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ABSTRACT The objective of this paper is to estimate the number of moving objects that passes through a
specific area without fully decoding the H.265/high-efficiency video coding (HEVC) bitstreams. First, the
foreground prediction blocks are extracted according to the motion vectors of the H.265/HEVC bitstreams.
Next, these foreground prediction blocks are clustered into the region of interests (ROIs), which are the
possible area position of moving objects in the current frame. Finally, the state of moving objects is identified
by matching moving objects and these ROIs. In order to estimate the number of moving objects, which
move toward a pre-defined direction, a tripwire is set to a detecting area. Any moving objects crossing
the tripwire and satisfying the intrusion conditions are counted. With the proposed method, the number
of moving objects can be directly estimated in the compressed domain video. This approach significantly
increase the processing speed more than 400% at the cost of less than 0.02% accuracy degradation compared
with the traditional pixel domain approach. The research results can be applied to traffic management, real-
time analysis of surveillance application, and other related areas.

INDEX TERMS H.265/HEVC, object counting, video surveillance applications.

I. INTRODUCTION
With the development of intelligent video surveillance sys-
tem, moving object counting has been achieved by image
analysis. In order to estimate the number of moving objects
stored in the video recorder system, most of the existing
intelligent surveillance systems need to analyze video after
fully decoding bitstreams. Such approaches result in heavy
computational cost on the surveillance system, especially
with high quality and large amount video streams. Therefore,
it can be of great help to estimate these objects without
fully decoding the bitstreams in performing real-time video
analysis.

Over the last 10 years, the mainstream specification of
video streaming is H.264/AVC. With the publication of
H.265/HEVC as the next generation of video streaming stan-
dard in April 2013 [1], image analysis based on H.265/HEVC
is predicted to be the main trend of the security industry
development [2]. Therefore, this paper proposes an approach
to estimate the number of moving objects without the need
to fully decode the H.265/HEVC bitstreams. Therefore, this
approach is suitable for future intelligent video surveillance
systems.

Traditional intelligent video surveillance systems mainly
analyze the pixel domain image to detect moving objects.

Chen et al. [3] presented a video surveillance system
process pipeline that has four stages: 1) FG(foreground)/
BG(background) Detection Module, 2) Blob Entering
Detection Module, 3) Blob Tracking Module, and 4) Trajec-
tory Post Processing.

Suhr et al. [4] used a mixture of Gaussians (MoG) to model
the background in a Bayer-pattern domain and classified the
foreground in an interpolated red, green, and blue (RGB)
domain. Hsieh et al. [5] used an adaptive back-
ground updating method to model the background.
Kanhere and Birchfield [6] stored the average gray level of
each pixel over a fixed period of time to train background
model. del-Blanco et al. [7] used the mixture of Gaussians
to model background and a Bayesian model to simulate the
object trajectories in the tracking stage.

Except for detecting moving objects in the pixel domain,
there were many studies during the last decade to detect
moving objects based on analyzing a compressed domain
video. Huang et al. [8] presented the quadtree structure to
represent variable-size coding blocks in the high efficiency
video coding (HEVC). This structure can represent the fore-
ground objects in the picture. Nightingale et al. [9] pro-
posed a heuristic, no-reference approach to classify video
content which is specific to HEVC encoded bitstreams.
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Dey and Malay Kundu [10] proposed an efficient approach
to extract foreground by using novel spatio-temporal decor-
related block features that was extracted directly from the
HEVC compressed video.

Babu et al. [11] used the K-Means [12] clustering to
estimate the number of moving objects, and then used the
EM method to segment moving objects. Zeng et al. [13]
proposed four types of motion vector: 1) background
MV (BMV), 2) edge MV (EMV), 3) foreground MV (FMV),
and 4) noise MV (NMV). He then used Markov Ran-
dom Field (MRF) model to extract moving blocks.
Poppe et al. [14] used a background video stream training
background model, and then extracted foreground by back-
ground subtraction to get moving objects. Käs et al. [15] used
Gaussian Mixture Model (GMM) to establish a background
model with fully decoded I frame and detected the direction
of moving objects in B, P frame. When foreground has been
extracted by background subtraction, SIFT [16] was used to
extract features and moving objects were tracked according
to the features. Sabirin and Kim [17] used non-zero vectors
to distinguish foreground and background, and then detected
and tracked moving objects by the Spatio-Temporal Graph.
When twomoving objects were occluded, the moving objects
can be tracked according to the moving direction and residue.
Wang et al. [18], [19] present an approach to extract moving
objects based on the INTRA frame from the H.264/AVC
compressed domain video.

In order to improve the accuracy of moving object
detection, some previous works tried to remove moving
vectors that were caused by noises during the foreground
detection. Yu et al. [20] used the median filter to remove
noise. Ahmad et al. [21] used both the Gaussian filter and
the median filter to remove noise. Ibrahim and Rao [22] com-
bined temporal filter with spatial filter as an extended vector
median filter to remove noise. Moura and Hemerly [23]
proposed the concept of ‘‘fake movement’’, and used the
spatiotemporal motion vector consistency filter (STF) to
remove the fake movements. Kapotas and Skodras [24] used
the mean value of motion vectors as the threshold to filter
noise. Thus, to detect moving objects in compressed domain
based on motion vectors becomes a feasible solution as seen
from the above researches. The detection of moving objects
and the estimation of numbers by using motion vectors of
H.265/HEVC stream is proposed in this paper. The experi-
mental environment used static cameras to monitor whether
moving objects have crossed a preset tripwire or not. The
moving objects are counted in the single camera view, cross-
camera is not considered in our method. Wang et al. [25] pro-
posed the motion vectors in B frames are much closer to the
true motion direction of a moving object, and therefore this
paper is focused on analyzing the motion vectors in B frames.

A simple block diagram of the proposed method is shown
in Fig. 1. There are mainly four steps in the proposed method:
1) Foreground Detection, 2) Region of Interest (ROI) Detec-
tion, 3) Moving Object Tracking, and 4) Moving Object
Counting.

FIGURE 1. Block diagram of the proposed moving object counting.

The number of moving objects that move toward a pre-
defined direction can be estimated through the above four
steps. The result shows the estimated number of moving
objects is very close to the real number. Thus, an intelligent
video surveillance system can count moving objects by ana-
lyzing the motion vectors of B frames from H.265/HEVC
bitstreams. Each step has its sub-steps and will be detailed
in the following sections.

II. METHODOLOGY
A. MOTION VECTORS OF PREDICTION BLOCK
The basic encoding unit of H.265/HEVC is the Coding Tree
Unit (CTU) [26]. Each image is divided into many CTUs.
Every CTU is composed of an L × L luminance Coding
Tree Block (CTB) and two L/2 × L/2 chrominance CTBs,
as shown in Fig. 2.

FIGURE 2. A CTU with a luma CTB and two chroma CTBs.
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Size L is defined in SPS (Sequence Parameter Sets), it may
be 16, 32 or 64. Every CTBwill be divided into many Coding
Blocks (CBs) according to its image feature; then used as a
quarter tree to manage these CBs, as shown in Fig. 3.

FIGURE 3. CTBs can be further partitioned into multiple CBs.

In general, the minimum size of a CB is 8 × 8, and
is defined in SPS. Each CB is split into many Prediction
Blocks (PBs) at the Inter Frame Prediction stage. PB sizes
can be from 4 × 4 to 64 × 64, and there are two kinds of
approach: symmetric or asymmetric, as shown in Fig. 4.

FIGURE 4. Splitting a CB into PBs.

When a CB is divided into many PBs, the encoder
uses past and future frames to be the reference frames
(in B frames, for example), and then finds the nearest
matching block in reference frames by motion estimation.
The motion vectors obtained by motion estimation are used

in motion compensation prediction. In the following sub-
sections, all the four steps in II are described in detail
respectively.

B. FOREGROUND DETECTION
Foreground detection is used to extract the foreground pre-
diction blocks. In this step, a novel momentum definition is
proposed to reduce the impact of fake movements.

1) MOVEMENT OF PREDICTION BLOCK
Movement is the total displacement of a prediction block;
it is calculated as below:

Movementi = ∞, |Ri| = 0
Movementi = ‖Mv1‖2 , |Ri| = 1
Movementi = ‖minMv‖2 , |Ri| = 2

(1)

where

|Ri|: Number of reference frames
Mv1: First motion vector of prediction block,

Mv1 = (Mv1x ,Mv1y)
Mv2: Second motion vector of prediction block,

Mv2 = (Mv2x ,Mv2y)
minMv: (min(|Mv1x |, |Mv2x |), min(|Mv1y|, |Mv2y|) )
i: Prediction block index

Table 1 shows the movement properties of foreground and
background prediction blocks. Foreground prediction blocks
have high and wide variance movement because moving
objects move at different speeds. In contrast, background
prediction blocks have low and small variance movement
because moving objects do not move, so that the movement
value should be zero theoretically.

TABLE 1. Properties of movement.

2) FAKE MOVEMENT
The encoder will select the most similar block in another
frame to be the reference block during motion estimation.
The most similar block is not necessary at the same position
even if the prediction block belongs to the background. Thus,
background prediction blocks may have non-zero motion
vectors that should be zero. This kind of movement with
non-zero motion vector that should be zero is called ‘‘fake
movement’’. In general, the encoder can find more easily a
distant block from multiple similar reference blocks causing
fake movement in the low frequency area or low-quality
images.

3) MOMENTUM
Momentum is a weighted movement, and is a proposed novel
concept. This new concept is used to identify fakemovements
more precisely. Momentum is calculated according to:
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for the j-th CTB,

Momentum(j)
i = Movement (j)i ×Mass

(j)
i (2)

where

Movement(j)i : Movement of i-th prediction block in j-th
CTB

Mass(j)i : Number of prediction blocks in j-th CTB.
Thus, Mass(j)1 = Mass(j)2 . . .
For example, if a CTB is divided into 7
prediction blocks,then every Mass of
prediction block in the CTB is 7.

i : Prediction block index
j : CTB index

Foreground CTB is often divided into many prediction
blocks so that foreground prediction blocks have higher
Mass(j)i than background. Foreground and background pre-
diction blocks represent different distribution characteristics
of Movement(j)i and Mass(j)i , it is shown in Table 2.

TABLE 2. Distribution characteristics of momentum.

When Movement(j)i and Mass(j)i are both high, the predic-
tion block most likely belongs to foreground. If Movement(j)i
and Mass(j)i are both low, prediction block belongs to back-
ground in general.When the condition is lowMovement(j)i and
higherMass(j)i , the prediction block belongs to moving object
at low speed.When the condition is highMovement(j)i and low
Mass(j)i , the prediction block may have fake movement.

4) FOREGROUND EXTRACTION
The set of all prediction blocks (T) can be divided into two
mutually exclusive sets:

A. Foreground prediction block set (F)
B. Background prediction block set (B)

In order to detect the moving objects, only set F need to be
extracted with the next two steps:

Step 1. Calculate Threshold
The threshold is calculated according to:

MM =
1
|T|

∑
Momentum∈T

Momentum (3)

where

T : Set of all prediction blocks (T)
MM : Mean Momentum of set of all prediction

blocks (T)
Step 2. Collect Foreground Prediction Blocks

The prediction blocks satisfying (4) are collected in the
set F.

{PBi|Momentumi > MM} (4)

where

PBi : i-th prediction block
Momentumi : Momentum of i-th prediction block
i : Prediction block index

The proposed momentum calculation can improve the dif-
ference between fake movement and others. A prediction
block belonging to a moving object at low speed has a smaller
movement. These kinds of prediction blocks are easily to be
classified as background according to the movement only.
Thus, movement multiplied by mass makes these prediction
blocks to have high momentum. Thus, a moving object with
low speed can be discriminated by its momentum. Similarly,
a prediction block that has fake movement is easily mis-
classified as foreground bymovement only.With the momen-
tum calculation, these false-negative fake movements with
very small momentum values will greatly reduce the false-
negative decision probability.

C. REGION OF INTEREST (ROI) DETECTION
Region of Interest (ROI) is the possible area position of
moving objects in the current frame. Each ROI is formed
by merging foreground prediction blocks belonging to the
same cluster. In this step, foreground prediction blocks will
be clustered and then merged into a ROI. When a ROI has
been detected, pseudo gravitation is proposed to refine it.

1) NORMALIZATION
The purpose of normalization is to convert prediction blocks
with different sizes into blocks with the same size. According
to the H.265/HEVC specification, the minimum prediction
block has size 4 × 4. Therefore larger prediction blocks can
be divided into 4 × 4 small blocks. Index Map is created to
store these blocks. The IndexMap is amatrix where each item
value is 0 or 1 (default is 0) and the size is 1/16 of the original
image (both the width and height are 1/4 of the original). Each
pixel in the IndexMap corresponds to a 4× 4 block, as shown
in Fig. 5.

The Index Map is used to fully express the distributions
of prediction blocks of an image. Prediction blocks can be
clustered on a fair basis because different sizes of prediction
blocks are converted into the same size of Index Map pixels.

2) CLUSTERING
The clustering is done through applying the method in [27]
to the Index Map. In [27], the connected-component labeling
algorithm is introduced to find all the connected-components.

3) BOUNDING
Bounding is to create a rectangle that contains all the pixels
in the same cluster. The rectangle is defined as two coordi-
nates: start (startX, startY) at the Top-Left corner and end
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FIGURE 5. Mapping prediction blocks into pixels of Index Map.

(endX, endY) at the Bottom-Right corner. The rectangle is
calculated according to:

startX = min(X)
startY = min(Y)
endX = max(X)
endY = max(Y)

(5)

where

S : {Si|Si ∈ R2, i = 1. . . n}
X : {Xi|Xi is the first element of Si in S}
Y : {Yi|Yi is the second element of Si in S}
i : Rectangle index

Coordinates of start (startX, startY) and end (endX, endY)
will be multiplied by 4 to create a ROI after Bounding.

4) REFINEMENT
There are smaller ROIs caused by some foreground pre-
diction blocks that are classified incorrectly as background
prediction blocks because their momentum are below MM.
These prediction blocks can cause fragmentation of fore-
ground prediction blocks if their locations are not near the
edge of the ROI. The squared distance of foreground predic-
tion blocks belonging to the same ROI should be very close
to each other. Therefore, these foreground prediction blocks
need to be integrated to one ROI to reduce the unwanted ROI.

In order to get a more appropriate ROI, smaller ROIs are
merged into a larger ROI attached to them. The distinction
between a larger and a smaller ROI is according to:

MA =
1
n

n∑
i=1

areai (6)

where

MA : Mean area of the ROIs
areai: Area of i-th ROIi
n : Number of ROIs
i : ROI index

Algorithm 1 Refinement Algorithm
1: FUNCTION Refinement (SmallerList, LargerList)
2: FOR smallerId← 0 to length(SmallerList)
3: smaller← SmallerList[smallerId]
4: bestMatch← smaller
5: maximalForce← 0
6:

7: FOR largerId← 0 to length(LargerList)
8: larger← LargerList[largerId]
9: f← gravitation (larger, smaller)
10:

11: IF f > maximalForce then
12: bestMatch← larger
13: maximalForce← f
14: ENDIF
15: ENDFOR
16:

17: IF bestMatch 6= smaller
18: bestMatch← merge(bestMatch, smaller)
19: LargerList← modify(LargerList, bestMatch)
20: ELSE
21: LargerList← append(LargerList, smaller)
22: ENDIF
23: ENDFOR
24:

25: RETURN LargerList
26: ENDFUNCTION

An area greater than MA is defined as a larger ROI, while
an area equal to or smaller thanMA is a smaller ROI.Whether
two ROIs are merged or not is determined by the pseudo
gravitation force defined as:{

F = 0, r ≥ CTB Size

F = G
m1m2

r2
, r < CTB Size

(7)

where

F : Pseudo gravitation force between two rectangles
G : The gravitational constant (always set to 1 in our

approach)
m1 : Area of first ROI
m2 : Area of second ROI
r : The shortest boundary distance between two ROIs

according to Fig. 6.

The pseudo gravitation is inversely proportion to the bound-
ary distance between two ROIs. If r is larger than the size of
CTB (64 in general), the pseudo gravitation is zero. A larger
ROI will merge a smaller ROI according to the Refinement
Algorithm shown in Algorithm 1.

The initial value of SmallerList is the ROIs whose area
smaller than the MA, and the other ROIs whose area equal
or bigger than the MA will be stored in the LargerList. In the
Refinement Algorithm, a smaller ROI merges to a ROI with
the maximum pseudo gravitation around it. If a smaller ROI
cannot find any ROI to merge, it will be upgraded to become
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FIGURE 6. Shortest boundary distance between two rectangles. For
example: The shortest boundary distance between Rect 0 and Rect 7
is G= |ey0-sy7|. The shortest boundary distance between Rect 0
and Rect 8 is H = ((ex0-sx8)2 + (ey0-sy8)2)0.5.

a larger ROI. Eventually, the larger ROI will become a more
appropriate ROI to represent the area position of moving
object in the current frame.

D. MOVING OBJECT TRACKING
Moving Object Tracking is to identify the state of moving
objects in the current frame. In this step, moving objects are
tracked through matching moving objects and ROIs. When
moving objects have been tracked, direction is calculated
according its state.

1) CLASSIFICATION
The difference between ROI and moving object is identity.
If a ROI is identified to a moving object that appear in the past
frame, it will be the state of the moving object in the current
frame. On the other hand, a ROI will be a new moving object
if there is no past moving object matching to it. Classification
is to identify the corresponding relations between ROIs and
moving objects. These relations are established according to
the following steps:

Step 1. Find Boundary Distance
Boundary distance between ROI and moving object is the

shortest boundary distance between two rectangles according
to Fig. 6.

Using of boundary distance between two moving objects
can be more accuracy than centroid distance to determine
whether two moving objects touch each other.

Step 2. Generate Grade Table
Amoving objectmay havemanyROIs to be its destinations

and a ROI may be the destination of many moving objects.
So each boundary distance between a ROI and a moving
object needs to be given a Grade to identify the corresponding
relation.

TABLE 3. Grade table.

FIGURE 7. (GR2O3, GO3R2) = (2, 3) means moving object3 is the second
close moving object to the ROI2, thus giving grade 2 and ROI2 is the most
closest ROI to the moving object3, thus giving grade 3.

Grade is defined as an integer from k to zero. The highest
grade is k, the lowest grade is 1, and zero grade means no
relation. If the Grade of relation from ROIi to moving objectj
is k, it means the moving objectj is the closest moving object
to the ROIi. Grade is stored as a pair in the Grade table, as
shown in Table 3.

All the Grades between ROIs and moving objects are
included in the Grade Table.

Step 3. Calculate Matching Degree
Matching degree is the corresponding relation between

ROIs and moving objects. The matching degree of each ele-
ment in the Grade Table is calculated according to:

MatchingDegreeij = GRiOj × GOjRi × Aj (8)

where

GRiOj : Grade of i-th ROI to j-th moving object
GOjRi : Grade of j-th moving object to i-th ROI
Aj : Age of j-th moving object
i : ROI index
j : Moving object index

Matching degree is the product of ‘‘Grade of ROI to mov-
ing object’’, ‘‘Grade of moving object to ROI’’ and ‘‘Age
of moving object’’. Age is the tracked times of a moving
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object and used to represent the stability of a moving object.
A moving object with larger age is a stable moving object
that appears for a long period of time. On the other hand,
amoving object with smaller age is an unstablemoving object
that appears for a short period of time.

Step 4. Create Degree List
A matching degree that is calculated in Step 3 is stored in

the ‘‘DegreeList’’. Each element in the DegreeList contains
three kinds of information: MatchingDegree, i-th ROI and
j-th moving object as shown below:

[MatchingDegreeij,ROIi,MovingObjectj]

where

MatchingDegreeij : MatchingDegree between ROIi and
moving objectj

ROIi : i-th ROI in the RoiList
MovingObjectj : j-th moving object in the ObjectList
RoiList : All ROIs in the current frame
ObjectList : All moving objects in the past frame
i : ROI index
j : Moving object index

The number of elements in the DegreeList is equal to the
number of elements in the Grade Table.

2) MATCHING
Matching is to find the best corresponding relation between
ROIs and moving objects in the DegreeList according to the
Matching Algorithm as shown in Algorithm 2.

The proposed algorithm has three input lists: DegreeList,
RoiList and ObjectList. It produces a outputs: ObjectList that
stores moving objects in the ‘‘current frame’’. The initial
entries of RoiList and ObjectList are all of the ROIs and
moving objects.

The Matching Algorithm first sorts DegreeList by the
MatchingDegree, from high to low. Secondly, it creates the
MatchingList with empty initial value. Thirdly, it checks
every element in the MatchingList. If the MatchingDegree
between i-th ROI and j-th moving object is greater than 0,
i-th ROI and j-th moving object are both still exist in the
RoiList and ObjectList, then add i-th ROI and j-th moving
object as a MatchingPair to the MatchingList. When a new
MatchingPair is added to the Matching List, i-th ROI and
j-th moving object are removed from the RoiList and
ObjectList. An element in the MatchingList means
‘‘j-th moving object is tracked in the current frame, it
is i-th ROI’’. The remainder ROIs in the RoiList means
‘‘i-th ROI is a moving object that first appears in the current
frame’’. The remainder moving objects in the ObjectList
means ‘‘j-th moving object vanished from the current frame’’.
Finally, the vanished moving object will be deleted from the
ObjectList, and the tracked moving object will update its
attributes according to the ROI corresponding to it and the
new moving object will be added in the ObjectList. A new
moving object will be assigned a unique identity number
to initialize. In our approach, maximum identity number of

Algorithm 2 Matching Algorithm
1: FUNCTION Matching(DegreeList, RoiList, ObjectList)
2: DegreeList← QuickSort(DegreeList)
3: MatchingList← emptyList()
4:

5: FOR elementId← 0 to length(DegreeList)
6: element← DegreeList[elementId]
7: degree_ij← element[0] //Get Degree
8: roi_i← element[1] // Get i-th ROI
9: object_j← element[2] // Get j-th Moving Object
10:

11: thereIsROI← isExist(RoiList, roi_i)
12: thereIsOBJECT← isExist(ObjectList, object_j)
13:

14: IF degree_ij>0 AND thereIsROI AND thereIsOB-
JECT

15: pair_ij← [roi_i, object_j]
16: MatchingList← add(MatchingList, pair_ij)
17: RoiList← remove(RoiList, roi_i)
18: ObjectList← remove(ObjectList, object_j)
19: ENDIF
20: ENDFOR
21:

22: ObjectList← deleteVanish(ObjectList)
23: ObjectList← update(ObjectList, MatchingList)
24: ObjectList← addAppear(ObjectList, RoiList)
25:

26: RETURN ObjectList
27: ENDFUNCTION

moving object in the ObjectList plus one will be the unique
identity number that is assigned to the new moving object.

3) POST PROCESSING
a: SIZE CORRECTION
Even the same moving object may have different sizes in two
adjacent frames, especially the moving object is composed
of the prediction blocks near the edge of moving object.
Therefore, the size of a moving object is often fluctuating.
In order to stabilize it, a stable value S is calculated
according to:

for the i-th moving object,

S(i)t = S(i)t−1 −
1
p
F (i)
t−p +

1
p
F (i)
t (9)

where

S(i)t : Stable value in the current frame
S(i)t−1 : Stable value in the previous frame
t : Current frame index
p : Period
F (i)
t−p : Fluctuation value of moving objecti in framet−p

(Fluctuation value is defined as [Size(i)]T )
F (i)
t : Fluctuation value of moving objecti in framet

Size(i) : Size of i-th moving object
i : Moving object index.
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Selection of the p will affect the value of S. When p is too
short, it is insufficient to estimate S. When p is too long, it
fails to estimate the actual size changes. So an appropriate p
must be chosen for correct estimation. According to our
observation, p = 8 can get a suitable S value. When St is
calculated, the size of moving object is updated to St, and the
center position of the moving object is calculated based on
the size. Each re-calculation is stored and concatenated as an
estimated trajectory.

b: DIRECTION FINDING
Direction of a moving object is the foundation of intrusion
detection, because any intrusion object needs to satisfy its
direction criterion within the range of intrusion direction.

Direction of moving object is a vector direction pointing to
the moving object after a period of time. Period p is still used
here and the direction is estimated according to:

θO = tan−1(
y
x
) (10)

where

θO Direction of moving object
(x,y) : MovingVector

(Difference between the center of the
moving object at the two different times)

MovingVector : centert - centert−period
centert : Coordinate of center of moving object in

the current frame
centert−period : Coordinate of center of moving object in

the past frame over a period of time.

E. MOVING OBJECT COUNTING
Moving Object Counting is to estimate the number of mov-
ing objects which move toward a pre-defined direction. In
this step, tripwire is used to detect moving object intrusion
according to its direction. Moving objects which intrude the
tripwire for the first time will be counted.

1) TOUCH DETECTION
Tripwire is a finite-length line. The relation between moving
object and tripwire is represented in Fig. 8.
D is the squared distance between the center of moving

object and the tripwire. In order to detect whether a moving
object touches the tripwire, (11) is used to determine when
the condition is satisfied.

D < R (11)

where

D : 2
√
S(S−a)(S−b)(S−c)

c
S : a+b+c

2
a,b,c : Three edges of triangle in Fig. 8.
R : min(widthi2 ,

heighti
2 )

widthi : Width of i-th moving object
heighti : Height of i-th moving object
i : Moving object index

FIGURE 8. Relation between moving object and tripwire.

D is derived from [28]. When (11) is satisfied, the moving
object touches the tripwire.

2) INTRUSION DETECTION
When a moving object touches the tripwire, it is checked
whether (12) is satisfied.

θT − θO ∈ [θl, θu] (12)

where

θT - θO : Relative direction of moving object
θT : Direction of tripwire
[θl , θu] : Pre-defined range of relative intrusion direction

When both conditions (11) (12) are satisfied, the moving
object is determined that it intrudes the tripwire.

3) COUNTING
When a moving object intrudes the tripwire, Equation (13) is
used to determine whether the moving object should be added
to the intrusion count.

Ai >= AL (13)

where

Ai : Age of i-th moving object
AL : Age limit
i : Moving object index

AL is often defined as 3. The moving object can be counted
when it is tracked at least 3 times. The AL condition
can reduce the false-positives (counting a vanishing mov-
ing object) caused by transient noise. Moving object that
is generated by transient noise has low age due to short-
time appearance. The Ai of moving object can reduce error
counting that is caused by transient noise. Finally, When
conditions (11) (12) (13) are all satisfied, moving object is
defined as an intrusion moving object. In order to avoid
repeated counting, the tripwire will detect whether (14) is
satisfied. {

Count + 1, IMOi /∈ C
Count, otherwise

(14)
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TABLE 4. Properties of test sequences.

where

Count : Number of moving objects
IMOi : i-th moving object and it intrudes tripwire
C : {IMOi| such that the properties of IMOi satisfy

(11)(12)(13)}
i : Moving object index

C is a set with empty initial value, and it is used to store
moving object index that intrude tripwire after counting. The
counter increases by 1 if the intrusion moving object is not
already in C; otherwise if the intrusion moving object has
been counted before, it will not be counted again. Through the
proposed method, the number of moving objects crossing the
tripwire can be quickly estimated. This number is very close
to the true number, therefore it is able to represent number
of moving objects. The performance of our approach will be
compared with the real number and another method in the
next section.

III. EXPERIMENTAL RESULTS
There are three H.265/HEVC bitstreams test cases used as
test sequences as shown in Table 4. The tripwire is placed
in the path where moving objects cannot bypass the line
inconsistent with the actual observation.

For the sake of comparison, we implement a pixel
domain approach. The approach is also based on a five-
stage process: Decoding, Foreground/Background Detec-
tion, Blob Entering Detection, Blob Tracking and Counting.
The HM13 (High Efficiency Video Coding (HEVC) Encoder
Description V13) [29] is used to implement Decod-
ing stage. Foreground/Background Detection, Blob Enter-
ing Detection and Blob Tracking stages are implemented
in terms of [30]–[32], they have already been a part
of the standard library of OpenCV [33], it is called
‘‘blobtrack’’ [34]. The parameters of the function in OpenCV
blobtrack are shown in [35]. The implementation of Counting

stage is consistent with our approach. Because the first four
stages that consume most of processing time are all imple-
mented by standard library, so we believe that performance
of the approach is effective.

There are two criteria of the evaluations: ‘‘Computa-
tion Performance’’ and ‘‘Counting Accuracy’’. ‘‘Computa-
tion Performance’’ shows the average execution time of
each module in the proposed method and the pixel domain
approach. ‘‘Counting Accuracy’’ shows the counting result
every 500 frames.

A. COMPUTATION PERFORMANCE
Dell Precision T1700Workstation is used as the test platform
in our experiment. As opposed to the pixel domain approach,
our approach is actually different from it in ‘‘Parsing’’,
‘‘Foreground Detection’’, ‘‘ROI Detection’’ and ‘‘Moving
Object Tracking’’ stages. Hence, the average execution time
of ‘‘Parsing’’, ‘‘Foreground Detection’’, ‘‘ROI Detection’’
and ‘‘Moving Object Tracking’’ of three test cases are shown
in Table 5. These four stages are also called ‘‘Decoding’’,
‘‘FG/BG Detection’’, ‘‘Blob Entering Detection’’ and ‘‘Blob
Tracking’’ in the pixel domain approach. The worst case
execution time is by the test case AVSS 2007 AV Hard.
Comparing to the pixel domain approach, our approach speed
up to at least 400% (total execution time). This experimental
result shows that our approach can greatly improve the per-
formance of computation, particularly with large amount of
video streaming data.

B. COUNTING ACCURACY
Massive works need to be done to get the true number of mov-
ing objects (ground truth) over the entire video stream. The
counted moving objects are done 500 frames per comparison
and the results are shown in Fig. 9.

In order to calculate the accuracy, there are four formulas to
be used for evaluation: mean of square counting error (MSE),
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TABLE 5. Moving object counting performance.

FIGURE 9. Variation between the counting number and time, the vertical
axis is the number of counting, and the horizontal axis is 500 frame step.
The blue line is ground truth number and the orange line is estimating
number. (a) AVSS 2007 PV Hard, (b) PETS 2006 S1-T1-C 4 and (c) PETS
2007 S00 3.

mean of absolute counting error (MAE) [36], mean of missed
counting error (MME), and mean of false alarm error (MFE).
MSE and MAE are used to estimate accuracy of counting.
Value of MSE and MAE are determined from (15) and (16),
lower value means higher accuracy.

MSE =
1
n

n∑
i=1

|ci − gi|2 (15)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

ci : i-th counting result
gi : i-th ground truth
i : Unit number

MAE =
1
n

n∑
i=1

|ci − gi| (16)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

ci : i-th counting result
gi : i-th ground truth
i : Unit number

Foreground prediction blocks belonging to two different clus-
ters are too close to each other will be merged into a single
ROI. When this kind of ROI is identified as an object, it will
be counted only one time makes missed counting happen.
MME is used to estimate missed counting error, which is
False Negative. Value of MME is determined from (17),
lower value means missed counting result occur infrequently.

MME =
1
n

n∑
i=1

cmissi (17)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

cmissi : cmissi =

{
gi − ci, gi > ci
0, otherwise

ci : i-th counting result
gi : i-th ground truth
i : Unit number
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TABLE 6. Moving object counting qualities.

Camera-shaking, flash appear will cause some foreground
prediction blocks that shouldn’t be exist are extracted and
merged into ROI. When this kind of ROI is identified as
an object, false alarm can happen. MFE is used to estimate
false alarm error, which is False Positive. Value of MFE is
determined from (18), lower value means false alarm result
occur infrequently.

MFE =
1
n

n∑
i=1

cfai (18)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

cfai : cfai =

{
ci − gi, ci > gi
0, otherwise

ci : i-th counting result
gi : i-th ground truth
i : Unit number

The results of evaluation are shown in Table 6.
As Table 6 shows, MAE increases slightly by 0.111 in AVSS
2007 PVHard. It can be reasonably inferred that the proposed
method (red line) only increase 0.000222 (0.1/500) error
per frame. It means increasing the error rate by 0.02%.
As opposed to the pixel domain approach, our approach only
increase the error rate by 0.02% and the speed up is 400%.
This experimental result shows the proposed method can be
widely applied to traffic management application.

IV. CONCLUSION
Automatically counting moving objects has played an impor-
tant role in several different video surveillance applications.
However, to obtain the estimation for a large volume of video
data with high compression ratio is challenging due to the
high computational cost. This paper presents a method for
counting moving objects in the H.265/HEVC video format in
the compressed domain.

In order to reduce the impact of fake movements, a new
concept ‘‘Momentum’’ is proposed in this paper. The fore-
ground prediction blocks can be extracted with minimum
error by this concept. In the Region of Interest (ROI) Detec-
tion, connected-component labeling algorithm is used to
cluster and pseudo gravitation is proposed to refine ROIs.
In the Moving Object Tracking, state of moving object is

determined in the current image frame according to the pro-
posed Matching Algorithm. In the Moving Object Counting,
the number of moving objects which move toward a specific
direction is estimated by using tripwire. Besides finding the
correctmoving objects, an ‘‘Age’’ concept ofmoving object is
proposed to reduce the influences caused by transient noises.

Based on the experimental results, the estimated number of
moving objects is very close the true number. Compared with
the pixel domain approach, our approach can increase the
efficiency by 400% (from Table 5), while the average error
per frame only increases by 0.02% (from Table 6). Hence,
our research for traffic management based on H.265/HEVC
bitstreams improves efficiency without damaging the count-
ing quality too much.
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