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Abstract – In this paper a nonlinear model predictive control 
(NMPC) based on a piecewise linear wiener model is presented. 
The nonlinear gain of this particular wiener model is 
approximated using the piecewise linear functions. This 
approach retains all the interested properties of the classical 
linear model predictive control (MPC) and keeps computations 
easy to solve due to the canonical structure of the nonlinear 
gain. The presented control scheme is applied to a pH 
neutralization process and simulation results are compared to 
linear model predictive control. Simulation results show that the 
nonlinear controller has better performance without any 
overshoot in comparison with linear MPC and also less steady-
state error in tracking the set -points. 
 

 
I. INTRODUCTION 

 
There are very few design techniques that can be proven to 

stabilize processes in the presence of nonlinearities and 
constraints. Model Predictive Control (MPC) has been one of 
the successful controllers in manufacturing industries for the 
past two decades. MPC refers to a class of computer control 
algorithms that control the future behavior of a plant through 
the use of an explicit process model. At each control interval 
the MPC algorithm computes an open-loop sequence of 
manipulated variable adjustments in order to optimize future 
plant behavior. The first input in the optimal sequence is 
injected into the plant, and the entire optimization is repeated 
at subsequent control intervals [1]. By now, the application 
of MPC controllers based on linear dynamic models cover a 
wide range of applications and linear MPC theory can be 
considered quiet mature. Nevertheless, many manufacturing 
processes are inherently nonlinear and there are cases where 
nonlinear effects are significant and can not be ignored. 
These include at least two broad categories of applications 
[1]: 
1- Regulator control problems where the process is highly 
nonlinear and subject to large frequent disturbances (pH 
control, etc.) 
2- Servo control problems where the operating points 
change frequently and span a wide range of nonlinear 
process dynamics (polymer manufacturing, ammonia 
synthesis, etc.) 

In fact higher product quality specifications and increasing 
productivity demands, tighter environmental regulations and 
demanding economical considerations require to operate 

systems over a wide range of operating conditions and often 
near the boundary of admissible region [2]. Besides the 
operating point in some batch processes is not in steady-state 
and all of the operations are performed in transient conditions 
[3]. Under these conditions linear models are often not 
sufficient to describe the process dynamics adequately and 
nonlinear models must be used. 

Many of the current NMPC schemes are based on physical 
models of the process. However, in many cases such models 
are difficult to derive, and are often not available at all. In 
these cases it makes sense to use a nonlinear empirical 
model, identified from input-output measurements. Some 
works where this approach has been followed are for 
instance: [4] where a nonlinear predictive control scheme 
based on radial basis functions models is proposed, [5] and 
[6] where the NMPC is based on a Hammerstein model, and 
[6–9], where the NMPC is based on a Wiener model. In all 
these works the paradigmatic application has been pH 
neutralization processes. In other cases (e.g. CSTR and 
polymerization reactor processes) a nonlinear model 
predictive control based on a Wiener model with a piecewise 
linear gain is addressed in [10].  

 In particular, Wiener models have a special structure that 
facilitate their application to NMPC. These models consist a 
linear dynamic element is followed by a static nonlinearity 
and can represent many of the nonlinearities commonly 
encountered in industrial processes. Due to the static nature 
of the nonlinearities, they can be removed from the control 
problem. This fact generalizes the well-known gain-
scheduling concept for nonlinear control.  Due to the 
presence of some potential computational difficulties, an 
implicit inversion of the nonlinear static gain is necessary.  

In this work, the linear dynamic element uses a state space 
model and the static nonlinear element uses the piecewise 
linear approximation for the process model. This approach 
retains all the interesting properties of the classical linear 
MPC while keeping the computations easy to solve due to 
the canonical structure of the nonlinear gain. 

The paper is organized as follows. In Section 2 a Wiener 
model with a piecewise linear representation for the 
nonlinear gain is presented. In Section 3, nonlinear model 
predictive control based on piecewise linear wiener model is 
described. The simulation results for identification and 
control of pH neutralization process are given in section 4. 
Finally, in Section 5, some concluding remarks are discussed. 
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II. WIENER MODEL IDENTIFICATION 
 

A. Piecewise linear wiener model 
Let us assume that the system to be controlled can be 

described by the following discrete-time, nonlinear, state-
space model: 

))(),(()1( kukxfkx =+  (1)  

))()(()( kdkxgky +=   (2)   

where : imn nf R R R× →  and omn RRg ×→:  are twice 
continuously differentiable functions, nRx∈  is a vector of n  
state variables, imRu ∈ is a vector of im process inputs or 

manipulated variables, omRd ∈ is a vector of om  additive 

disturbance variables omRy∈ is a vector of om  process 
outputs and k  is the sample time. Bounds on the 
manipulated variable as well as on the system outputs are 
assumed, as follows: 

,)( ul ykyy ≤≤  (3) 

,u)k(uu ul ≤≤  (4) 

.u)k(uu ul ∆≤∆≤∆  (5) 

In this paper, the possibilities and the advantages of the 
use of a specific Wiener approximation to represent the 
model of the process are analyzed. A Wiener model consists 
of a dynamic linear block (H1) in cascade with a static 
nonlinearity at the output (H2), as shown in Fig. 1, where 

omRkv ∈)( is an intermediate signal which not necessarily has 
a physical meaning. 

 

 
Fig. 1. The wiener model 

 
There are several options to describe the linear dynamic 

block in wiener models. For examples, some of the used 
representations include convolution models (step or impulse 
responses), ARMAX models, ARX models, state-space 
models, etc [11]. In this application, a state space model is 
used as follows: 
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For the static nonlinear element (H2), the use of continuous 
piecewise linear (PWL) functions is proposed. PWL 
functions have been proved to be a very powerful tool for 
modelling and analyzing nonlinear systems [12]. It can be 
proved that any nonlinear function f , : o om mf R R→ can 
uniquely be represented as [12]:  

)v(C)v(f TΛ=   (7)                                

where, the vector 00 1[ , ,..., ]m TT T TΛ = Λ Λ Λ is the elements of 

the basis and 
00 1[ , ,..., ]T T T T

mC C C C= that every vector iC is a 

parameter vector associated to the vector function iΛ .   
’                                       

In our application, as shown in fig. 2, the function is 
DDHf →= :2 , being omRD ∈ . The domain and the image of 

the PWL function share the same dimension in this 
application. Moreover, if we assume that the function f  of 
the system is invertible (this is a reasonable assumption for a 
large set of process models), it is possible to define the 
inverse function as 1−f , such that ))((1 vffv −= . This 
function is also unique and it is a PWL [11].   

 

                      
Fig. 2. The piecewise linear wiener model. 

 
B. Test Design 

Some important factors which must be considered in 
designing the identification test for nonlinear systems are: 
duration of the test signal, amplitude and shape of the test 
signal, the spectrum of the test signal (the average switching 
time), correlation of the test signal in each channel, and the 
number of manipulated variables in each test.  

Since in nonlinear systems the test time depends mainly on 
the number of parameters in the model and the level of noise 
and unmeasured disturbances, it is recommended longer test 
time in comparison with linear systems. This is typically 
considered about 16-25 times of the settling time of the 
process. The other factors may be included by choosing one 
of the following test signals [13]: 
1- Stair Test: In this type of test the width of the pulses and 
their numbers must be selected properly. 
2- Generalized Multiple-level noise (GMN): This type of 
test which is also used here is a multi-level extension of 
generalized binary noise. In this test the amplitude and the 
number of pulses must be selected suitably. The number of 
levels on this test is equal or greater than the degree of 
nonlinear polynomial which must be identified. Moreover, if 

swT  is the average switching time of the test then Tsw=Ts/3   
where sT  is the 98% of the settling time of the process. 
3- Filtered white noise: The flexibility in shaping the 
spectrum of this type of signal is its main advantage. Each 
spectrum may be realized with a proper filter. A first order 
low-pass filter is often suitable for this purpose.  

 
C. Wiener model identification and inverse model evaluation 

Different Wiener model identification approaches can be 
found in the relevant literature. A general classification of 
these approaches is the following: 
1- The N-L approach. First the output static nonlinearity is 
determined, using steady-state data. Then the dynamic linear 
block is identified, being the intermediate signal v generated 
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from the output signal using inverse non-linearity mapping 
[14]. 
2- The L-N approach. First the linear block is identified 
using a correlation technique; after that, the intermediate 
signal v is generated from the input signal and finally the 
static non-linearity is estimated [15]. 
3- The simultaneous approach. Parameters of the linear 
block and the static non-linearity are estimated at the same 
time.  

The second approach, which is used in this paper, is 
straightforward and ensures an accurate description of the 
static nonlinearity. 

In this paper a GMN signal is used to generate dynamic 
data. The nonlinear static gain is identified using dynamic 
and steady-state input–output data. A standard identification 
algorithm and the Toolbox [16] based on the least-square 
method were respectively used to identify the linear dynamic 
part and the static PWL function. This Toolbox allows not 
only obtaining a nominal model but also the uncertainty band 
enclosing all the available data. 

In order to implement the NMPC scheme that is described 
in the next section, a good representation of the inverse of the 
non-linearity is necessary. To identify it, some approaches 
are available [10, 17]. Since problems of small dimension are 
dealt with here and useful data for the identification process 
are available, the direct identification has been chosen in this 
paper. This approach identifies the nonlinear element of 
model by switching inputs and outputs. 

 
III. THE NONLINEAR MODEL PREDICTIVE CONTROL 

BASED ON PIECEWISE LINEAR WIENER MODEL 
 

The control problem to be solved is to compute a sequence 
of inputs )(ku∆ { }Mk ,...,1= that will minimize the following 
dynamic objective: 

1

1 0
( ) ( )

j j
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= =

= + − + ∆ +∑ ∑  (8) 

Subject to model equations and to inequality constraints  
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Where P is the prediction horizon, M is the control horizon, 
r is the desired set point, the relative importance of  the 
objective function contributions is controlled by setting the 
time dependent weight matrices jQ  and jR . Beyond the 
control horizon, the control signal is assumed to be constant 
( PMjjk ,...,,0)( ==+∆ ). Once )(ku∆ is computed, following 
the receding horizon principle, only the first element of the 
optimal control sequence is used as the current control value. 
Then the horizon shift one step forward in time and the 
whole procedure is repeated.  
     Let us now consider the Wiener model shown in Fig. 2. If 
at time k, the future state and behavior of the plant is 
assumed to be known, they can be written in vector form as 
follows: 

( ) ( 1) ( 2) ( )
TT T Tk v k v k v k P = + + + v L  

[ ]TTTT Mkukukuk )()2()1()( +++= Lu  

[ ]TTTT Pkykykyk )()2()1()( +++= Ly  

( ) ( 1) ( 2) ( )
TT T Tk r k r k r k P = + + + r L  

where ( )kv  is the vector of outputs of linear model, )(ku  the 
vector of manipulating variables, )(ky  the vector of the 
outputs of the wiener model, and )(kr  the vector consisting 
set points. Also M , P  are the control and prediction horizon 
respectively. Then the predicted output for the linear model 
is   

ˆ ( ) ( ) ( ) ( )k k x k d kβ ξ= ∆ + +v u  (10) 

Where  























=

−−−− BACBACBACBAC

0DBCABCBAC
00DBCABC
000DBC

MPTPTPTPT

TTT

TT

T

L

MMMMM
321

2β
  























=

−1

3

2

PT

T

T

T

AC

AC
AC
AC

M

ξ  

and 

( ) [ ( 1 ) ( )d k d k k d k P k= + +L  

Then, the predicted output for the complete model is 
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Let us now define some points related to the MPC structure 
[10]:  
1. Since the PWL function f  was assumed to be invertible, 
it is possible to write the desired signal referred to the output 
of the linear model as a transformation of the set point 

)(kr as, 

* 1( ) ( ( ))k f k−=r r               (12) 

2. If uy  and ly are the upper and lower bounds for the 
outputs variables )(ky , then these magnitudes can be 
translated to the linear model as, 
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3. Disturbances are typically handled by assuming that a step 
signal has entered at the output and that it will remain 
constant for all future time ( Pjjkdkd ,...,1),()( =+= ). In this 
case the step disturbance is computed: 

1 ˆ( ) ( ( )) ( )md k f k k−= −y v     (14) 

where ˆ ( )kv  is the current predicted output for the linear 
model and ( )m ky  is the current measure output for the 
process. It is straightforward that introducing this bias in the 
error, as a perturbation, allows removing any model errors 
offset in steady-state. 

Finally, the WNMPC (Wiener NMPC) can be posed as a 
quadratic optimization problem (QP),  

{
}

* *
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u u u
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(15)     

where the relative importance of the objective function 
contributions is controlled by setting the weight matrices Q 
and R. Note that minimization of (15) is a classical LMPC;  

 
IV. CASE STUDY: PH NEUTRALIZATION PROCESS 

 
A. Process Description 

This process contains HNO3 as the acid stream, NaOH as 
the base stream and NaHCO3 as the buffer stream. The 
process is schematically depicted in Fig. 3.  The inputs of the 
system are the base flow rate (u1), buffer flow rate (u2), and 
the acid flow rate (u3), while the pH level of the solution is 
considered as output (y). Usually the acid flow rate and the 
volume of the tank are assumed to be constant and the pH 
level of the solution is controlled by changing the base flow 
rate. The governed nonlinear equations which are highly 
nonlinear and their parameters are described in [9]. Fig. 4 
shows the nonlinear behavior of the open-loop response of 
process for %10/−+ change in the flow rate of the input 
signal. As it can be seen the gain for %10+ change is about   
250% greater than the %10−  change.  

 

 
Fig. 3. Schematic representation of the pH neutralization process. 
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Fig. 4. Open-loop step response of the pH neutralization process for 

changing the flow rate of the input signal. 
  
 
B. Identification of the process   

To identify this process a GMN signal with six levels 13, 
15.55, 17, 18, 20, and 25 is selected to cover the spanned 
range of the input signal. Switching time between these 
levels is assumed to be 6 samples. 1280 samples of the input-
output data with sampling time of 0.25min are used for 
identification. Figs. 5 shows the input and output signals of 
the process (base flow rate and the pH of the solution 
respectively).  
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Fig. 5. GMN input (Up) and output (Down) signals for 

identification of pH process. 
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By using the input/output data, the model parameters for 
the linear block were computed. In the identification of the 
Wiener static gain a dynamic data set and a steady-state data 
set were used. A state-space description and the toolbox [10] 
based on the least-square method were respectively used to 
identify the linear dynamic part and the static PWL function. 
900 samples are used for identification and the rest of the 
signal is used for validation purpose. Fig. 6 shows the 
validation results. Fig. 7 clearly shows the PWL 
approximation and the inverse PWL approximation, where 
the nonlinear nature of the process in the operating region is 
shown. 
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Fig. 6. Validation of the wiener model. 
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Fig. 7. PWL approximation and inverse PWL approximation. 

  
 

C. Nonlinear model predictive control 
The WNMPC described in (15) was connected to the 

simulation model of the process. The control and prediction 
horizons are tuned 10 and 5 respectively and weighting 
matrices are selected as IQ 100=  and 80=R I . Also, 
saturation constraints in the manipulated variable are 
imposed to take into account the minimum and the maximum 
aperture of the valve regulating the base flow rate. For both 
cases (NMPC and linear MPC) a lower limit of 13 ml/s and 
an upper limit of 25 ml/s were chosen for this variable. 
Parameters of both linear and nonlinear model predictive 
controllers are tuned and the best obtained results are 
compared. 

 The behavior of the following regulating points with 
NMPC controller has been studied. The comparison of these 
results with linear MPC controller in Fig. 8 is shown. As it is 
clear from this figure the NMPC controller has better 
performance without any overshoot, while in linear MPC 

especially when the operating point goes far from the point 
where linear model is identified the performance is poor. The 
control effort which is the base flow rate, for NMPC and 
LMPC is shown in Fig. 9. This figure shows that the control 
signal for NMPC controller is relatively smooth and has not 
large step changes. Fig. 10 shows the behavior of the NMPC 
when a measurement noise with the SNR of 20dB is added to 
the output signal; demonstrating that NMPC shows good 
performance. 
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Fig. 8. Comparison of NMPC (solid line) with linear MPC (dashed 

line) for set point changes. 
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Fig.  9. Comparison control signal of NMPC (solid line) with linear 

MPC (dashed line) for set point changes. 
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Fig. 10. Process output with noise for set point changes  

 
 

V. CONCLUSIONS 
 
In this paper a nonlinear model predictive control (NMPC) 

based on a piecewise linear wiener model for control of pH 
neutralization process is applied and simulated. This 
approach has all the interesting features of classical MPC and 
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since it considers a standard structure for computing 
nonlinear gain, will result in quadratic programming problem 
which has easy computations. On the other hand, the 
identification of nonlinear gain of process using piecewise 
linear approximation needs both dynamic and steady state 
input-output data. Simulation of the NMPC controller for a 
wide range of operating point shows superior performance of 
the NMPC compare to linear MPC. This is especially true, 
when the operating condition of the controller is far from the 
point where the model for linear MPC is identified. Results 
show that in such conditions the linear MPC follows the set 
point with overshoot, while the nonlinear MPC exhibits a 
desirable fast response with smoother changes in the control 
effort. Simulations also confirm that when a measurement 
noise is added to the output signal, the NMPC shows good 
performance.  

 
VI. REFERENCES 

 
[1] S.J. Qin, and T.A. Badgwell, “An overview of nonlinear 

model predictive applications,” In IFAC Workshop on 
Nonlinear Model Predictive Control, Assessment and 
Future Direction, Ascona, Switzerland, 1998. 

[2] S. Piche, B.S. Rodsari, D. Johnson, and M. Gerules, 
“Nonlinear model predictive control using neural 
network,” IEEE Control Systems Magazine, vol. 20, no. 
3, pp. 53–62, 2000. 

[3] E.F. Camacho, and C. Bordons, Model Predictive 
Control.  Springer-Verlag, London, 2nd ed, 2004.   

[4] M. Pottmann,  and D. Seborg, “A nonlinear predictive 
control strategy based on radial basis functions models,” 
Comput. Chem. Eng., vol. 21, no. 9, pp. 965–980, 1997. 

[5] K. Fruzzetti, A. Palazoglu, and K. McDonald, “Nonlinear 
model predictive control using Hammerstein models,” J. 
Process Control, vol. 7, no. 1, pp. 31–41, 1997. 

[6] R. Padwardhan, S. Lakshminarayanan, and S. Shah,  
“Constrained nonlinear MPC using Hammerstein and 
Wiener models: PLS framerwork,” AICHE J., vol. 44, 
no. 7, pp. 1611–1622, 1998. 

[7] S. Norquay, A. Palazoglu, and J. Romagnoli, “Model 
predictive control based on Wiener models,” Chemical 
Engineering Science, vol. 53, no. 1, pp. 75–84, 1998. 

[8] S. Norquay, A. Palazoglu, and J. Romagnoli, 
“Application of Wiener Model Predictive Control 
(WMPC) to a pH neutralization experiment,” IEEE 
Trans. Control Syst. Technol., vol. 7, no. 4, pp. 437–
445, 1999. 

[9] J.C. Gomez A. Jutan, and E. Baeyens, “Wiener model 
identification and predictive control of a pH 
neutralization process,” IEE Proceeding of Control 
Theory Appl., vol. 151, no. 3, May 2004. 

[10] A. L. Cervantes, O. E. Agamennoni, and J. L. Figueroa, 
“A nonlinear model predictive control system based on 
Wiener piecewise linear models,” Journal of Process 
Control, vol. 13, pp. 655–666, 2003. 

[11] A.L. Cervantes, O.E. Agamennoni, and J.L. Figueroa,  
“Use of Wiener Nonlinear MPC to Control a CSTR with 
multiple steady state,” Latin American Applied 

Research, vol. 33, pp. 149-154, 2003. 
[12] P. Julian, High Level Canonical Piecewise Linear 

Representation: Theory and Applications, Tesis 
Doctoral en Control de Sistemas, DIEC-Universidad 
Nacional del Sur, Bahıa Blanca, Buenos Aires, 
Argentina, 1999. 

[13] Y. Zhu, Multivariable System Identification for Process 
Control. Pergamon, An imprint of Elsevier Science, 
2001. 

 [14] S. Gerksic, D. Juricic, S. Strmcnik, and M. Matko, 
“Wiener model based nonlinear predictive control”, 
International Journal of Systems Science, vol. 31, pp. 
189–202, 2000. 

[15] D. Westwick, and M. Verhaegen, “Identifying MIMO 
Wiener systems using subspace model identification 
methods,” Signal Processing, vol. 52, pp. 235–258, 
1996. 

[16] P. Julian, “A Toolbox for the Piecewise Linear 
Approximation of Multidimensional Functions,” 
disponible desde: available from: 
http://www.pedrojulian.com, 2000. 

[17] J.L. Figueroa, and A. Desages, “Use of piecewise linear 
approximations for steady-state back-off analysis,” 
Optimal Control Applications and Methods, vol. 19, pp. 
93–110, 1998. 

118


