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Event-Triggered H∞ Depth Control of Remotely
Operated Underwater Vehicles

Yazdan Batmani and Shahabeddin Najafi

Abstract—In this paper, using a novel event-triggered method,
a robust H∞ depth tracking controller is designed for a remotely
operated underwater vehicle (ROV). It is assumed that the
desired trajectory of the ROV is determined by an operator
outside of the vehicle based on its needed depth and obstacles
in its path. It is also assumed that a wireless network is used
to connect the user with the ROV. To decrease the communica-
tion rate between the controller and the ROV, a novel nonlinear
event-triggered H∞ controller is designed. The effects of the dis-
turbance on the system performance are also attenuated. Stability
of the ROV under the designed event-triggered controller is
proved through a theorem. Simulation results demonstrate that
the error between the depth of the ROV and its time-varying
desired trajectory converges to zero using the proposed event-
triggered H∞ controller. It is also shown that the communication
rate between the designed controller and the ROV is considerably
reduced.

Index Terms—Network operating systems, nonlinear systems,
time-varying desired trajectory, tracking, underwater equipment.

I. INTRODUCTION

NOWADAYS, ocean sources and industries play important
roles in human lives. Among these industries, remotely

operated underwater vehicles (ROVs) and autonomous under-
water vehicles (AUVs) have become increasingly important
tools in a number of applications, such as deep sea inspections,
long-distance, long-duration surveys, oceanographic mapping
and to detect, locate, and neutralize undersea mines. Improving
the performance of these tolls requires the enhancement of
engineering studies on all types and components of them.

Due to the rigid body coupling and the hydrodynamic
forces, the behavior of an ROV or an AUV is so nonlinear [1].
While some simple linear techniques were used to design
controllers for these systems [2]–[4], their performances are
degraded for a wide range of the system operation. Therefore,
many nonlinear techniques were also used to design proper
controllers for the ROVs and the AUVs (see [5]–[15] and some
references therein). In [5], an anti-disturbance constrained
controller has been recently developed by designing a com-
mand governor and a disturbance observer. A neurodynamic
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optimization method has been also employed to implement the
controller in an on-line manner. An output-feedback controller
was proposed in [6] to solve the problem of path-following
of the AUVs. In this paper, an extended state observer was
designed to estimate some unmeasured velocities and uncer-
tainties. In [7], a robust tracking controller for an AUV was
designed using the adaptive nonsingular integral terminal slid-
ing mode method in the presence of parametric uncertainties
and external disturbances. In [8], using a local recurrent neural
network, an adaptive tracking controller was designed for the
ROVs. In [9], a nonlinear suboptimal technique was proposed
to design a depth control law for the AUVs. In [10], using
a model predictive control technique, a nonlinear controller
was designed for an AUV to track a desired trajectory in the
three-dimensional space. A robust nonlinear controller was
designed for an AUV by considering parametric uncertain-
ties and external disturbances [11]. In [12], an actuator failure
tolerant control scheme was proposed for an ROV. In [13],
paying attention to the difficulty of the accurate velocity mea-
surement, an adaptive output feedback controller was proposed
for an AUV based on the dynamic recurrent fuzzy neural
network. In [14], an adaptive sliding mode fuzzy technique
was used to design a depth control of the ROVs. The back-
stepping technique was employed to design a depth control
law for AUVs [15]. A survey of advanced control techniques
in marine systems, including the AUVs and ROVs can be
found in [16].

Networked control systems (NCSs) are typical distributed
control systems in which sensing devices, control facilities,
and actuating agencies are interconnected via communication
networks. Traditionally, the NCSs use periodic control scheme
where a great number of redundant data might be transmit-
ted. Hence, it is of our interest to reduce the communication
for saving energy. Event-triggered communication and control
appear to relieve the computational burden and to decrease
the network resource utilization in the NCSs [17], [18]. In
these techniques, a predefined triggering condition is checked
and when it reaches to a specific threshold, the data are
transmitted through the communication network [19], [20].
During the current decade, the event-triggered methedolo-
gies have attracted increasing attention from the academic
community and as a result, many techniques have been
proposed to solve different problems of the NCSs based
on the idea of aperiodic sampling (see [18], [21]–[24] and
some references therein). Two comprehensive surveys of the
event-triggered techniques and the related theories can be
found in [17] and [25].
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The H∞ control theory has received increasing attention
in the past years for attenuating the disturbance effect in
dynamical systems. For the NCSs, the H∞ control schemes
have been established via the event-triggered control mecha-
nism [26]–[30]. In [26]–[28], three different approaches have
been employed to design the event-triggered H∞ controllers
for the linear NCSs. In [29], an online event-triggered concur-
rent learning algorithm has been proposed to design a robust
H∞ state feedback controller for a class of nonlinear NCSs.
For another class of nonlinear NCSs, the problem of event-
triggered H∞ control has been addressed in [30]. Despite
these researches, to the best of our knowledge, there has not
been any work on the event-triggered H∞ tracking controller
design for nonlinear NCSs. In other words, the above tech-
niques are used to stabilize equilibrium points of the system.
However, in many practical applications such as ROVs, it is
of our interest to design a controller such that the state of the
system tracks a desired time-varying trajectory.

In an underwater ROV, a supporting cable is used to control
the vehicle depth and to provide power and communication
facilities [31]. A wireless channel is used to establish a com-
munication link between the ROV and the user [32], [33].
Therefore, the ROVs can be considered as a class of NCSs
and it is desirable to design an event-triggered controller to
reduce the usage of the communication network. Moreover, it
is important to design a controller such that the ROV tracks a
desired time-varying trajectory in complex missions in order to
avoid hitting physical obstacles. It is assumed that this desired
depth of the vehicle is determined by a user. In this paper, a
novel event-triggered H∞ tracking controller is proposed for
a broad class of nonlinear NCSs. Using the proposed method,
a robust event-triggered controller is designed for an ROV in
such a way that effects of disturbances on the depth of the ROV
are attenuated. The design procedure of the proposed event-
triggered H∞ tracking controller is straightforward and it is
proved that the error between the ROV depth and its desired
time-varying trajectory tends to zero. Simulation results show
that the proposed event-triggered H∞ technique can consid-
erably reduce the communication rate between the controller
and the vehicle. In addition, the performance of the obtained
closed-loop system is satisfactory even in the presence of
uncertainties in the parameters of the ROV. To sum up, the
main contributions of this paper are as follows.

1) While the event-triggered H∞ regulation problem
has been addressed in some recently published
papers [26]–[30], to the best of authors’ knowledge, it is
the first time that the event-triggered H∞ tracking con-
troller is established for nonlinear NCSs. The proposed
technique leads to an event-triggered controller such that
the state of the system asymptotically tracks its desired
time-varying trajectory while effects of disturbances on
the tracking error are attenuated. Furthermore, the sta-
bility of the obtained closed-loop system is guaranteed
through a theorem.

2) The proposed event-triggered H∞ tracking controller
is applied to an ROV which leads to considerable
reductions of sending data from the controller to
the ROV.

The rest of this paper is organized as follows. In Section II,
a robust H∞ tracking problem is defined for a broad class
of nonlinear NCSs. In Section III, the proposed event-
triggered technique is presented in detail. In Section IV, using
the proposed method, a robust depth tracking controller is
designed for the considered ROV. Simulation results of apply-
ing the proposed event-triggered H∞ tracking controller to
the ROV are also presented in this section. Finally, Section V
concludes this paper.

Throughout this paper, the following notation will be used.
R stands for the set of all real numbers. The symbol R

+
denotes the set of all positive real numbers greater than 0.
R

n is the Euclidean space of all n-dimensional real vectors.
R

n×m is the space of all n × m real matrices. In represents the
n×n identity matrix. 0n×m denotes the n × m zero matrix. The
set Z

+ = {0, 1, 2, . . . , } contains the non-negative integers.
L2[0,∞) is the space of square-integrable vector functions
over the interval [0,∞). A matrix P ∈ R

n×n is said to be pos-
itive definite (positive-semidefinite), if for any nonzero vector
x ∈ R

n, it satisfies xTPx > 0 (xTPx ≥ 0).

II. PROBLEM FORMULATION

Consider the following nonlinear continuous-time system:

ẋ(t) = f (x(t)) + b1(x(t))u(t) + b2(x(t))d(t)

x(0) = x0 (1)

where x(t) ∈ R
n, u(t) ∈ R

m, d(t) ∈ R
q, and x0 are the state,

the control input, the external disturbance, and the initial con-
dition, respectively. f (x(t)) : R

n → R
n, b1(x(t)) : R

n → R
m,

and b2(x(t)) : R
n → R

q are assumed to be smooth functions,
b1(x(t)) �= 0 for all x(t) ∈ R

n, and f (0) = 0.
The problem is to design a robust H∞ tracking controller

such that the system state x(t) tracks a desired time-varying
trajectory xd(t) and the effects of the external disturbance
d(t) on the tracking error e(t) � x(t) − xd(t) are attenuated.
Moreover, it is assumed that the controller and the actuator
are connected to each other using a communication network.
Paying attention to some technical problems such as limita-
tions in the network bandwidth, it is of our interest to reduce
the rate of using this communication channel. In closing, the
considered problem is to find the control input u(t) such that
the following objectives are simultaneously satisfied.

1) The state of the system asymptotically tracks a desired
time-varying trajectory xd(t).

2) Effects of the external disturbance d(t) on the tracking
error are attenuated.

3) The communication rate from the controller to the
actuator is decreased.

To formulate the first objective, the following dynamics is
assumed for the desired trajectory xd(t):

żd(t) = fd(zd(t)), xd(t) = hd(zd(t)), zd(0) = zd0 (2)

where zd(t) ∈ R
nd , xd(t) ∈ R

n, and zd(0) are respec-
tively the state, the output, and the initial condition of the
desired trajectory system. Functions fd(zd(t)) : R

nd → R
nd

and hd(zd(t)) : R
nd → R

n are assumed to be smooth and
fd(0) = hd(0) = 0. Note that the dynamics (2) can be used to
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describe many commonly used trajectories such as constants
and sinusoidals.

The second objective is satisfied by finding a control input
u(t) such that the following disturbance attenuation condition
is held for every external disturbance d(t) ∈ L2[0,∞):∫ ∞

0
e−2αt((x(t) − xd(t))

TQ(x(t) − xd(t)) + uT(t)Ru(t))dt

≤ γ 2
∫ ∞

0
e−2αtdT(t)d(t)dt. (3)

Here, α > 0 is called the discount factor, Q ≥ 0 and R > 0
are two weighting matrices with appropriate dimensions, and
γ > 0 is the amount of attenuation from the disturbance d(t)
to the tracking error e(t). It is well-known that the solution
of an H∞ control problem can be referred to the solution of
a two-player zero-sum game, where the control input u(t) is
a minimizing player and the disturbance d(t) is a maximizing
one [34], [35]. Therefore, the second objective is formulized as
a two-player zero-sum game with the following cost function:

J
(
x0, zd0 , u(t), d(t)

)

=
∫ ∞

0
e−2αt

(
(x(t) − xd(t))

TQ(x(t) − xd(t))

+ uT(t)Ru(t) − γ 2dT(t)d(t)
)

dt. (4)

Note that by tuning the weighting matrices Q and R, the
closed-loop system performance can be directly affected with
predictable results. For instance, achieving a faster response
is possible through the use of larger values for the elements
of Q. In addition, the user-defined parameters α and γ are
selected to overcome some imposed limitations on the design
procedure of the controller (see Remarks 1 and 2).

Finally, to consider the third objective, i.e., decreasing the
communication rate from the controller to the actuator, an
event-triggered mechanism is considered as depicted in Fig. 1.
The main challenge is to specify a proper triggering condition
such that the first two objectives are satisfied. It is worth noting
that we consider the so called “local sensor-remote actuator”
networked control problem in which all the sensors and the
controller being co-located and have access to each other’s
outputs at all times [36]. Indeed, the sensors are assumed to
be coupled to the controller with ideal communication chan-
nels or through dedicated (wired) point-to-point connections
while the actuators are connected to the controller via a limited
bandwidth channel.

III. EVENT-TRIGGERED H∞ TRACKING CONTROLLER

In this section, a novel event-triggered method is proposed
to solve the robust H∞ tracking control problem defined in
Section II. Toward this end, a state-dependent Riccati equa-
tion (SDRE)-based method is first reviewed in Section III-A.
Then, the proposed event-triggered H∞ tracking controller is
presented in Section III-B.

A. SDRE H∞ Tracking Controller

Finding a controller to address the first two objectives
of the defined H∞ tracking problem needs to solve a

Fig. 1. Structure of the proposed event-triggered H∞ controller.

Hamilton–Jacobi–Isaacs equation which is too difficult or even
impossible [37]. Adding the third objective leads to a much
more difficult problem. As a result, finding approximate solu-
tions of this problem is a reasonable alternative. A very
efficient method to approximate the solution of these types of
problems is the SDRE technique. In this section, the SDRE-
based solution of the H∞ tracking problem is reviewed. Note
that this solution has been recently proposed for nonlinear
systems where the control signal is continuously transmit-
ted from the controller to the plant [37]. In Section III-B,
this SDRE-based technique will be extended to our H∞
tracking problem where a network exists between the con-
troller and the plant and the usage of this network should be
reduced.

Let us first find the dynamics of the tracking error e(t) as
follows:

ė(t) = f (x(t)) + b1(x(t))u(t) + b2(x(t))d(t)

− ∂hd(zd(t))

∂zd(t)
fd(zd(t)).

Since f (x(t)), fd(zd(t)), and hd(zd(t)) are assumed to be
smooth, it is possible to have the following state-dependent
coefficient (SDC) representations [37]:

f (x(t)) = F(x(t))x(t)

fd(zd(t)) = Fd(zd(t))zd(t)

hd(zd(t)) = Hd(zd(t))zd(t)
∂hd(zd(t))

∂zd(t)
fd(zd(t)) = Gd(zd(t))zd(t)

where F(x(t)) : R
n → R

n×n, Fd(zd(t)) : R
nd → R

nd×nd ,
Hd(zd(t)) : R

nd → R
n×nd , and Gd(zd(t)) : R

nd → R
n×nd

are four matrix-valued functions. It should be mentioned that
there might be an infinite number of ways to create these SDC
forms [38]. This fact can be used as a degree of freedom in
our control design procedure.

By defining X(t) � e−αt
[
eT(t) zT

d (t)
]T ∈ R

n+nd , U(t) �
e−αtu(t) ∈ R

m, D(t) � e−αtd(t) ∈ R
q, and X (t) � eαtX(t),

the following dynamics is obtained for X(t):

Ẋ(t) = A(X (t))X(t) + B1(X (t))U(t)

+ B2(X (t))D(t) (5)
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where

A(X (t)) = −αIn+nd

+
[F(x(t)) F(x(t))Hd(zd(t)) − Gd(zd(t))

0nd×n Fd(zd(t))

]

B1(X (t)) = [
bT

1 (x(t)) 0m×nd

]T

B2(X (t)) = [
bT

2 (x(t)) 0q×nd

]T
. (6)

Using these new variables, the cost function (4) is rewritten
as follows:

J(X0, U(t), D(t)) =
∫ ∞

0

(
XT(t)Q̃X(t) + UT(t)RU(t)

− γ 2DT(t)D(t)
)

dt

where

Q̃ =
[

Q 0n×nd

0nd×n 0nd×nd

]
.

In [37], it has been proved that the first two objectives of
our H∞ tracking problem are achieved using the control law

U(t) = −R−1BT
1 (X (t))P(X (t))X(t) (7)

where P(X (t)) is the unique symmetric positive-definite
solution of the following SDRE:

AT(X (t))P(X (t)) + P(X (t))A(X (t))

− P(X (t))B1(X (t))R−1BT
1 (X (t))P(X (t))

+ 1

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t)) = −Q̃. (8)

In addition, the worst-case of disturbance D(t) is

D(t) = 1

γ 2
BT

2 (X (t))P(X (t))X(t). (9)

Let us present some necessary definitions which are needed
in the rest of this paper.

Definition 1: The SDC representation (5) is point-wise
stabilizable in the bounded open set � if the pair
(A(X (t)), B1(X (t))) is stabilizable for all X(t) ∈ � [39].

Definition 2: The SDC representation (5) is point-wise
detectable in the bounded open set � if the pair
(A(X (t)), Q̃1/2) is detectable for all X(t) ∈ � [39].

It should be mentioned that SDRE (8) has a unique symmet-
ric positive-definite solution for ufficiently large values of γ if
the triple (A(X (t)), B(X (t), Q̃1/2) is point-wise stabilizable
and point-wise detectable [39].

B. SDRE-Based Event-Triggered H∞ Tracking Controller

The main step in the design procedure of the SDRE H∞
tracking controller is to find the solution of the SDRE (8).
A sample data technique can be used to find P(X (t)) at the
sampling instant tk(k ∈ Z

+) and then, the control law U(t)
is obtained using (7). This control is applied to the system in
the time interval [tk, tk+1). These calculations are done peri-
odically and the control signal is updated at each sampling
time. In this way, the control action must be sent to the plant
at every sampling instant. Because of the third objective of
our control problem, i.e., to reduce the communication rate

between the H∞ tracking controller and the plant, an event-
triggered mechanism is added to the closed-loop system. The
main result of the proposed event-triggered H∞ tracking con-
troller is explained by the following Theorem 1. Here, t0 = 0
is the initial time, tk ∈ R

+ is the times at which the control
input has to be transmitted from the controller to the actuator,
and K(X (t)) = R−1BT

1 (X (t)) P(X (t)) is the state-dependent
gain.

Assumption 1: The triple (A(X (t)), B(X (t)), Q̃1/2) is
point-wise stabilizable and point-wise detectable in a bounded
open set � ∈ R

n+nd containing the origin.
Theorem 1: Consider the nonlinear continuous-time

system (5). Under Assumption 1 and for D(t) = 0 and any
sufficiently large values of γ , the following control law with
U(t0) = −K(X (t0))X(t0) leads to a closed-loop system with
a locally asymptotically stable equilibrium at the origin

U(t) =
{

U(tk), η(X (t)) < 0
−K(X (t))X(t), η(X (t)) ≥ 0

(10)

where

η(X (t)) = [
XT(t) ET(t)

]
�(X (t))

[
X(t)
E(t)

]

E(t) = B1(X (t))K(X (t))X(t)

− B1(X (t))K(X (tk))X(tk). (11)

In the above, the matrix-valued function �(X (t)) is

�(X (t)) =
[
�1,1(X (t)) P(X (t))
PT(X (t)) 0(n+nd)×(n+nd)

]
(12)

where

�1,1(X (t))

= (σ − 1)
(

Q̃ + KT(X (t))RK(X (t))

− 1

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

)

and 0 < σ ≤ 1 is a constant parameter.
Proof: Consider the Lyapunov candidate function V(X(t)) =

XT(t)P(X (t))X(t). For sufficiently small values of X(t), the
derivative of V(X(t)) along the trajectory (5) is given as [37]

V̇(X(t))

= XT(t)

(
AT

cl(X (t))P(X (t)) + P(X (t))Acl(X (t))

+ 2

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

)
X(t)

(13)

and the following Lyapunov equation is held [37]:

AT
cl(X (t))P(X (t)) + P(X (t))Acl(X (t))

+ 2

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

= −
(

Q̃ + KT(X (t))RK(X (t))

− 1

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

)
(14)

where

Acl(X (t)) � A(X (t)) − B1(X (t))K(X (t)).
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It should be mentioned that the Lyapunov equation (14)
is simply obtained using (8) and K(X (t)) = R−1BT

1 (X (t))
P(X (t)). Using (14) in (13) yields

V̇(X(t))

= −XT(t)

(
Q̃ + KT(X (t))RK(X (t))

− 1

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

)
X(t).

On the other hand, if the following weaker inequality is
satisfied for sufficiently large values of γ , the stability of the
origin of the system (5) is guaranteed:

V̇(X(t))

≤ −σXT (t)

(
Q̃ + KT (X (t))RK(X (t))

− 1

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

)
X(t).

(15)

Let tk shows the instants at which the control input is com-
puted and transmitted through the communication channel to
the actuator (η(X (tk)) ≥ 0). In the time interval [tk, tk+1), the
closed-loop system dynamics is as follows:

Ẋ(t) = A(X (t))X(t) − B1(X (t))K(X (tk))X(tk). (16)

By defining E(t) = B1(X (t))K(X (t))X(t) − B1(X (t))
K(X (tk))X(tk), (16) can be rewritten as follows:

Ẋ(t) = Acl(X (t))X(t) + E(t).

Additionally, for sufficiently small values of X(t), it is pos-
sible to approximate P(X (t)) with its value at the origin and
therefore, the derivative of V(x(t)) is as follows:

V̇(X(t))

= XT(t)

(
AT

cl(X (t))P(X (t)) + P(X (t))Acl(X (t))

+ 2

γ 2
P(X (t))B2(X (t))BT

2 (X (t))P(X (t))

)
X(t)

+ 2XT(t)P(X (t))E(t).

Now, using the Lyapunov equation (14), inequality (15), and
the above equality, the triggering times are obtained when the
following inequality is violated:

[
XT(t) ET(t)

]
�(X (t))

[
X(t)
E(t)

]
< 0

where �(X (t)) is defined by (12). This completes the
proof.

According to the definition of X(t) and from the above
theorem, it can be concluded that ē(t) = e−αt(x(t) − xd(t))
asymptotically tends to zero.

Remark 1: As mentioned in Theorem 1, the pair
(A(X (t)), B(X (t))) must be point-wise stabilizable to
use the proposed event-triggered H∞ tracking controller. To
this end, the parameter α can be tuned since A(X (t)) is
dependent on this parameter according to (6).

Remark 2: Although the minimum value of γ is desirable,
there is no way to find the smallest amount of the distur-
bance attenuation for general nonlinear systems [35], [40].
Nevertheless, the value of γ should be selected in such a
way that the SDRE (8) has a unique symmetric positive-
definite solution. Therefore, a large enough value is usually
predetermined for γ .

Remark 3: While it is not generally possible to find the
value of the triggering factor σ corresponding to a specific
percentage of the communication rate reduction, the effects of
the triggering factor σ on the obtained results are predictable.
Indeed, according to (15), a smaller value of σ leads to more
reduction of sending messages from the controller to the actu-
ator. However, the price of this reduction is a decrease in the
performance of the closed-loop system. Hence, σ can be used
to make a tradeoff between the communication rate reduction
and the value of the corresponding cost function. This issue
is investigated in the following simulations (see Table III).

Remark 4: To implement the proposed event-triggered H∞
tracking controller, the time-triggered SDRE implementation
technique, represented in [39], is extended. To this end, the
positive-definite solution of the sampled-data algebraic Riccati
equation

AT(X (iT))P(X (iT)) + P(X (iT))A(X (iT))

− P(X (iT))B1(X (iT))R−1BT
1 (X (iT))P(X (iT))

+ 1

γ 2
P(X (iT))B2(X (iT))BT

2 (X (iT))P(X (iT)) = −Q̃

is computed periodically with the sample time T . Then,
the control action U(iT) = −R−1BT

1 (X (iT))P(X (iT))X(iT)

(i ∈ Z
+) is obtained at the current state X(iT). To determine

whether this computed control must be sent to the actuator
or not, the event-triggering condition (11) is checked at this
current sampling instant t = iT . If η(X (iT)) ≥ 0, the com-
puted control input U(iT) is sent to the actuator and tk+1 is
set to iT . Therefore, just like the event-triggered control tech-
niques for discrete-time systems [41], [42], the interevent times
of the proposed event-triggered H∞ tracking controller are
always greater than or equal to the sampling time T . Hence,
the proposed method overcomes the problem of the minimum
interevent time and, the Zeno free execution of the control
updating instants is always guaranteed.

Remark 5: According to Remark 4, to use the proposed
event-triggered H∞ tracking controller, the SDRE (8) must
be solved at each sampling instant iT (i ∈ Z

+). From a prac-
tical point of view, the sample time T should be much longer
than the time needed to find the solution of (8). Although this
may seem to limit the practical applicabilities of the SDRE-
based techniques such as the proposed event-triggered strategy,
there are many successful implementations of the SDRE tech-
niques. For example, in a missile autopilot example containing
five state variables and three control inputs, an SDRE-based
technique was implemented at speeds greater than 600 Hz and
up to 2 kHz sample rates [39]. In our problem, i.e., the depth
control problem of the ROV, the sampling time T = 0.2 s is
used which is extremely larger than the needed time to solve
the SDRE (8).
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Fig. 2. General scheme of the considered ROV.

IV. ROV DEPTH TRACKING CONTROLLER DESIGN

A. Mathematical Model of the ROV

The schematic of the considered ROV with its body-fixed
co-ordinate system is depicted in Fig. 2. The earth-fixed frame
is treated as an inertial frame and the motion of the ROV lies
in a vertical plane. Assume the triple (xB, yB, zB) is the co-
ordinate of the center of buoyancy and the origin of the body-
fixed co-ordinate system is fixed at the center of buoyancy
[i.e., (xB, yB, zB) = 0]. In the following, the co-ordinates of
the center of gravity of the vehicle with respect to the center
of buoyancy are denoted by (xG, yG, zG).

The heave and pitch equations of motion of the vehicle with
respect to the body-fixed moving frame are modeled by a set
of four nonlinear differential equations as follows [3]:

m
(

ẇ(t) − vq(t) − xGq̇(t) − zGq2(t)
)

= Zq|q|q(t)|q(t)| + (W − B0) cos(θ(t)) + Zvqvq(t)

+ Zw|w|w(t)|w(t)| + Zvwvw(t) + v2Zvmu(t)

+ Zq̇q̇(t) + Zẇẇ(t)

Iyyq̇(t) + m(xG(vq(t) − ẇ(t)) + zGw(t)q(t))

= Mq̇q̇(t) + Mẇẇ(t) + Mvqvq(t) + Mvwvw(t)

+ Mq|q|q(t)|q(t)| + Mw|w|w(t)|w(t)| + Mvvv2u(t)

− (xGW − xBB0) cos(θ(t)) − (zGW − zBB0) sin(θ(t))

ż(t) = w(t) cos(θ(t)) − v sin(θ(t))

θ̇(t) = q(t) (17)

where w(t), q(t), z(t), and θ(t) are the heave velocity, the pitch
velocity, the depth, and the pitch angle, respectively; u(t) is the
fin angle which is the control input of the ROV in its dive plane
mode; Iyy is the moment of inertia about the pitch axis; v is the
forward velocity; W denotes the weight of the vehicle; m and
B0 are the mass and buoyancy of the ROV, respectively. In this
paper, it is assumed that the forward velocity v is held constant
by a control mechanism as v = 2 m/s and the lateral velocity
is zero. The aim is to design a controller such that by applying
the control signal u(t) to the ROV fins, the depth of the ROV
tracks a desired time-varying trajectory. The hydrodynamic
and physical parameters values of the ROV are represented in
Tables I and II, respectively [43].

B. Controller Design and Simulation Results

In this paper, it is assumed that the states of the ROV are
measured using some sensors and the collected data are sent
to the actuator. In addition, the calculated control signal is

TABLE I
HYDRODYNAMIC PARAMETERS OF THE ROV

TABLE II
PHYSICAL PARAMETERS OF THE ROV

also sent to the ROV using the channel. It is worth noting that
employing the proposed event-triggered H∞ tracking control
can lead to a reduction in transmitting messages from the con-
troller to the vehicle. To apply the proposed event-triggered
H∞ tracking controller to the ROV, let us first find the SDC
representation of the system dynamics (17) as follows:[

ẇ(t)
q̇(t)

]
=

[
f1,11 f1,12
f1,21 f1,22

]
︸ ︷︷ ︸

F1(x(t))

[
w(t)
q(t)

]
+

[
0 f2,12
0 f2,22

]
︸ ︷︷ ︸

F2(x(t))

[
z(t)
θ(t)

]

+ M−1v2
[

Zvv

Mvv

]
︸ ︷︷ ︸

b1,1

u(t) + M−1
[

(W − B0)

(xBB0 − xGW)

]
︸ ︷︷ ︸

d1[
ż(t)
θ̇(t)

]
=

[
f3,11 0

0 1

]
︸ ︷︷ ︸

F3(x(t))

[
w(t)
q(t)

]
+

[
0 f4,12
0 0

]
︸ ︷︷ ︸

F4(x(t))

[
z(t)
θ(t)

]
(18)

where

f1,11 = Zw|w||w(t)| + Zvw, f1,21 = Mw|w||w(t)| + Mvw

f1,12 = Zq|q||q(t)| + Zvq + m(zGq + v)

f1,22 = Mq|q||q(t)| + Mvq + m(xGv + zGw(t))

f2,12 = M−1(W − B0)(cos(θ(t)) − 1)θ−1

f2,22 = M−1(xBB0 − xGW)(cos(θ(t)) − 1)θ−1

(zGW − zBB0) sin(θ(t))

f3,11 = cos(θ(t)), f4,12 = −θ−1 sin(θ(t))

M =
[

m − Zẇ(t) −mxG − Zq̇(t)

−mxG − Mẇ(t) Iyy − Mq̇(t)

]
.

Based on (18), the state space representation of the ROV
can be rewritten as the following standard form:

ẋ(t) =
[F1(x) F2(x)
F3(x) F4(x)

]
︸ ︷︷ ︸

F(x(t))

x(t) +
[

b1,1
02×1

]
︸ ︷︷ ︸

b1

u(t) +
[

I2
02×2

]
︸ ︷︷ ︸

b2

d1

(19)

where x(t) = [
w(t) q(t) z(t) θ(t)

]T . In the following

simulations, the initial condition x(0) = [
0.5 0 −1 0

]T

is considered. Assume that the following dynamics of the
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desired trajectory is considered by the user because of the
needed level of the ROV and some physical obstacles:

żd(t) = 04×4zd(t) = Fdzd(t)

xd(t) = [
1 0 0 0

]
zd(t) = Hdzd(t) (20)

with initial condition zd(0) = [
0 0 β 0

]
. Note that β is

determined by the location of the obstacles. The robust H∞
control problem is to find u(t) such that the following cost
function is minimized:

J(x0, u(t), d(t)) =
∫ ∞

0
e−2αt

(
Q̃(z(t) − xd(t))

2 + Ru2(t)

− γ 2dT(t)d(t)
)

dt.

Due to physical limitations, the amplitude of the fin angle
u(t) should be in a specific bound, which is [−45◦, 45◦] in
this paper. To address this important problem in the design
procedure of the controller, a technique discussed in [39] is
employed. At first, (19) is rewritten as follows:

ẋ(t) = F(x(t))x(t) + b1sat
(
u(t), 45◦) + b2d1 (21)

where

sat
(
u(t), 45◦) =

⎧⎨
⎩

−45◦, u(t) ≤ −45◦
u(t), |u(t)| < 45◦
45◦, u(t) ≥ 45◦.

Now, an auxiliary input ũ(t) is defined and the following
dynamics is considered for u(t):

u̇(t) = ũ(t). (22)

Augmenting (21) and (22) yields[
ẋ(t)
u̇(t)

]
=

[F(x(t)) b1S(u(t))
04×1 0

][
x(t)
u(t)

]

+
[

04×1
1

]
ũ(t) + b2d1 (23)

where S(u(t)) is as follows:

S(u(t)) =
{

sat(u(t),45◦)
u(t) , u(t) �= 0

1, u(t) = 0.
(24)

By comparing (23) with (1), it can be said that the ROV
depth control problem is in our standard form without any
input limitation on the auxiliary input ũ(t) and therefore, the
proposed event-triggered H∞ tracking controller can be used
to solve this problem.

Remark 6: The ROVs may suffer from the input and the
state constraints [5]. While the input saturation is considered
in the proposed control design procedure, we do not directly
address the problem of state constraints. However, the user-
defined desired trajectory xd(t) can be used to handle this
problem. Indeed, it is possible to consider the state constraints
by selecting a suitable desired trajectory xd(t).

Augmenting (20) and (24) leads to the following SDC
representation for the new state X(t) = e−αt[xT(t) zT

d (t) u(t)]T :

Ẋ(t) =
⎡
⎣−αI +

⎡
⎣F(x(t)) 04×4 b1S(u(t))

04×4 Fd 04×1

01×4 01×4 0

⎤
⎦

⎤
⎦

︸ ︷︷ ︸
A(X (t))

X(t)

Fig. 3. Diagrams of the ROV depths and its desired trajectory.

Fig. 4. Diagrams of the control signal u(t).

+
⎡
⎣ 04×1

04×1

1

⎤
⎦

︸ ︷︷ ︸
B1

Ũ(t) +
⎡
⎣ b2

04×2

01×2

⎤
⎦

︸ ︷︷ ︸
B2

D(t) (25)

where Ũ(t) = e−αtũ(t) and D(t) = e−αtd1(t).
Paying attention to Theorem 1, the pair (A(X (t)), B1) must

be point-wise stabilizable. In [9], it is shown that the states
e−αtx(t) and e−αtu(t) are point-wise controllable. Moreover,
the states related to the desired trajectory, i.e., e−αtzd(t), are
stable for any α > 0 (note that the eigen-values of −αI +Fd

are in the left half-plane). Therefore, the pair (A(X (t)), B1)

is point-wise stabilizable for any α > 0 and sufficiently large
values of γ . It should be noted that the point-wise detectabil-
ity of the pair (A(X (t)), Q̃1/2) is guaranteed by selecting a
positive value for Q. According to [38], the point-wise stabi-
lizability and detectability of the SDC representation (25) is
sufficient for the existence of the set � in Theorem 1.

In the following simulations, the parameters of the H∞
tracking controller are α = 10−4, γ = 1, Q = 10, R = 10, and
β = −1.5u1(t)−u1(t−15)−u1(t−30) where u1(t) is the unit
step function. For two values of the triggering factor σ = 1
and σ = 0.35, the diagrams of the ROV depths are depicted in
Fig. 3. From this figure, one can see that the desired trajectory
is successfully tracked by the ROV. Note that the sampling
time T = 0.2 s is used in both cases. The obtained control
inputs are also shown in Fig. 4, where the fin angle variations
of the ROV are in the range [−45◦, 45◦].

In the first case, i.e., σ = 1, the control law is updated
and transmitted to the ROV at every sampling instants. Yet,
for σ = 0.35, the communication rate of using the utilized
network between the controller and the ROV is decreased 76%.
In addition, Fig. 3 shows that this reduction does not affect the
performance of the closed-loop system. Fig. 5 shows the trig-
gering condition (11) for σ = 0.35. One can see that whenever
the condition η(X(t)) < 0 is violated, the computed control
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Fig. 5. Diagram of the triggering condition for σ = 0.35.

TABLE III
VALUES OF THE COST FUNCTION AND THE COMMUNICATION RATE

REDUCTION PERCENTAGE BASED ON σ

input is transmitted from the controller to the ROV and held
until the triggering condition is not again satisfied.

To investigate the effects of the triggering factor on the
results, the above simulation is done for four different values
of σ . Table III reports the corresponding values of the cost
function J and the communication rate reduction. As expected,
the smaller value of σ leads to more reduction of sending
messages from the controller to the ROV. In addition, this
reduction leads to decrease the performance of the closed-
loop system and the value of the cost function is increased.
Therefore, σ is an important factor in making tradeoff between
the usage of the network and the closed-loop performance.

To apply the proposed event-triggered H∞ tracking con-
troller to the ROV, the parameters of the ROV should be
known. However, the actual values of these parameters are dif-
ferent from their nominal values represented in Tables I and II.
Therefore, the designed tracking controller should be robust
enough against the parametric uncertainties. Fortunately, the
SDRE technique has intrinsic robustness and hence, our event-
triggered H∞ tracking controller is expected to inherit this
interesting property. To investigate this issue, the designed con-
troller is applied to 100 sets of ROV parameters with ±50%
uncertainties. Indeed, the controller is designed based on the
nominal values of these parameters (p) and is applied to 100
different ROVs with random parameters in the bound p±0.5p.
For σ = 0.35, Fig. 6 shows the graphs of the ROVs under the
designed controller where the depths of the ROVs success-
fully track the desired trajectory. The average value of the
mean square value of the tracking error is 0.0094 which is
close to the nominal value of this index (0.0091).

Remark 7: It is possible to improve robustness of the ROV
against the uncertainties using the proposed technique in [6].
In this method, an observer is designed to estimate the dis-
turbance and the unmeasured states and then, the obtained
estimations are used in the design procedure of the controller.

Note that the proposed event-triggered H∞ tracking con-
troller can be used when the ROV must track more complex
time-varying trajectories. For example, Fig. 7 shows the graph
of the ROV depth when its desired trajectory is a combination

Fig. 6. Diagrams of the ROV depths for 100 set of parameters values with
σ = 0.35.

Fig. 7. Diagram of the ROV depth with steps and damped sinusoids as its
desired trajectory.

of steps and damped sinusoids. As it can be seen from this
figure, the designed controller leads to a closed-loop system
with acceptable performance. In this case, σ = 0.35 is selected
and the communication rate of using the network between the
controller and the ROV is decreased 67.86%.

V. CONCLUSION

In this paper, a novel event-triggered H∞ tracking con-
troller has been proposed for a broad class of nonlinear NCSs.
Through a mathematical theorem, it has been proved that the
tracking error between the system state and its time-varying
desired trajectory asymptotically tends to zero. The proposed
method has been systematically applied to solve the depth
control problem of an ROV. Simulation results have shown
that the designed controller is so effective in the reduction of
sending messages from the controller to the ROV while the
performance of the closed-loop system is acceptable even in
the presence of parametric uncertainties. In future work, the
communication rate between sensors and controllers will also
decreased by extending the proposed method to a dual-side
event-triggered H∞ tracking controller.
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