrum-sharing opportunities to
increase the communication reliability for demand response
management. Finally, a hybrid spectrum access in a cognitive-
radio-based SGCN to support the quality of service has been
proposed in [22]. The SG operators have access to a number of
leased spectrum bands, and at the same time, they are allowed
to use a portion of cognitive spectrum bands opportunistically.
The objective is to minimize the number of leased channels.

The design objective in this paper is to provide SMs, as
wireless-enabled transmitting nodes in an SGCN, with effi-
cient frequency channels to establish a reliable communication
infrastructure. In particular, we investigate the coexistence of
an SGCN with a set of neighboring communication networks
(NCNs) in order to be provided with the required frequency
channels. Considering the stochastic user arrival rates in NCNs,
an immediate question from the SGCN side is how to order the
frequency channels from NCNs to provide an aggregate data
transmission rate for within SMs. Due to the cost of spectrum
ordering, this issue raises the economic exploitation of channels
within the grid [23]. The outcome of spectrum ordering could
be interesting in this perspective. Therefore, we employ the
real-time pricing of frequency channels as a motivation for the
interactions between an SGCN and NCNs. The objective is to
minimize the SGCN operational cost and to satisfy a required
data rate in average at the same time. With the solution of this
problem, an iterative stochastic algorithm is proposed to capture
the randomness of the NCNs’ user arrival rates and to take
advantage of this randomness to perform spectrum ordering
efficiently.

This paper is organized as follows. The system model and the
problem formulation are presented in Section II. The problem
solution and the derived algorithm are proposed in Section III.
As two more proposed solutions, a linear integer formulation
and a greedy algorithm are given in Sections IV and V, respec-
tively. Numerical results are given in Section VI, and this paper
is concluded in Section VII.

II. SYSTEM MODEL

Consider a set N Δ
= {n : n = 1, . . . , N} of NCNs intercon-

nected through a wired or wireless backbone, as shown in
Fig. 1. Each NCN can be considered a single cell in cellular
networking. Within each NCN, there is a set of users served
by the corresponding NCN base station (BS). Furthermore, the
SMs within the area of NCNs are connected together and form a
distinct SGCN that is managed and operated by power utilities.
The SMs forward the household consumers’ information to the
corresponding BS, i.e., the SGCN BS.

The maximum number of frequency channels available at
each NCNn is indicated by Bn. NCNn uses these dedicated
channels to serve the users within and partly to serve the SGCN
upon its request. The user arrival rate within each NCNn is
assumed to be λn per time instant.

Consider a market of channel allocation in which NCNs
supply the channel demand of the SCGN. In other words, the
spectrum demand of the SGCN can be partially supplied from
the frequency channel resources in NCNs. The price per chan-
nel announced by each NCN BSn is dynamic and is assumed to
be a differentiable and convex function of the user arrival rate,
which is denoted by fn(λn). It is reasonable that each NCN
increases the price when the user arrival rate increases.

Let kn be the number of channels to be ordered and al-
located from NCNn to the SGCN. From the SGCN point of
view, the channel allocation from NCNs can be considered a
decision-making problem, in which the number of channels
kn purchased from each NCNn should be determined. The
objective in this problem is to minimize the cost of purchased
channels during a time horizon and at the same time to provide
a target aggregate data rate R for the SMs in the SGCN. It
is understood that this rate can satisfy the quality-of-service
requirements within the SGCN during this time horizon. Here,
under the assumption of time-varying user arrival rates within
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NCNs, a statistical approach is developed toward the total cost
minimization as

min
K

N∑
n=1

Eλn
[knfn(λn)] (1a)

s.t.
N∑

n=1

Eγn
[kn log2(1 + γn)] ≥ R (1b)

kn ≤ Bn ∀n ∈ N (1c)

where K = {kn}n∈N is the vector of optimization variables.
γn is the SNR achieved within the SGCN over the spectrum
portion purchased from NCNn. It is observed in (1b) that this
parameter can be interpreted as the quality of NCNn channels
to be used within the SGCN. Moreover, Eλn

and Eγn
denote

the expectation with respect to λn and γn, respectively. In
this problem, parameters Γ = {γn}n∈N and Λ = {λn}n∈N are
assumed as random variables varying over time but without
any assumption on their probability density functions. Con-
straint (1b) satisfies the required data transmission rate within
the SGCN in average, and constraint (1c) restricts kn to the
maximum available channels at each NCN.

Problem (1) is linear integer programming and can be solved
using software packages, albeit it is NP-hard with exponen-
tial complexity. However, this requires the availability of Γ =
{γn}n∈N and Λ = {λn}n∈N a priori for the whole time in the
scope of the problem. This knowledge is not always available.
Alternatively, we are interested in progressively solving this
problem over time, when each γn and λn is realized at each
time instant t, to come up with a dynamic spectrum ordering
scheme in the sequel section.

It is noteworthy that the proposed model (1) has the feasi-
bility to be used in cognitive-radio-based infrastructures. Sup-
pose that NCNs and the SGCN are considered primary and
secondary networks, respectively. In this case, the required
rate R of the SGCN in (1b) can be partially supplied from
both the licensed and unlicensed channels of NCNs. To utilize
unlicensed channels, the SGCN first performs spectrum sensing
and accordingly detects the idle spectrum holes of NCNs to
be used for data transmission, albeit without any price. The
achieved rate on this spectrum is then computed. Let this be
indicated by R̂. To determine the number of licensed spectra
purchased from NCNs, the SGCN subtracts R̂ from the target
rate R. In other words, it replaces R by R− R̂ in (1b).

III. DYNAMIC SPECTRUM ORDERING

The most significant challenge in the solution of problem
(1) is due to the integer optimization variables and coupling
expectations. The solution would be straightforward if we use
integer relaxation to temporarily consider kn as continuous
variables and then to decouple the aggregate rate constraint.
This motivates the incorporation of (1b) into the objective
function and forms a Lagrangian function as

L(K, μ)
Δ
=

N∑
n=1

Eλn
[knfn(λn)]−μ

(
N∑

n=1

Eγn
[kn log2(1+γn)]−R

)

(2)

where μ ≥ 0 is the Lagrange multiplier. Optimizing with re-
spect to primal variable K yields the following dual function:

D(μ)
Δ
= inf

K
{L(K, μ)| kn ≤ Bn} (3)

which provides a lower bound on the optimal solution of (1) for
every feasible variable μ [24]. Hence, the tightest lower bound
is obtained by the dual problem as follows:

max
μ≥0

D(μ). (4)

Prior to solving the problem in the dual domain, D(μ) in (3)
needs to be evaluated. Hence, L(K, μ) is rewritten as

L(K, μ)=

N∑
n=1

kn (Eλn
[fn(λn)]−μEγn

[log2(1+γn)])+μR.

(5)
Due to the decomposable form of L(K, μ), we can take
advantage of the dual decomposition to decouple (3) into sub-
problems across NCNs as

min
kn

kn (Eλn
[fn(λn)]− μEγn

[log2(1 + γn)]) (6a)

s.t. kn ≤ Bn (6b)

for all n ∈ N . These subproblems are convex and can be solved
using the iterative subgradient method [25] by the SGCN if it
has the knowledge of fn(λn) and γn for all NCNs. Considering
each subproblem n at time instant t, with the given kn(t) and
Lagrange multiplier μ(t), the value of kn(t) can be updated
using the subgradient method as

kn(t+1)=[kn(t)−α (Eλn
[fn(λn)]−μEγn

[log2(1+γn)])]
Bn

0

(7)

where [x]Bn
0 =min{Bn,max{0, x}}. Moreover, (Eλn

[fn(λn)]−
μEγn

[log2(1 + γn)]) is the subgradient of (6a) with respect to
kn, and α is the step size.

Having obtained kn(t) for all n and, accordingly, D(μ) in
(3), it is time to solve dual problem (4). Due to its convexity, it
can be similarly solved using the iterative subgradient method.
Beginning with an initial μ(0), given μ(t) at time t, it can be
updated as

μ(t+1)=

[
μ(t)−α

(
N∑

n=1

Eγn
[kn(t) log2(1+γn)]−R

)]+

(8)

where [x]+ = max(0, x). Inspecting (6), Lagrange multiplier
μ(t) can be interpreted as the marginal benefit of the SGCN
from transmitting a unit of data at time instant t.

Gradient iterations (7) and (8) are efficient in finding the
optimal solution. The key knowledge we need in these equa-
tions is the probability density functions of every λn and γn,
only with which we can evaluate the expected values Eλn

and
Eγn

, respectively. The assumption of the known probability
density functions of λn and γn may be reasonable for theo-
retic studies. However, the importance of practical spectrum
allocation schemes motivates the optimal strategy by learning
the parameter time variations on the fly. Interestingly, stochastic
gradient iterations can be developed to solve (7) and (8) without
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the probability density functions of λn and γn. To this end,
consider dropping Eλn

and Eγn
from (7) and (8) to devise

online iterations for dynamic decisions based on the per-instant
realizations of λn(t) and γn(t), respectively, as

k̂n(t+1)=
[
k̂n(t)−α (fn (λn(t))−μ̂(t) log2 (1+γn(t)))

]Bn

0

(9)

μ̂(t+1)=

[
μ̂(t)− α

(
N∑

n=1

(
k̂n(t) log2 (1+ γn(t))

)
−R

)]+

(10)

where hats are to stress that these iterations are stochastic
estimates of those in (7) and (8), respectively. Provided that
the user arrival rate and SNR of all NCNs are stationary and
ergodic, stochastic gradient iterations (7) and (8), and ensemble
gradient iterations (9) and (10) produce a pair of primary and
averaged systems [26]. The convergence of such stochastic
gradient iterations can be established statistically, provided that
α is small enough. Such a proof for a typical problem is
provided in the Appendix.

Given the solution of subproblems (6) at the SGCN, we
are now in position to propose a dynamic spectrum allocation
(DSA) scheme formally stated in Algorithm 1. This scheme,
which is run by the SGCN BS, is based on the iterative updates
of the optimization variables in (9) and (10). At the beginning
of each iteration t, the SGCN BS estimates γn(t) for all NCNs
in step 3, assuming that the SNR remains constant while the
allocation is being decided. At the same time, all NCNs forward
their own price functions fn(λn) to the SGCN BS in step 4.
This is the only information required to be sent to the SGCN
BS through the high-capacity links that interconnect the BSs,
resulting in a low signaling overhead of the DSA. Then, at every
iteration, the SGCN BS solves spectrum subproblems (6) to
determine the number of channels to be allocated from NCNs in
steps 5 and 6. Note that round(·) is the nearest integer function
to return an integer number of channels. Finally, in step 7, at the
end of each iteration, the SGCN BS notifies the NCNs’ BSs of
the spectrum allocation decisions.

Algorithm 1 DSA algorithm at the SGCN BS

1: Initialization: μ̂(0) = μinit, λ̂n(0) = λinit∀n ∈ N , t = 0.
2: while t ≤ T do
3: estimate γn(t) for all NCNs.
4: receive price functions fn(λn(t)) from NCNs.
5: update k̂n(t) and μ̂(t) using (9) and (10).
6: set the number of ordered channels from NCN n to

round(k̂n(t)).
7: notify every NCN of the number of ordered channels.
8: t = t+ 1.
9: end while

As in any iterative implementation, a concern is raised on
the computational complexity. The DSA takes advantage of the
dual decomposition to overcome the exponential complexity

of (1). By decoupling the problem into subproblems over
NCNs, the complexity becomes linear in the number of NCNs.
Therefore, the overall complexity over T iterations becomes
O(NT ) that is reasonable for online implementations. More-
over, in SG communication, household SMs are immobile,
and accordingly, the coherence time of the shared frequency
channels is high enough to not be affected by the time delay of
running the DSA at each time instant t.

IV. LIP FORMULATION

In the derived iterative manner of the DSA algorithm, at each
time instant t, the SGCN BS is provided with the instantaneous
values of fn(λn(t)) and γn(t) for all n. With these values in
hand, we are motivated to formulate the decision making at
each time instant t as a deterministic linear integer problem
(LIP) in

min
{kn(t)}n∈N

N∑
n=1

kn(t)fn (λn(t)) (11a)

s.t.
N∑

n=1

kn(t) log2 (1 + γn(t)) ≥ R (11b)

kn(t) ≤ Bn ∀n ∈ N . (11c)

In comparison with (1), this problem has been decoupled
over the time and can be solved by off-the-shelf solvers.
Although the resulting problem is still NP-hard, there exist
several techniques, e.g., branch-and-cut techniques, and soft-
ware packages that can efficiently find the optimal solution
by frequently avoiding an exhaustive search. In this paper, the
optimal solution of the LIP is achieved by calling the GNU
linear programming kit [27]. This solution can be used as a
benchmark for comparison with the proposed DSA algorithm.

V. GREEDY ALGORITHM

In addition to the LIP formulation, an alternative but subop-
timal approach to channel allocation is to simply use channels
from NCNs with low announced prices. In this approach, which
is called the greedy algorithm, the SGCN BS chooses NCNs
with the minimum announced prices and tries to supply its
own required rate from these NCNs. The complexity of this
algorithm is less than that of the DSA algorithm. However, the
performance is certainly degrading as the greedy algorithm does
not take channel qualities into account for channel allocation.

This algorithm is formally described in Algorithm 2. After
some required initializations in step 1, the SGCN BS chooses
the NCN n∗ with the minimum price in step 3, and in step 4, it
determines the number of required channels kn∗(t) to supply its
own demand rate Rtemp. In the case of requiring a larger rate,
i.e., Rtemp > 0, in the next loop iteration, the next NCN with
the minimum price is chosen to supply the rest of the required
rate. This process continues until the satisfaction of aggregate
rate R.

Note that �·� and \ are used as the floor and set minus
operations, respectively.
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Fig. 2. Statistical convergence of the Lagrange multiplier.

Algorithm 2 Greedy algorithm at time instant t

1: Initialization: Rtemp= R, Ntemp =N , kn(t)=0∀n ∈ N .
2: while Rtemp > 0 do
3: n∗ = argminn∈Ntemp

fn(λn(t)).
4: kn∗(t) = min(�Rtemp/ log2(1 + γn∗(t))�, Bn∗).
5: Rtemp = Rtemp − kn∗(t) log2(1 + γn∗(t)).
6: Ntemp = Ntemp \ n∗.
7: end while

VI. NUMERICAL RESULTS

To evaluate the performance of the DSA algorithm in com-
parison with the LIP and the greedy algorithm, first, consider
N = 6 NCNs with arrival rates followed by a Poisson random
variable with a mean of five users per time instant for all NCNs,
i.e., a homogeneous network. The price function is assumed
to be fn(λn) = λ2

n + λn + 1 for all n. Moreover, within each
NCN, there are Bn = 64 channels to be partly used by internal
users and the SGCN. From the SGCN point of view, these
channels are assumed to be flat Rayleigh fading channels,
where their SNR is assumed to follow an exponential random
variable with a mean of 0 dB. The required rate of the SGCN
is assumed to be R = 50 b/s/Hz. With this setup, the DSA, LIP,
and Greedy algorithms are run for 2000 realizations of user
arrival rates and SNRs.

Prior to the performance comparison between the aforemen-
tioned schemes, it is interesting to investigate the statistical
convergence in the DSA algorithm, which is discussed in the
Appendix. Toward this, the Lagrange multiplier μ̂ over the
iterations in (10), with initial value μ̂(0) = 0 and step size α =
0.002, is shown in Fig. 2. As observed, it achieves statistical
convergence after some transient iterations. In other words,
long-term variations occur around a statistical mean. These
variations over time are due to the randomness of user arrival
rates and SNRs.

Due to the random nature of user arrival rates and channel
qualities, the number of channels allocated from NCNs is time
varying. To illustrate the effectiveness of the DSA scheme, the

Fig. 3. Probability density function of the total allocated channels per time
instant.

probability density function of the total number of required
channels allocated to the SGCN per time instant during the time
horizon of a length of 2000 instants is shown in Fig. 3. As a
key observation, there is no channel allocated to the SGCN by
the DSA in mostly 50% of time instants in the time horizon.
Indeed, the DSA postpones providing the required rate R to
time instants when the price and channel qualities are good
enough for channel ordering. It takes advantage of the price
and the SNR dynamics over time to determine the number of
demand channels from NCNs. In particular, the SGCN prefers
to order a higher number of channels and accordingly to provide
a higher data rate when the situation is desired, i.e., a low
price and a high SNR. On the other hand, it does not prefer
to order channels when the situation is not desired. In other
words, the DSA algorithm takes advantage of the time diversity
over the time horizon to minimize the cost. However, this is
not the case for the LIP and greedy algorithms. These schemes
need to satisfy the required data rate per time instant. As a
consequence, they have channels allocated to the SGCN during
the whole time horizon. There is no time instant with zero
required channels. They approximately need 50 channels per
time instant. This is a key point in the performance comparison
of these algorithms, which is to be considered in the sequel.

As another observation in Fig. 3, the probability of ordering
a large (small) number of channels in the LIP is lower (higher)
than that of the greedy algorithm. This is due to the ability of
the LIP to provide the SGCN with optimal channels at each
time instant.

Following the aforementioned observations, the average
number of channels allocated from individual NCNs and the
corresponding average cost are shown in Figs. 4 and 5, re-
spectively. In all schemes, the number of allocated channels
and, accordingly, the cost from individual NCNs are mostly
the same due to their equal average arrival rates and channel
qualities. Based on the discussion in Fig. 3, the DSA scheme
takes advantage of the time diversity over the time horizon and
allocates the smallest average number of channels to the SGCN
in Fig. 4. Accordingly, it burdens the lowest cost to the SGCN
in Fig. 5. Moreover, the number of allocated channels and the
cost of the LIP are smaller than those of the Greedy algorithm,
as expected.
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Fig. 4. Homogeneous network: Average number of allocated channels.

Fig. 5. Homogeneous network: Average cost.

Now, consider N = 6 of NCNs but with different user arrival
rates, i.e., a heterogeneous network. NCNs are enumerated from
1 to 6 with average arrival rates as 1, . . . , 6 users per time
instant, respectively. Channel qualities are assumed to be the
same for all NCNs. The setup is run for 2000 time instants with
Poisson user arrival rates and exponential channel qualities. The
average number of channels allocated from individual NCNs
and the corresponding average cost are shown in Figs. 6 and 7,
respectively. Similar to the homogeneous case, the DSA scheme
achieves lower costs for all NCNs, except for the first NCN.
This is the NCN with the smallest average cost. That is why it
has been given more weight by the DSA scheme. Moreover, in
all schemes, the number of ordered channels decreases as the
average user arrival rate increases. This is due to the increasing
property of price function fn(λn) with respect to λn and the
tendency of the SGCN in all schemes to order channels from
low-price NCNs.

Economically, increasing the number of producers causes
cost reduction as a consequence of diversity. To verify this
fact, in a homogeneous network setup, we vary the number of
NCNs and investigate the impact of this variation on the average
cost per time instant. It is noteworthy that the required rate is
assumed to be the same for all instances, i.e., R = 50 b/s/Hz.
The average cost versus the number of NCNs is shown in Fig. 8.

Fig. 6. Heterogeneous network: Average number of allocated channels.

Fig. 7. Heterogeneous network: Average cost.

Fig. 8. Average cost versus the number of NCNs.

As shown, the cost reduces in all schemes by increasing the
number of NCNs. Indeed, all schemes take advantage of the
NCN diversity to decrease the cost when the number of NCNs
increases. Increasing the number of NCNs and, accordingly, the
number of channels increases the probability of ordering high-
quality channels. This results in ordering a lower number of
channels and, consequently, a lower cost. Moreover, due to the
time diversity, the DSA scheme achieves the lowest cost in all
instances, as expected.
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VII. CONCLUSION

The conclusion of this paper is twofold. The first is on the
NCN diversity. Increasing the number of NCNs and, accord-
ingly, the number of available frequency channels increases the
probability of ordering channels with high SNRs. This results
in a lower number of channels for the required rate satisfaction
and, as a consequence, a gain in the cost reduction for all
schemes. The second is on the time diversity. By allowing the
DSA scheme to provide the required rate in average over the
time horizon, it achieves the opportunity to take advantage of
both the price and the SNR dynamics over time to adapt the
number of purchased channels. Indeed, the lower (higher) the
price per channel in a time instant, the higher (lower) the num-
ber of purchased channels. The LIP and the greedy algorithm
are out of this gain, as they need to provide the required rate at
every time instant.

APPENDIX

CONVERGENCE OF STOCHASTIC ITERATION

Without loss of generality, consider the following problem:

min
x

Er [f(x, r)] (12)

where r is a random variable, and f(x, r) is a convex function
in x. To find the optimal solution x∗ and the optimal value p∗ =
Er[f(x

∗, r)], the following gradient iteration is used:

x(t+ 1) = x(t)− αg(t) (13)

where α is the step size, and g(t) is the gradient of f(·) with

respect to x(t), i.e., g(t)
Δ
= ∇fx(x(t), r(t)). Taking the norm-2

of (x(t+ 1)− x∗), we derive

‖x(t+ 1)− x∗‖2 = ‖x(t)− αg(t)− x∗‖2

= ‖x(t)− x∗‖2 − 2αg(t) (x(t)− x∗)

+ α2 ‖g(t)‖2 . (14)

Due to the convexity of f(x(t), r(t)) in x(t), the following
inequality holds [25]:

f (x∗, r(t)) ≥ f (x(t), r(t)) + g(t) (x∗ − x(t)) . (15)

Applying this inequality to (14), it is written as

‖x(t+ 1)− x∗‖2 ≤ ‖x(t)− x∗‖2

− 2α {f (x(t), r(t))− f (x∗, r(t))}+ α2 ‖g(t)‖2 . (16)

Taking a similar recursive approach from x(t) to x(0) as an
initial value, we derive

‖x(t+ 1)− x∗‖2 ≤ ‖x(0)− x∗‖2 + α2
t∑

i=0

‖g(i)‖2

− 2α

t∑
i=0

{f (x(i), r(i))− f (x∗, r(i))} . (17)

Since the left-hand side is always nonnegative, then we have

2α

t∑
i=0

{f (x(i), r(i))− f (x∗, r(i))}

≤ ‖x(0)− x∗‖2 + α2
t∑

i=0

‖g(i)‖2 . (18)

Now, consider the following two assumptions.

1) ‖g(i)‖ ≤ G for all i.
2) ‖x(0)− x∗‖2 ≤ R2.

With reference to the system model in Section II, these
assumptions are reasonable and can be provided in the model.
Dividing both sides of (18) by 2αt, it is concluded that

1

t

t∑
i=0

{f (x(i), r(i))− f(x∗, r(i))} ≤ R2

2αt
+

α2tG2

2αt
. (19)

If t → ∞, by the law of large numbers, we have

f(x, r)− p∗ ≤ α

2
G2 (20)

wheref(x,r)=(1/t)
∑t

i=0f(x(i), r(i)), andp∗=Er[f(x
∗, r)]=

(1/t)
∑t

i=0 f(x
∗, r(i)).

Since f(·) is a convex function, by Jensen’s inequality [24],
we have f(x, r) ≥ f(x̄, r), and consequently, we have

f(x̄, r)− p∗ ≤ α

2
G2. (21)

Choosing step size α to be small enough, we conclude that
gradient iteration (13) converges statistically. In other words,
as t goes to infinity, the solution derived from gradient iteration
(13), i.e., f(x̄, r), converges to the optimal value p∗.
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