
Received May 2, 2016, accepted May 13, 2016, date of publication May 24, 2016, date of current version June 13, 2016.

Digital Object Identifier 10.1109/ACCESS.2016.2572121

Moving Object Counting Using a Tripwire in
H.265/HEVC Bitstreams for Video Surveillance
YUNG-WEI CHEN1, KAI CHEN1, SHIH-YI YUAN2, AND SY-YEN KUO1, (Fellow, IEEE)
1Department of Electrical Engineering, National Taiwan University, Taipei 10802, Taiwan
2Department of Communication Engineering, Feng Chia University, Taichung 40250, Taiwan

Corresponding author: Y.-W. Chen (francis2001tw@gmail.com)

This work was supported by the Ministry of Science and Technology, Taiwan, under Grant NSC 102-2221-E-002-136-MY3.

ABSTRACT The objective of this paper is to estimate the number of moving objects that passes through a
specific area without fully decoding the H.265/high-efficiency video coding (HEVC) bitstreams. First, the
foreground prediction blocks are extracted according to the motion vectors of the H.265/HEVC bitstreams.
Next, these foreground prediction blocks are clustered into the region of interests (ROIs), which are the
possible area position of moving objects in the current frame. Finally, the state of moving objects is identified
by matching moving objects and these ROIs. In order to estimate the number of moving objects, which
move toward a pre-defined direction, a tripwire is set to a detecting area. Any moving objects crossing
the tripwire and satisfying the intrusion conditions are counted. With the proposed method, the number
of moving objects can be directly estimated in the compressed domain video. This approach significantly
increase the processing speed more than 400% at the cost of less than 0.02% accuracy degradation compared
with the traditional pixel domain approach. The research results can be applied to traffic management, real-
time analysis of surveillance application, and other related areas.

INDEX TERMS H.265/HEVC, object counting, video surveillance applications.

I. INTRODUCTION
With the development of intelligent video surveillance sys-
tem, moving object counting has been achieved by image
analysis. In order to estimate the number of moving objects
stored in the video recorder system, most of the existing
intelligent surveillance systems need to analyze video after
fully decoding bitstreams. Such approaches result in heavy
computational cost on the surveillance system, especially
with high quality and large amount video streams. Therefore,
it can be of great help to estimate these objects without
fully decoding the bitstreams in performing real-time video
analysis.

Over the last 10 years, the mainstream specification of
video streaming is H.264/AVC. With the publication of
H.265/HEVC as the next generation of video streaming stan-
dard in April 2013 [1], image analysis based on H.265/HEVC
is predicted to be the main trend of the security industry
development [2]. Therefore, this paper proposes an approach
to estimate the number of moving objects without the need
to fully decode the H.265/HEVC bitstreams. Therefore, this
approach is suitable for future intelligent video surveillance
systems.

Traditional intelligent video surveillance systems mainly
analyze the pixel domain image to detect moving objects.

Chen et al. [3] presented a video surveillance system
process pipeline that has four stages: 1) FG(foreground)/
BG(background) Detection Module, 2) Blob Entering
Detection Module, 3) Blob Tracking Module, and 4) Trajec-
tory Post Processing.

Suhr et al. [4] used a mixture of Gaussians (MoG) to model
the background in a Bayer-pattern domain and classified the
foreground in an interpolated red, green, and blue (RGB)
domain. Hsieh et al. [5] used an adaptive back-
ground updating method to model the background.
Kanhere and Birchfield [6] stored the average gray level of
each pixel over a fixed period of time to train background
model. del-Blanco et al. [7] used the mixture of Gaussians
to model background and a Bayesian model to simulate the
object trajectories in the tracking stage.

Except for detecting moving objects in the pixel domain,
there were many studies during the last decade to detect
moving objects based on analyzing a compressed domain
video. Huang et al. [8] presented the quadtree structure to
represent variable-size coding blocks in the high efficiency
video coding (HEVC). This structure can represent the fore-
ground objects in the picture. Nightingale et al. [9] pro-
posed a heuristic, no-reference approach to classify video
content which is specific to HEVC encoded bitstreams.

VOLUME 4, 2016
2169-3536
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2529

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

Dey and Malay Kundu [10] proposed an efficient approach
to extract foreground by using novel spatio-temporal decor-
related block features that was extracted directly from the
HEVC compressed video.

Babu et al. [11] used the K-Means [12] clustering to
estimate the number of moving objects, and then used the
EM method to segment moving objects. Zeng et al. [13]
proposed four types of motion vector: 1) background
MV (BMV), 2) edge MV (EMV), 3) foreground MV (FMV),
and 4) noise MV (NMV). He then used Markov Ran-
dom Field (MRF) model to extract moving blocks.
Poppe et al. [14] used a background video stream training
background model, and then extracted foreground by back-
ground subtraction to get moving objects. Käs et al. [15] used
Gaussian Mixture Model (GMM) to establish a background
model with fully decoded I frame and detected the direction
of moving objects in B, P frame. When foreground has been
extracted by background subtraction, SIFT [16] was used to
extract features and moving objects were tracked according
to the features. Sabirin and Kim [17] used non-zero vectors
to distinguish foreground and background, and then detected
and tracked moving objects by the Spatio-Temporal Graph.
When twomoving objects were occluded, the moving objects
can be tracked according to the moving direction and residue.
Wang et al. [18], [19] present an approach to extract moving
objects based on the INTRA frame from the H.264/AVC
compressed domain video.

In order to improve the accuracy of moving object
detection, some previous works tried to remove moving
vectors that were caused by noises during the foreground
detection. Yu et al. [20] used the median filter to remove
noise. Ahmad et al. [21] used both the Gaussian filter and
the median filter to remove noise. Ibrahim and Rao [22] com-
bined temporal filter with spatial filter as an extended vector
median filter to remove noise. Moura and Hemerly [23]
proposed the concept of ‘‘fake movement’’, and used the
spatiotemporal motion vector consistency filter (STF) to
remove the fake movements. Kapotas and Skodras [24] used
the mean value of motion vectors as the threshold to filter
noise. Thus, to detect moving objects in compressed domain
based on motion vectors becomes a feasible solution as seen
from the above researches. The detection of moving objects
and the estimation of numbers by using motion vectors of
H.265/HEVC stream is proposed in this paper. The experi-
mental environment used static cameras to monitor whether
moving objects have crossed a preset tripwire or not. The
moving objects are counted in the single camera view, cross-
camera is not considered in our method. Wang et al. [25] pro-
posed the motion vectors in B frames are much closer to the
true motion direction of a moving object, and therefore this
paper is focused on analyzing the motion vectors in B frames.

A simple block diagram of the proposed method is shown
in Fig. 1. There are mainly four steps in the proposed method:
1) Foreground Detection, 2) Region of Interest (ROI) Detec-
tion, 3) Moving Object Tracking, and 4) Moving Object
Counting.

FIGURE 1. Block diagram of the proposed moving object counting.

The number of moving objects that move toward a pre-
defined direction can be estimated through the above four
steps. The result shows the estimated number of moving
objects is very close to the real number. Thus, an intelligent
video surveillance system can count moving objects by ana-
lyzing the motion vectors of B frames from H.265/HEVC
bitstreams. Each step has its sub-steps and will be detailed
in the following sections.

II. METHODOLOGY
A. MOTION VECTORS OF PREDICTION BLOCK
The basic encoding unit of H.265/HEVC is the Coding Tree
Unit (CTU) [26]. Each image is divided into many CTUs.
Every CTU is composed of an L × L luminance Coding
Tree Block (CTB) and two L/2 × L/2 chrominance CTBs,
as shown in Fig. 2.

FIGURE 2. A CTU with a luma CTB and two chroma CTBs.

2530 VOLUME 4, 2016

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

Size L is defined in SPS (Sequence Parameter Sets), it may
be 16, 32 or 64. Every CTBwill be divided into many Coding
Blocks (CBs) according to its image feature; then used as a
quarter tree to manage these CBs, as shown in Fig. 3.

FIGURE 3. CTBs can be further partitioned into multiple CBs.

In general, the minimum size of a CB is 8 × 8, and
is defined in SPS. Each CB is split into many Prediction
Blocks (PBs) at the Inter Frame Prediction stage. PB sizes
can be from 4 × 4 to 64 × 64, and there are two kinds of
approach: symmetric or asymmetric, as shown in Fig. 4.

FIGURE 4. Splitting a CB into PBs.

When a CB is divided into many PBs, the encoder
uses past and future frames to be the reference frames
(in B frames, for example), and then finds the nearest
matching block in reference frames by motion estimation.
The motion vectors obtained by motion estimation are used

in motion compensation prediction. In the following sub-
sections, all the four steps in II are described in detail
respectively.

B. FOREGROUND DETECTION
Foreground detection is used to extract the foreground pre-
diction blocks. In this step, a novel momentum definition is
proposed to reduce the impact of fake movements.

1) MOVEMENT OF PREDICTION BLOCK
Movement is the total displacement of a prediction block;
it is calculated as below:

Movementi = ∞, |Ri| = 0
Movementi = ‖Mv1‖2 , |Ri| = 1
Movementi = ‖minMv‖2 , |Ri| = 2

(1)

where

|Ri|: Number of reference frames
Mv1: First motion vector of prediction block,

Mv1 = (Mv1x ,Mv1y)
Mv2: Second motion vector of prediction block,

Mv2 = (Mv2x ,Mv2y)
minMv: (min(|Mv1x |, |Mv2x |), min(|Mv1y|, |Mv2y|))
i: Prediction block index

Table 1 shows the movement properties of foreground and
background prediction blocks. Foreground prediction blocks
have high and wide variance movement because moving
objects move at different speeds. In contrast, background
prediction blocks have low and small variance movement
because moving objects do not move, so that the movement
value should be zero theoretically.

TABLE 1. Properties of movement.

2) FAKE MOVEMENT
The encoder will select the most similar block in another
frame to be the reference block during motion estimation.
The most similar block is not necessary at the same position
even if the prediction block belongs to the background. Thus,
background prediction blocks may have non-zero motion
vectors that should be zero. This kind of movement with
non-zero motion vector that should be zero is called ‘‘fake
movement’’. In general, the encoder can find more easily a
distant block from multiple similar reference blocks causing
fake movement in the low frequency area or low-quality
images.

3) MOMENTUM
Momentum is a weighted movement, and is a proposed novel
concept. This new concept is used to identify fakemovements
more precisely. Momentum is calculated according to:

VOLUME 4, 2016 2531

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

for the j-th CTB,

Momentum(j)
i = Movement (j)i ×Mass

(j)
i (2)

where

Movement(j)i : Movement of i-th prediction block in j-th
CTB

Mass(j)i : Number of prediction blocks in j-th CTB.
Thus, Mass(j)1 = Mass(j)2 . . .
For example, if a CTB is divided into 7
prediction blocks,then every Mass of
prediction block in the CTB is 7.

i : Prediction block index
j : CTB index

Foreground CTB is often divided into many prediction
blocks so that foreground prediction blocks have higher
Mass(j)i than background. Foreground and background pre-
diction blocks represent different distribution characteristics
of Movement(j)i and Mass(j)i , it is shown in Table 2.

TABLE 2. Distribution characteristics of momentum.

When Movement(j)i and Mass(j)i are both high, the predic-
tion block most likely belongs to foreground. If Movement(j)i
and Mass(j)i are both low, prediction block belongs to back-
ground in general.When the condition is lowMovement(j)i and
higherMass(j)i , the prediction block belongs to moving object
at low speed.When the condition is highMovement(j)i and low
Mass(j)i , the prediction block may have fake movement.

4) FOREGROUND EXTRACTION
The set of all prediction blocks (T) can be divided into two
mutually exclusive sets:

A. Foreground prediction block set (F)
B. Background prediction block set (B)

In order to detect the moving objects, only set F need to be
extracted with the next two steps:

Step 1. Calculate Threshold
The threshold is calculated according to:

MM =
1
|T|

∑
Momentum∈T

Momentum (3)

where

T : Set of all prediction blocks (T)
MM : Mean Momentum of set of all prediction

blocks (T)
Step 2. Collect Foreground Prediction Blocks

The prediction blocks satisfying (4) are collected in the
set F.

{PBi|Momentumi > MM} (4)

where

PBi : i-th prediction block
Momentumi : Momentum of i-th prediction block
i : Prediction block index

The proposed momentum calculation can improve the dif-
ference between fake movement and others. A prediction
block belonging to a moving object at low speed has a smaller
movement. These kinds of prediction blocks are easily to be
classified as background according to the movement only.
Thus, movement multiplied by mass makes these prediction
blocks to have high momentum. Thus, a moving object with
low speed can be discriminated by its momentum. Similarly,
a prediction block that has fake movement is easily mis-
classified as foreground bymovement only.With the momen-
tum calculation, these false-negative fake movements with
very small momentum values will greatly reduce the false-
negative decision probability.

C. REGION OF INTEREST (ROI) DETECTION
Region of Interest (ROI) is the possible area position of
moving objects in the current frame. Each ROI is formed
by merging foreground prediction blocks belonging to the
same cluster. In this step, foreground prediction blocks will
be clustered and then merged into a ROI. When a ROI has
been detected, pseudo gravitation is proposed to refine it.

1) NORMALIZATION
The purpose of normalization is to convert prediction blocks
with different sizes into blocks with the same size. According
to the H.265/HEVC specification, the minimum prediction
block has size 4 × 4. Therefore larger prediction blocks can
be divided into 4 × 4 small blocks. Index Map is created to
store these blocks. The IndexMap is amatrix where each item
value is 0 or 1 (default is 0) and the size is 1/16 of the original
image (both the width and height are 1/4 of the original). Each
pixel in the IndexMap corresponds to a 4× 4 block, as shown
in Fig. 5.

The Index Map is used to fully express the distributions
of prediction blocks of an image. Prediction blocks can be
clustered on a fair basis because different sizes of prediction
blocks are converted into the same size of Index Map pixels.

2) CLUSTERING
The clustering is done through applying the method in [27]
to the Index Map. In [27], the connected-component labeling
algorithm is introduced to find all the connected-components.

3) BOUNDING
Bounding is to create a rectangle that contains all the pixels
in the same cluster. The rectangle is defined as two coordi-
nates: start (startX, startY) at the Top-Left corner and end

2532 VOLUME 4, 2016

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

FIGURE 5. Mapping prediction blocks into pixels of Index Map.

(endX, endY) at the Bottom-Right corner. The rectangle is
calculated according to:

startX = min(X)
startY = min(Y)
endX = max(X)
endY = max(Y)

(5)

where

S : {Si|Si ∈ R2, i = 1. . . n}
X : {Xi|Xi is the first element of Si in S}
Y : {Yi|Yi is the second element of Si in S}
i : Rectangle index

Coordinates of start (startX, startY) and end (endX, endY)
will be multiplied by 4 to create a ROI after Bounding.

4) REFINEMENT
There are smaller ROIs caused by some foreground pre-
diction blocks that are classified incorrectly as background
prediction blocks because their momentum are below MM.
These prediction blocks can cause fragmentation of fore-
ground prediction blocks if their locations are not near the
edge of the ROI. The squared distance of foreground predic-
tion blocks belonging to the same ROI should be very close
to each other. Therefore, these foreground prediction blocks
need to be integrated to one ROI to reduce the unwanted ROI.

In order to get a more appropriate ROI, smaller ROIs are
merged into a larger ROI attached to them. The distinction
between a larger and a smaller ROI is according to:

MA =
1
n

n∑
i=1

areai (6)

where

MA : Mean area of the ROIs
areai: Area of i-th ROIi
n : Number of ROIs
i : ROI index

Algorithm 1 Refinement Algorithm
1: FUNCTION Refinement (SmallerList, LargerList)
2: FOR smallerId← 0 to length(SmallerList)
3: smaller← SmallerList[smallerId]
4: bestMatch← smaller
5: maximalForce← 0
6:

7: FOR largerId← 0 to length(LargerList)
8: larger← LargerList[largerId]
9: f← gravitation (larger, smaller)
10:

11: IF f > maximalForce then
12: bestMatch← larger
13: maximalForce← f
14: ENDIF
15: ENDFOR
16:

17: IF bestMatch 6= smaller
18: bestMatch← merge(bestMatch, smaller)
19: LargerList← modify(LargerList, bestMatch)
20: ELSE
21: LargerList← append(LargerList, smaller)
22: ENDIF
23: ENDFOR
24:

25: RETURN LargerList
26: ENDFUNCTION

An area greater than MA is defined as a larger ROI, while
an area equal to or smaller thanMA is a smaller ROI.Whether
two ROIs are merged or not is determined by the pseudo
gravitation force defined as:{

F = 0, r ≥ CTB Size

F = G
m1m2

r2
, r < CTB Size

(7)

where

F : Pseudo gravitation force between two rectangles
G : The gravitational constant (always set to 1 in our

approach)
m1 : Area of first ROI
m2 : Area of second ROI
r : The shortest boundary distance between two ROIs

according to Fig. 6.

The pseudo gravitation is inversely proportion to the bound-
ary distance between two ROIs. If r is larger than the size of
CTB (64 in general), the pseudo gravitation is zero. A larger
ROI will merge a smaller ROI according to the Refinement
Algorithm shown in Algorithm 1.

The initial value of SmallerList is the ROIs whose area
smaller than the MA, and the other ROIs whose area equal
or bigger than the MA will be stored in the LargerList. In the
Refinement Algorithm, a smaller ROI merges to a ROI with
the maximum pseudo gravitation around it. If a smaller ROI
cannot find any ROI to merge, it will be upgraded to become

VOLUME 4, 2016 2533

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

FIGURE 6. Shortest boundary distance between two rectangles. For
example: The shortest boundary distance between Rect 0 and Rect 7
is G= |ey0-sy7|. The shortest boundary distance between Rect 0
and Rect 8 is H = ((ex0-sx8)2 + (ey0-sy8)2)0.5.

a larger ROI. Eventually, the larger ROI will become a more
appropriate ROI to represent the area position of moving
object in the current frame.

D. MOVING OBJECT TRACKING
Moving Object Tracking is to identify the state of moving
objects in the current frame. In this step, moving objects are
tracked through matching moving objects and ROIs. When
moving objects have been tracked, direction is calculated
according its state.

1) CLASSIFICATION
The difference between ROI and moving object is identity.
If a ROI is identified to a moving object that appear in the past
frame, it will be the state of the moving object in the current
frame. On the other hand, a ROI will be a new moving object
if there is no past moving object matching to it. Classification
is to identify the corresponding relations between ROIs and
moving objects. These relations are established according to
the following steps:

Step 1. Find Boundary Distance
Boundary distance between ROI and moving object is the

shortest boundary distance between two rectangles according
to Fig. 6.

Using of boundary distance between two moving objects
can be more accuracy than centroid distance to determine
whether two moving objects touch each other.

Step 2. Generate Grade Table
Amoving objectmay havemanyROIs to be its destinations

and a ROI may be the destination of many moving objects.
So each boundary distance between a ROI and a moving
object needs to be given a Grade to identify the corresponding
relation.

TABLE 3. Grade table.

FIGURE 7. (GR2O3, GO3R2) = (2, 3) means moving object3 is the second
close moving object to the ROI2, thus giving grade 2 and ROI2 is the most
closest ROI to the moving object3, thus giving grade 3.

Grade is defined as an integer from k to zero. The highest
grade is k, the lowest grade is 1, and zero grade means no
relation. If the Grade of relation from ROIi to moving objectj
is k, it means the moving objectj is the closest moving object
to the ROIi. Grade is stored as a pair in the Grade table, as
shown in Table 3.

All the Grades between ROIs and moving objects are
included in the Grade Table.

Step 3. Calculate Matching Degree
Matching degree is the corresponding relation between

ROIs and moving objects. The matching degree of each ele-
ment in the Grade Table is calculated according to:

MatchingDegreeij = GRiOj × GOjRi × Aj (8)

where

GRiOj : Grade of i-th ROI to j-th moving object
GOjRi : Grade of j-th moving object to i-th ROI
Aj : Age of j-th moving object
i : ROI index
j : Moving object index

Matching degree is the product of ‘‘Grade of ROI to mov-
ing object’’, ‘‘Grade of moving object to ROI’’ and ‘‘Age
of moving object’’. Age is the tracked times of a moving

2534 VOLUME 4, 2016

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

object and used to represent the stability of a moving object.
A moving object with larger age is a stable moving object
that appears for a long period of time. On the other hand,
amoving object with smaller age is an unstablemoving object
that appears for a short period of time.

Step 4. Create Degree List
A matching degree that is calculated in Step 3 is stored in

the ‘‘DegreeList’’. Each element in the DegreeList contains
three kinds of information: MatchingDegree, i-th ROI and
j-th moving object as shown below:

[MatchingDegreeij,ROIi,MovingObjectj]

where

MatchingDegreeij : MatchingDegree between ROIi and
moving objectj

ROIi : i-th ROI in the RoiList
MovingObjectj : j-th moving object in the ObjectList
RoiList : All ROIs in the current frame
ObjectList : All moving objects in the past frame
i : ROI index
j : Moving object index

The number of elements in the DegreeList is equal to the
number of elements in the Grade Table.

2) MATCHING
Matching is to find the best corresponding relation between
ROIs and moving objects in the DegreeList according to the
Matching Algorithm as shown in Algorithm 2.

The proposed algorithm has three input lists: DegreeList,
RoiList and ObjectList. It produces a outputs: ObjectList that
stores moving objects in the ‘‘current frame’’. The initial
entries of RoiList and ObjectList are all of the ROIs and
moving objects.

The Matching Algorithm first sorts DegreeList by the
MatchingDegree, from high to low. Secondly, it creates the
MatchingList with empty initial value. Thirdly, it checks
every element in the MatchingList. If the MatchingDegree
between i-th ROI and j-th moving object is greater than 0,
i-th ROI and j-th moving object are both still exist in the
RoiList and ObjectList, then add i-th ROI and j-th moving
object as a MatchingPair to the MatchingList. When a new
MatchingPair is added to the Matching List, i-th ROI and
j-th moving object are removed from the RoiList and
ObjectList. An element in the MatchingList means
‘‘j-th moving object is tracked in the current frame, it
is i-th ROI’’. The remainder ROIs in the RoiList means
‘‘i-th ROI is a moving object that first appears in the current
frame’’. The remainder moving objects in the ObjectList
means ‘‘j-th moving object vanished from the current frame’’.
Finally, the vanished moving object will be deleted from the
ObjectList, and the tracked moving object will update its
attributes according to the ROI corresponding to it and the
new moving object will be added in the ObjectList. A new
moving object will be assigned a unique identity number
to initialize. In our approach, maximum identity number of

Algorithm 2 Matching Algorithm
1: FUNCTION Matching(DegreeList, RoiList, ObjectList)
2: DegreeList← QuickSort(DegreeList)
3: MatchingList← emptyList()
4:

5: FOR elementId← 0 to length(DegreeList)
6: element← DegreeList[elementId]
7: degree_ij← element[0] //Get Degree
8: roi_i← element[1] // Get i-th ROI
9: object_j← element[2] // Get j-th Moving Object
10:

11: thereIsROI← isExist(RoiList, roi_i)
12: thereIsOBJECT← isExist(ObjectList, object_j)
13:

14: IF degree_ij>0 AND thereIsROI AND thereIsOB-
JECT

15: pair_ij← [roi_i, object_j]
16: MatchingList← add(MatchingList, pair_ij)
17: RoiList← remove(RoiList, roi_i)
18: ObjectList← remove(ObjectList, object_j)
19: ENDIF
20: ENDFOR
21:

22: ObjectList← deleteVanish(ObjectList)
23: ObjectList← update(ObjectList, MatchingList)
24: ObjectList← addAppear(ObjectList, RoiList)
25:

26: RETURN ObjectList
27: ENDFUNCTION

moving object in the ObjectList plus one will be the unique
identity number that is assigned to the new moving object.

3) POST PROCESSING
a: SIZE CORRECTION
Even the same moving object may have different sizes in two
adjacent frames, especially the moving object is composed
of the prediction blocks near the edge of moving object.
Therefore, the size of a moving object is often fluctuating.
In order to stabilize it, a stable value S is calculated
according to:

for the i-th moving object,

S(i)t = S(i)t−1 −
1
p
F (i)
t−p +

1
p
F (i)
t (9)

where

S(i)t : Stable value in the current frame
S(i)t−1 : Stable value in the previous frame
t : Current frame index
p : Period
F (i)
t−p : Fluctuation value of moving objecti in framet−p

(Fluctuation value is defined as [Size(i)]T)
F (i)
t : Fluctuation value of moving objecti in framet

Size(i) : Size of i-th moving object
i : Moving object index.

VOLUME 4, 2016 2535

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

Selection of the p will affect the value of S. When p is too
short, it is insufficient to estimate S. When p is too long, it
fails to estimate the actual size changes. So an appropriate p
must be chosen for correct estimation. According to our
observation, p = 8 can get a suitable S value. When St is
calculated, the size of moving object is updated to St, and the
center position of the moving object is calculated based on
the size. Each re-calculation is stored and concatenated as an
estimated trajectory.

b: DIRECTION FINDING
Direction of a moving object is the foundation of intrusion
detection, because any intrusion object needs to satisfy its
direction criterion within the range of intrusion direction.

Direction of moving object is a vector direction pointing to
the moving object after a period of time. Period p is still used
here and the direction is estimated according to:

θO = tan−1(
y
x
) (10)

where

θO Direction of moving object
(x,y) : MovingVector

(Difference between the center of the
moving object at the two different times)

MovingVector : centert - centert−period
centert : Coordinate of center of moving object in

the current frame
centert−period : Coordinate of center of moving object in

the past frame over a period of time.

E. MOVING OBJECT COUNTING
Moving Object Counting is to estimate the number of mov-
ing objects which move toward a pre-defined direction. In
this step, tripwire is used to detect moving object intrusion
according to its direction. Moving objects which intrude the
tripwire for the first time will be counted.

1) TOUCH DETECTION
Tripwire is a finite-length line. The relation between moving
object and tripwire is represented in Fig. 8.
D is the squared distance between the center of moving

object and the tripwire. In order to detect whether a moving
object touches the tripwire, (11) is used to determine when
the condition is satisfied.

D < R (11)

where

D : 2
√
S(S−a)(S−b)(S−c)

c
S : a+b+c

2
a,b,c : Three edges of triangle in Fig. 8.
R : min(widthi2 ,

heighti
2)

widthi : Width of i-th moving object
heighti : Height of i-th moving object
i : Moving object index

FIGURE 8. Relation between moving object and tripwire.

D is derived from [28]. When (11) is satisfied, the moving
object touches the tripwire.

2) INTRUSION DETECTION
When a moving object touches the tripwire, it is checked
whether (12) is satisfied.

θT − θO ∈ [θl, θu] (12)

where

θT - θO : Relative direction of moving object
θT : Direction of tripwire
[θl , θu] : Pre-defined range of relative intrusion direction

When both conditions (11) (12) are satisfied, the moving
object is determined that it intrudes the tripwire.

3) COUNTING
When a moving object intrudes the tripwire, Equation (13) is
used to determine whether the moving object should be added
to the intrusion count.

Ai >= AL (13)

where

Ai : Age of i-th moving object
AL : Age limit
i : Moving object index

AL is often defined as 3. The moving object can be counted
when it is tracked at least 3 times. The AL condition
can reduce the false-positives (counting a vanishing mov-
ing object) caused by transient noise. Moving object that
is generated by transient noise has low age due to short-
time appearance. The Ai of moving object can reduce error
counting that is caused by transient noise. Finally, When
conditions (11) (12) (13) are all satisfied, moving object is
defined as an intrusion moving object. In order to avoid
repeated counting, the tripwire will detect whether (14) is
satisfied. {

Count + 1, IMOi /∈ C
Count, otherwise

(14)

2536 VOLUME 4, 2016

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

TABLE 4. Properties of test sequences.

where

Count : Number of moving objects
IMOi : i-th moving object and it intrudes tripwire
C : {IMOi| such that the properties of IMOi satisfy

(11)(12)(13)}
i : Moving object index

C is a set with empty initial value, and it is used to store
moving object index that intrude tripwire after counting. The
counter increases by 1 if the intrusion moving object is not
already in C; otherwise if the intrusion moving object has
been counted before, it will not be counted again. Through the
proposed method, the number of moving objects crossing the
tripwire can be quickly estimated. This number is very close
to the true number, therefore it is able to represent number
of moving objects. The performance of our approach will be
compared with the real number and another method in the
next section.

III. EXPERIMENTAL RESULTS
There are three H.265/HEVC bitstreams test cases used as
test sequences as shown in Table 4. The tripwire is placed
in the path where moving objects cannot bypass the line
inconsistent with the actual observation.

For the sake of comparison, we implement a pixel
domain approach. The approach is also based on a five-
stage process: Decoding, Foreground/Background Detec-
tion, Blob Entering Detection, Blob Tracking and Counting.
The HM13 (High Efficiency Video Coding (HEVC) Encoder
Description V13) [29] is used to implement Decod-
ing stage. Foreground/Background Detection, Blob Enter-
ing Detection and Blob Tracking stages are implemented
in terms of [30]–[32], they have already been a part
of the standard library of OpenCV [33], it is called
‘‘blobtrack’’ [34]. The parameters of the function in OpenCV
blobtrack are shown in [35]. The implementation of Counting

stage is consistent with our approach. Because the first four
stages that consume most of processing time are all imple-
mented by standard library, so we believe that performance
of the approach is effective.

There are two criteria of the evaluations: ‘‘Computa-
tion Performance’’ and ‘‘Counting Accuracy’’. ‘‘Computa-
tion Performance’’ shows the average execution time of
each module in the proposed method and the pixel domain
approach. ‘‘Counting Accuracy’’ shows the counting result
every 500 frames.

A. COMPUTATION PERFORMANCE
Dell Precision T1700Workstation is used as the test platform
in our experiment. As opposed to the pixel domain approach,
our approach is actually different from it in ‘‘Parsing’’,
‘‘Foreground Detection’’, ‘‘ROI Detection’’ and ‘‘Moving
Object Tracking’’ stages. Hence, the average execution time
of ‘‘Parsing’’, ‘‘Foreground Detection’’, ‘‘ROI Detection’’
and ‘‘Moving Object Tracking’’ of three test cases are shown
in Table 5. These four stages are also called ‘‘Decoding’’,
‘‘FG/BG Detection’’, ‘‘Blob Entering Detection’’ and ‘‘Blob
Tracking’’ in the pixel domain approach. The worst case
execution time is by the test case AVSS 2007 AV Hard.
Comparing to the pixel domain approach, our approach speed
up to at least 400% (total execution time). This experimental
result shows that our approach can greatly improve the per-
formance of computation, particularly with large amount of
video streaming data.

B. COUNTING ACCURACY
Massive works need to be done to get the true number of mov-
ing objects (ground truth) over the entire video stream. The
counted moving objects are done 500 frames per comparison
and the results are shown in Fig. 9.

In order to calculate the accuracy, there are four formulas to
be used for evaluation: mean of square counting error (MSE),

VOLUME 4, 2016 2537

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

TABLE 5. Moving object counting performance.

FIGURE 9. Variation between the counting number and time, the vertical
axis is the number of counting, and the horizontal axis is 500 frame step.
The blue line is ground truth number and the orange line is estimating
number. (a) AVSS 2007 PV Hard, (b) PETS 2006 S1-T1-C 4 and (c) PETS
2007 S00 3.

mean of absolute counting error (MAE) [36], mean of missed
counting error (MME), and mean of false alarm error (MFE).
MSE and MAE are used to estimate accuracy of counting.
Value of MSE and MAE are determined from (15) and (16),
lower value means higher accuracy.

MSE =
1
n

n∑
i=1

|ci − gi|2 (15)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

ci : i-th counting result
gi : i-th ground truth
i : Unit number

MAE =
1
n

n∑
i=1

|ci − gi| (16)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

ci : i-th counting result
gi : i-th ground truth
i : Unit number

Foreground prediction blocks belonging to two different clus-
ters are too close to each other will be merged into a single
ROI. When this kind of ROI is identified as an object, it will
be counted only one time makes missed counting happen.
MME is used to estimate missed counting error, which is
False Negative. Value of MME is determined from (17),
lower value means missed counting result occur infrequently.

MME =
1
n

n∑
i=1

cmissi (17)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

cmissi : cmissi =

{
gi − ci, gi > ci
0, otherwise

ci : i-th counting result
gi : i-th ground truth
i : Unit number

2538 VOLUME 4, 2016

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

TABLE 6. Moving object counting qualities.

Camera-shaking, flash appear will cause some foreground
prediction blocks that shouldn’t be exist are extracted and
merged into ROI. When this kind of ROI is identified as
an object, false alarm can happen. MFE is used to estimate
false alarm error, which is False Positive. Value of MFE is
determined from (18), lower value means false alarm result
occur infrequently.

MFE =
1
n

n∑
i=1

cfai (18)

where

n : Number of units (Every 500 frames is a unit, for
example: 1000 frames are 2 units)

cfai : cfai =

{
ci − gi, ci > gi
0, otherwise

ci : i-th counting result
gi : i-th ground truth
i : Unit number

The results of evaluation are shown in Table 6.
As Table 6 shows, MAE increases slightly by 0.111 in AVSS
2007 PVHard. It can be reasonably inferred that the proposed
method (red line) only increase 0.000222 (0.1/500) error
per frame. It means increasing the error rate by 0.02%.
As opposed to the pixel domain approach, our approach only
increase the error rate by 0.02% and the speed up is 400%.
This experimental result shows the proposed method can be
widely applied to traffic management application.

IV. CONCLUSION
Automatically counting moving objects has played an impor-
tant role in several different video surveillance applications.
However, to obtain the estimation for a large volume of video
data with high compression ratio is challenging due to the
high computational cost. This paper presents a method for
counting moving objects in the H.265/HEVC video format in
the compressed domain.

In order to reduce the impact of fake movements, a new
concept ‘‘Momentum’’ is proposed in this paper. The fore-
ground prediction blocks can be extracted with minimum
error by this concept. In the Region of Interest (ROI) Detec-
tion, connected-component labeling algorithm is used to
cluster and pseudo gravitation is proposed to refine ROIs.
In the Moving Object Tracking, state of moving object is

determined in the current image frame according to the pro-
posed Matching Algorithm. In the Moving Object Counting,
the number of moving objects which move toward a specific
direction is estimated by using tripwire. Besides finding the
correctmoving objects, an ‘‘Age’’ concept ofmoving object is
proposed to reduce the influences caused by transient noises.

Based on the experimental results, the estimated number of
moving objects is very close the true number. Compared with
the pixel domain approach, our approach can increase the
efficiency by 400% (from Table 5), while the average error
per frame only increases by 0.02% (from Table 6). Hence,
our research for traffic management based on H.265/HEVC
bitstreams improves efficiency without damaging the count-
ing quality too much.

REFERENCES
[1] Information Technology—High efficiency coding and media delivery in

heterogeneous environments—Part 2: High Efficiency Video Coding,
Standard ISO/IEC 23008-2:2013, ITU-T H.265, 2013.

[2] L. Anderson. (Feb. 2014). H.265 Compression Set to Make a
Mark on IP Video Surveillance. [Online]. Available: http://us.
sourcesecurity.com/news/articles/co-3130-ga-co-5188-ga.13056.html

[3] T. P. Chen et al., ‘‘Computer vision workload analysis: Case study of
video surveillance systems,’’ Intel Technol. J., vol. 9, no. 2, pp. 109–118,
2005.

[4] J. K. Suhr, H. G. Jung, G. Li, and J. Kim, ‘‘Mixture of Gaussians-based
background subtraction for Bayer-pattern image sequences,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 21, no. 3, pp. 365–370, Mar. 2011.

[5] J.-W. Hsieh, S.-H. Yu, Y.-S. Chen, and W.-F. Hu, ‘‘Automatic traffic
surveillance system for vehicle tracking and classification,’’ IEEE Trans.
Intell. Transp. Syst., vol. 7, no. 2, pp. 175–187, Jun. 2006.

[6] N. K. Kanhere and S. T. Birchfield, ‘‘Real-time incremental segmen-
tation and tracking of vehicles at low camera angles using stable fea-
tures,’’ IEEE Trans. Intell. Transp. Syst., vol. 9, no. 1, pp. 148–160,
Mar. 2008.

[7] C. R. del-Blanco, F. Jaureguizar, and N. García, ‘‘An efficient multiple
object detection and tracking framework for automatic counting and video
surveillance applications,’’ IEEE Trans. Consum. Electron., vol. 58, no. 3,
pp. 857–862, Aug. 2012.

[8] T. Huang, S. Dong, and Y. Tian, ‘‘Representing visual objects in HEVC
coding loop,’’ IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 1,
pp. 5–16, Mar. 2014.

[9] J. Nightingale, Q. Wang, C. Grecos, and S. R. Goma, ‘‘Deriving video
content type from HEVC bitstream semantics,’’ Proc. SPIE, vol. 9139,
pp. 913902-1–913902-13, May 2014.

[10] B. Dey and K.Malay Kundu, ‘‘Efficient foreground extraction fromHEVC
compressed video for application to real-time analysis of surveillance
‘big’ data,’’ IEEE Trans. Image Process., vol. 24, no. 11, pp. 3574–3585,
Nov. 2015.

[11] R. V. Babu, K. R. Ramakrishnan, and S. H. Srinivasan, ‘‘Video object
segmentation: A compressed domain approach,’’ IEEE Trans. Circuits
Syst. Video Technol., vol. 14, no. 4, pp. 462–474, Apr. 2004.

VOLUME 4, 2016 2539

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

[12] J. MacQueen, ‘‘Some methods for classification and analysis of multivari-
ate observations,’’ inProc. 5th Berkeley Symp.Math. Statist. Probab., 1967,
pp. 281–297.

[13] W. Zeng, J. Du, W. Gao, and Q. Huang, ‘‘Robust moving object segmenta-
tion on H.264/AVC compressed video using the block-basedMRFmodel,’’
Real-Time Imag., vol. 11, no. 4, pp. 290–299, 2005.

[14] C. Poppe, S. De Bruyne, T. Paridaens, P. Lambert, and R. Van de Walle,
‘‘Moving object detection in the H.264/AVC compressed domain for video
surveillance applications,’’ J. Vis. Commun. Image Represent., vol. 20,
no. 6, pp. 428–437, 2009.

[15] C. Käs, M. Brulin, H. Nicolas, and C. Maillet, ‘‘Compressed domain
aided analysis of traffic surveillance videos,’’ in Proc. 3rd ACM/IEEE
Int. Conf. Distrib. Smart Cameras (ICDSC), Como, Italy, Aug./Sep. 2009,
pp. 1–8.

[16] D. G. Lowe, ‘‘Distinctive image features from scale-invariant keypoints,’’
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, Nov. 2004.

[17] H. Sabirin and M. Kim, ‘‘Moving object detection and tracking using a
spatio-temporal graph in H.264/AVC bitstreams for video surveillance,’’
IEEE Trans. Multimedia, vol. 14, no. 3, pp. 657–668, Jun. 2012.

[18] F.-P. Wang, W.-H. Chung, and S.-Y. Kuo, ‘‘An efficient approach to extract
moving objects by the H.264 compressed-domain features,’’ in Proc. 12th
Int. Conf. ITS Telecommun., Taipei, Taiwan, Nov. 2012, pp. 452–456.

[19] F.-P. Wang, W.-H. Chung, G.-K. Ni, I.-Y. Chen, and S.-Y. Kuo, ‘‘Moving
object extraction using compressed domain features of H.264 INTRA
frames,’’ in Proc. IEEE 9th Int. Conf. Adv. Video Signal-Based Surveill.,
Beijing, China, Sep. 2012, pp. 258–263.

[20] X.-D. Yu, L.-Y. Duan, and Q. Tian, ‘‘Robust moving video object seg-
mentation in the MPEG compressed domain,’’ in Proc. Int. Conf. Image
Process. (ICIP), Barcelona, Spain, Sep. 2003, pp. III-933–III-936.

[21] M. A. A. Ahmad, D.-Y. Chen, and S.-Y. Lee, ‘‘Robust object detec-
tion using cascade filter in MPEG videos,’’ in Proc. IEEE 5th Int.
Symp. Multimedia Softw. Eng. (ISMSE), Taichung, Taiwan, Dec. 2003,
pp. 196–203.

[22] M. M. Ibrahim and S. Rao, ‘‘Motion analysis in compressed video—
An hybrid approach,’’ in Proc. IEEE Workshop Motion Video
Comput. (WMVC), Austin, TX, USA, Feb. 2007, p. 17.

[23] R. C. Moura and E. M. Hemerly, ‘‘A spatiotemporal motion-vector filter
for object tracking on compressed video,’’ in Proc. 7th IEEE Int. Conf.
Adv. Video Signal Based Surveill., Boston, MA, USA, Aug./Sep. 2010,
pp. 427–434.

[24] S. K. Kapotas and A. N. Skodras, ‘‘Moving object detection in the H.264
compressed domain,’’ in Proc. IEEE Int. Conf. Imag. Syst. Techn. (IST),
Thessaloniki, Greece, Jul. 2010, pp. 325–328.

[25] R. Wang, H.-J. Zhang, and Y.-Q. Zhang, ‘‘A confidence measure based
moving object extraction system built for compressed domain,’’ in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), Geneva, Switzerland, May 2000,
pp. 21–24.

[26] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview of the
high efficiency video coding (HEVC) standard,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[27] R. C. Gonzalez and R. E. Woods, ‘‘2.5.2 adjacency, connectiv-
ity, regions, and boundaries,’’ in Digital Image Processing, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, Jan. 2002, pp. 66–68.

[28] K. K. Johnson. (Jul. 2006). Heron, Brahmagupta, Pythagoras, and the
Law of Cosines Expository Paper. [Online]. Available: http://scimath.unl.
edu/MIM/files/MATExamFiles/JohnsonK_MAT_Exam_ExpositoryPaper.
pdf

[29] High Efficiency Video Coding (HEVC) Test Model 13 (HM13) Encoder
Description, document JCTVC-O1002, Nov. 2013.

[30] L. Li, W. Huang, I. Y. H. Gu, and Q. Tian, ‘‘Foreground object detection
from videos containing complex background,’’ in Proc. 11th ACM Int.
Conf. Multimedia, Berkeley, CA, USA, Nov. 2003, pp. 2–10.

[31] D. da Silva Pires, R. M. Cesar, M. B. Vieira, and L. Velho, ‘‘Track-
ing and matching connected components from 3D video,’’ in Proc. 18th
Brazilian Symp. Comput. Graph. Image Process. (SIBGRAPI), Oct. 2005,
pp. 257–264.

[32] D. Comaniciu and P. Meer, ‘‘Mean shift analysis and applications,’’ in
Proc. 7th IEEE Int. Conf. Comput. Vis., vol. 2. Sep. 1999, pp. 1197–1203.

[33] OpenCV. Open Source Computer Vision Library, accessed on Jun. 2015.
[Online]. Available: http://opencv.org/

[34] Y.-W. Chen. Blob Tracking Modules, accessed on Jun. 2015.
[Online]. Available: http://homepage.ntu.edu.tw/~d00921022/Blob_
Tracking_Modules.htm

[35] Y.-W. Chen. Blob Tracking Parameters, accessed on Jun. 2015. [Online].
Available: http://homepage.ntu.edu.tw/~d00921022/Blob_Tracking_
Parameters.htm

[36] R. Zhao and X. Wang, ‘‘Counting vehicles from semantic regions,’’ IEEE
Trans. Intell. Transp. Syst., vol. 14, no. 2, pp. 1016–1022, Jun. 2013.

YUNG-WEI CHEN received the M.E. degree
from the Department of Electrical Engineer-
ing, National Chung Cheng University, Chiayi,
Taiwan, in 2007. He is currently pursuing the
Ph.D. degree with the Department of Electrical
Engineering, National Taiwan University, Taipei,
Taiwan. From 2007 to 2009, after his graduation,
he worked in security and surveillance industry.
His research interests include intelligent video
surveillance and video coding.

KAI CHEN received the master’s degree in com-
puter science from National Taiwan University,
Taipei, Taiwan, in 2008, where he is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering. From 2008 to 2011, he
joined Live-Streaming Team as a Senior Engineer
with AVerMedia Inc., Taipei, worked for ATV,
DTV, and Internet TV Project. His research inter-
ests include multimedia, video codec, and media
streaming.

SHIH-YI YUAN received the Ph.D. degree in
electrical engineering from National Taiwan
University, in 1997. He has served as a Technical
committee Member in several IEEE-sponsored
conferences for past ten years and conducted
several government projects with the Bureau of
Standards, Metrology and Inspection, Ministry
of Economic Affairs, China. He is currently an
Associate Professor with the Department of Com-
munication Engineering and the Section Chief

of Planning of IC-EMC Center with Feng Chia University. His research
interests include signal process, embedded software design, and software
solution for EM-aware compiler design.

2540 VOLUME 4, 2016

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

Y.-W. Chen et al.: Moving Object Counting Using a Tripwire in H.265/HEVC Bitstreams

SY-YEN KUO (S’85–M’88–SM’98–F’01) received
the B.S. degree in electrical engineering from
National Taiwan University (NTU), Taipei, Tai-
wan, in 1979, the M.S. degree in electrical and
computer engineering from the University of Cal-
ifornia at Santa Barbara, in 1982, and the Ph.D.
degree in computer science from the University of
Illinois at Urbana–Champaign, in 1987. He is the
Dean of the College of Electrical Engineering and
Computer Science and a Distinguished Professor

with the Department of Electrical Engineering, NTU, and was the Chairman
at the same department from 2001 to 2004. He took a leave from NTU
and served as a Chair Professor and the Dean of the College of Electrical
Engineering and Computer Science with the National Taiwan University of
Science and Technology from 2006 to 2009. He spent his sabbatical years
as a Visiting Professor with the Department of Computing, Hong Kong
Polytechnic University, from 2011 to 2012, and the Computer Science and
Engineering Department, The Chinese University of Hong Kong, from 2004
to 2005, and as a Visiting Researcher with AT&T Labs-Research, NJ, from

1999 to 2000, respectively. He was the Chairman of the Department of Com-
puter Science and Information Engineering with National DongHwaUniver-
sity, Taiwan from 1995 to 1998, a Faculty Member with the Department of
Electrical and Computer Engineering, University of Arizona, from 1988 to
1991, and an Engineer with Fairchild Semiconductor, CA, and Silvar-Lisco,
CA, from 1982 to 1984. In 1989, he also worked as a Summer Faculty Fellow
with the Jet Propulsion Laboratory, California Institute of Technology. His
current research interests include dependable systems and networks, mobile
computing, cloud computing, and quantum computing and communications.
He has published more than 390 papers in journals and conferences, and
also holds 13 U.S. patents, nine Taiwan patents, and several other patents. He
received theDistinguished ResearchAward three times consecutively and the
Distinguished Research Fellow from the National Science Council, Taiwan.
He was also a recipient of the best paper award in the 1996 International
Symposium on Software Reliability Engineering, the best paper award in
the simulation and test category at the 1986 IEEE/ACM Design Automation
Conference, the National Science Foundation’s Research Initiation Award in
1989, and the IEEE/ACMDesign Automation Scholarship in 1990 and 1991.

VOLUME 4, 2016 2541

Downloaded from https://iranpaper.ir
https://www.tarjomano.com/order

