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1. Introduction

In recent years, population growth and technology develop-
ment have resulted in increasing energy consumption, especially
in electricity sector. Moreover, there are many rural and remote
areas particularly in developing countries which have no access to
electricity. In order to solve these problems, electricity generation
should be increased. Nowadays, a large percentage of the world
electricity is supplied by fossil fuel resources. However, these
resources cannot meet the future electricity requirements because
of their economic and environmental problems. Renewable energy
resources have become efficient alternatives for fossil fuel
resources. However, when these resources are used to supply the
local loads individually, many problems are created such as high
investment costs and low security of supply because of inter-
mittent and uncertain nature of them. To solve these problems a
new concept, namely Hybrid Renewable Energy Systems (HRESs)
has emerged [1]. HRES is a combination of renewable, traditional
energy resources, and energy storages to meet the load locally in
both grid connected and standalone modes. HRESs are used in
standalone mode in remote and rural areas. In this mode, due to
uncertain nature of renewable resources, traditional energy
resources and energy storages can be used as the back-up
resources for them. In fact, during the periods in which the out-
put of renewable resources is not enough to meet the load,
remaining part of the load can be supplied by the back-up
resources. On the other hand, when the renewable resources
have extra generation, the excess energy can be absorbed by the
energy storages. Therefore, HRESs have more reliability than only
renewable energy systems in standalone mode. HRESs are used in
grid connected mode in some places such as universities, hospi-
tals, factories, and town. In this mode, when the grid electricity
prices are low, the HRES meets the load from the grid and charges
the energy storages with renewable resources. Then, during the
periods in which the grid electricity prices are high, the HRES
meets the load with its resources and sells the extra energy to the
grid. In this manner, energy storages are discharged to meet the
load or to sell energy to the grid. In this mode HRESs have more
economical than only renewable energy systems. Therefore, HRES
provides some advantages, e.g., increasing penetration of renew-
able energy resources, decreasing Cost of Energy (CoE), reduction
of greenhouse gas emission, and providing access to electricity for
people in remote and rural areas. These advantages meet all three
criteria of Sustainable Development (SD) including economic,
environmental, and social aspects.

One of the important issues in HRES is optimal planning of its
component, e.g., number of Wind Turbines (WTs), Photo-Voltaic
(PV) arrays, batteries, and capacity of generators and converters so
that the objective functions are minimized/maximized and all
constraints are satisfied. For this purpose, many software and
optimization approaches are proposed in the literature. There are
appropriate papers that have reviewed optimal planning and
operation techniques of HRES from different viewpoints [1-9].
Different optimization methods and modeling of HRESs’ compo-
nent are described in [2]. Design and control techniques reported
in the literature to simulate and optimize the stand-alone HRES
are reviewed in [3]. Optimization tools and techniques which are
used for optimal design of HRESs are reviewed in [5]. Ref. [7]
reviews the different aspects of optimal design of HRESs only
including WT, PV, battery, and converter. Different studies on
HRES in both grid-connected and standalone modes including
planning criteria, optimization techniques, energy management,
and various configurations are reviewed in [8,9].

One of the most powerful tools for optimal sizing of HRESs’
equipment is Hybrid Optimization Model for Electric Renewables
(HOMER) software that was developed by National Renewable

Energy Laboratory (NREL), United States [10]. Although HOMER
software is used in many studies, a brief description is presented
on it in review papers [1-9]. Therefore, an article is needed that
comprehensively reviews the papers which used HOMER for
optimal planning of HRESs which is the main objective of this
paper. This review will be useful for researchers who intend to use
HOMER for planning of HRES in their regions. It provides the
required information about planning of HRES simulated with
HOMER such as what components are considered in HRESs? How
they are used in stand-alone or grid connected modes? And what
uncertain parameters are considered in the articles?

The reminder of the paper is organized as follows. Description of
HOMER software is presented in Section 2. Equipment modeled in
HOMER and considered in the literature is compared in Section 3.
Sensitivity analysis on different uncertain parameters in the articles
is reviewed in Section 4. Section 5 presents the discussion on
HOMER's outputs. Finally, conclusion is presented in Section 6.

2. HOMER software description

HOMER software is a powerful tool for designing and planning
of HRES in order to determine optimal size of its components
through carrying out the techno-economic analysis. Many
resources such as WT, PV array, fuel cells, small hydropower,
biomass, converter, batteries, and conventional generators are
modeled in HOMER. HOMER also considers HRES in grid-
connected and stand-alone modes. Fig. 1 shows the typical con-
figuration of HRES designed in HOMER. Required input data for
simulation with HOMER and also a comprehensive framework to
show how optimal sizes of HRES's equipment is determined by
HOMER are described in this section.

2.1. Input data

HOMER requires six types of data for simulation and optimi-
zation including meteorological data, load profile, equipment
characteristics, search space, economic and technical data. These
data are described in details in the following subsections.
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Fig. 1. Typical schematic of a HRES in HOMER.
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2.1.1. Meteorological data

The meteorological data are wind speed, solar radiation, tem-
perature, and stream flow which are fed into the software in the
form of monthly averages or time series data. HOMER uses these
inputs data to calculate the output power of WT, PV array and

2.1.2. Load profile

Load profile of each region is the most important factor in the
simulation and optimization. Some locations such as universities,
hospitals, hotels, and industrial towns have real load consumption
data, which are appropriate for simulation. These real data are fed

into HOMER as time series data. However, in some regions espe-
cially remote and rural areas that the real load consumption data
are not available, the load profile should be forecasted with notice
to the specification of that region. These data are fed into HOMER
as daily profile and HOMER uses them in power balance

hydropower.

Table 1
Search space for a hypothetical case study. constraint.
Component WT (number) PV array Battery Converter (kW)
(kW) (number) . L.
2.1.3. Equipment characteristics
Maximum 4 40 40 40 According to the characteristics of each equipment, which is
'S‘f‘“‘m”m (1’ 18 18 28 modeled in HOMER, efficient operation of it in HRES is determined.
e . . . .
P The characteristics of HRES's equipment are described in [11].
Input data
Technical || Meteorological Load Economic || Search space Equipment
data data profile data (N plan) characteristics
v
Simulation and Optimization
i=i+1
Y . - - . -
Minimize objective function subject to constraints
Objective function: Net Present Cost (NPC)
Constraints: Power balance constraint and technical
constraints of resources
Ifplaniis
e feasible?
Yes
>N _ Y | The output is calculated including the NPC,
- the operation results of each resource, energy
Yes transacted with grid, and emissions produced
Sort the feasible plans according to the minimum NPC
Sensitivity analysis
Robust Planning | | Risk of planning
Uncertain parameters
Wind speed || Fuel cost || Component cost || Electricity rate | | Solar radiation

Fig. 2. The comprehensive framework of HOMER optimization procedure.
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Table 2
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Peak and types of different loads in the articles.

Ref. Peak load (kWp) Location Country
Electrical Thermal Hydrogen
Primary Deferrable
[14] 498,000 - - - TGS Canada
[15] 473 - - - Remote area Canada
[16] 12 - - - Remote area Cameroon
[17] 356 - - - Remote area Canada
[18] 61 - - - Rural Bangladesh
[19] 83 - - - Remote villages Cameroon
[20, 21] 24 - - - Rural Senegal
[22] 75 - - - Village Cameroon
[23] Unknown - - - Village Portuguese
[24] 5.6 - - - Remote area China
[25] 16 - - - EML Greece
[26] 6 - - - Remote area Jordan
[27] 7109 - - - Island Malaysia
[28] 966 - - - Hotel Australia
[29] 11 - - - Residential area Canada
[30] 4 - - - Remote area Greece
[31] 4200 - - - Remote area KS.A.
[32] 159 - - - Commercial building KS.A.
[33] 134 - - - Village Iran
[34] 4231 - - - Village KS.A.
[35] 966 - - - Hotel Australia
[36] 8080 - - - Island Greece
[37] 42 1.05 - - Remote area Ethiopia
[38] 1183 - 51.07 - Rural community Canada
[39] 4370 - - - Village KS.A.
[40] 0.626 - - - Rural areas Algeria
[41] 81 18 - - Rural Ethiopia
[42] 239 - - - University Turkey
[43] 7700 - - - Arid region Algeria
[44] 159 - - - Village India
[45] 11 - - - Remote areas Bangladesh
[46] 32 - - - Remote area Bangladesh
[47] 297.2 - - - Hotels Australia
[48] 77 - - - University Malaysia
[49] 9.97 - - - Hotel Jordan
[50] 36 - - - University Turkey
[51] 4400 - - - Remote area KS.A.
[52] 265 - Unknown - Residential district Italia
[53] 9.3 - - - Residential consumers KS.A.
[54] 23 - - - Island Bangladesh
[55] 34 - - - Urban area UK
[56] 84 - - - Remote area Malaysia
[57] Unknown - - - Island Brazil
[58] 2.3 - - - Remote area India
[59] 4.2 - - - Kolkata city India
[60] 1109 - - - Remote area Malaysia
[61] 15 - - - Remote area South Africa
[62] Unknown - - - Island Thailand
[63] Unknown - - - Remote area Canada
[64] 1030 - - - University Iran
[65] 7100 - - - University Malaysia
[66] 982 - - - Industry area Malaysia
[67] 197 - - - Island Malaysia
[68] 325 - - - Residential consumers Hypothetical
[69] 5300 - - - Island USA
[70] 91 - - - Island Indonesia
[71] 65.1 - - - Village Iran
[72] 9.6 133 - - desert agricultural area Egypt
[73] 27 - - - Remote island Hong Kong
[74] 56 - - - Village Indonesia
[75] 1137, 2300 and 11,000 for three cases - - - Remote areas UAE
[76] 495 - - - Renewable energy site Iran
[77] 11 - - - Urban areas India
[78] 550 - - - Island South Korea
[79] 44.4 - - - Village Bangladesh
[80] 92 - - - Island Scotland
[81] 537 - - - Remote areas Canada
[82] 94 - - - Rural South Africa
[83] 8 - - - Remote area DRC
[84] 83 - - - Remote areas Ghana
[85] 14 - - - Urban area India
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Table 2 (continued )

Ref. Peak load (kWp) Location Country
Electrical Thermal Hydrogen
Primary Deferrable
[86] 13 - - Village Algeria
[87] 3.8 and 5.6 - - Rural South Africa
[88] 2700 - - Island Malaysia
[89] 50 - - Island Malaysia
[90] 25 - - Rural area Bangladesh
[91] 236 - - Rural areas Nigeria
[92] 2,213,000 - - Urban area K. S. A
[93] 2,213,000 - - Urban area K. S. A
[94] 175 - - Island Iceland
[95] 2.8 - - Remote area Norway
[96] Unknown - - Rural areas Canada
[97] 5665 - 10,305 - Urban areas Serbian
[98] 211 - - Urban area Somali
[99] 13 - - Remote area India
[100] Unknown - - Rural area Algeria
[101] Unknown - - Coastal site Algeria
[102] 52 - - Rural areas India
[103] 25 - - Rural areas Sri Lanka
[104] Unknown - - Rural areas Nigeria
[105] 135 - - Island Turkey
2.14. Search space 60
Since HRESs’ components including WT, PV array, generator,
battery, and converter have different sizes, there is a search space 3 50 49
. . . . . . . . Q
that is considered in simulation and optimization. For example, B
. . . . . . <
the equipment of a hypothetical HRES which have different sizes is B 40
illustrated in Table 1. So, the search space includes 5 x5 x5 % 30
x 3=375 plans (combination of different equipment) that the e 23
simulation and optimization stages will be done for each of them. £ 5 -
Q
g 11
2.1.5. Economic data a 10 3
Each equipment in HRES has some cost data such as operation . —
. . . : 0
and maintenance, capital, and replacement cost. Fuel price, price Asia Affica Americans  European  Australia

of transaction electricity with the grid, real interest rate, project
lifetime, system fixed capital cost, system fixed operation and
maintenance cost, and emissions penalty are the other economic
data that can be considered in HOMER. These costs are considered
in simulation and optimization stages and based on them, the Net
Present Cost (NPC) of each plan is calculated.

2.1.6. Technical data

For simulation, HOMER requires some technical data including
dispatch strategy, MACS, MREF, and operating reserve, which are
described in [11].

2.2. HOMER optimization procedure

After the input data are fed into HOMER, which was described
in previous section, optimal sizes of HRES's equipment are deter-
mined in three stages including simulation, optimization, and
sensitivity analysis as described in Fig. 2. These stages are intro-
duced in the following subsections. Simulation and optimization
stages are done simultaneously.

2.2.1. Simulation and optimization

For each plan from search space the optimization and simula-
tion stages are done. The objective function is minimized subject
to the constraints. The objective function of each plan is the total
NPC which is the present value of the sum of costs minus the sum
of revenues. The costs are the cost of energy purchased from the
grid, initial cost, replacement cost, operation and maintenance

Fig. 3. Percentage of the articles done in different continent.

cost as well as the fuel cost. The revenues are the revenue from
energy sold to the grid and the salvage value. Constraints are
power balance constraint, charging and discharging constraints of
battery, constraints of transaction energy with grid, technical
constraints of generators and so on. For the feasible plans the
required output is calculated including the NPC, operation results
of resources such as generator, battery, and converter in each time
step, the energy transacted with the grid, and the emissions pro-
duced. Feasibility means that the power balance constraint is
satisfied in each time step. In fact, the demand of each time step is
supplied. At the end, the feasible plans are sorted according to the
minimum NPC so that the first plan has the minimum NPC and is
considered as the best plan.

2.2.2. Sensitivity analysis

In optimal sizing procedure of HRES's equipment, some para-
meters such as fuel cost, wind speed, solar radiation, electricity
price, and components cost have not deterministic values. So, the
uncertainty of these parameters has effect on simulation and
optimization stages. These parameters are fed into HOMER with
different values. When the simulation and optimization stages are
done and the feasible plans are sorted according to the minimum
NPC, the sensitivity analysis is done as shown in Fig. 2. For each
uncertain parameter the simulation and optimization stages are
repeated and the new feasible and best plans may be obtained. To
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Table 3
Components considered in different articles.

Ref. Non-dispatchable resources Dispatchable resources Converters Storages

PV WT Hydro Gen. Boiler Grid Converter Electrolyzer Battery Hydrogen tank

(14]
[15]
[16]
[17]
(18]
[19]
[20,21]
[22]
[23]
(24]
[25]
[26]
(271
(28]
[29]
[30]
(31]
(32]
(33]
[34]
(35]
(36]
(371
(38]
(39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
(471
(48]
[49]
[50]
[51]
[52]
[53]
(54]
[55]
[56]
(571
(58]
[59]
[60]
(61]
[62]
[63]
[64]
[65]
[66]
[67]
(68]
[69]
[70]
[71]
(72]
(73]
[74]
[75]
[76]
[77]
(78]
[79]
(80]
(81]
(82]
(83]
(84]
(85]
[86]
(87]
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Table 3 (continued )

Ref. Non-dispatchable resources Dispatchable resources Converters Storages
PV WT Hydro Gen. Boiler Grid Converter Electrolyzer Battery Hydrogen tank

[88] v v v v - - v - v -
[89] v - - v - - v - v -
[90] v - - v - - v - v -
[91] v - - v - - v - v -
[92] v - - - - - - v -
[93] v - - v - - v - v -
[94] - v - v - - v v - v
[95] - - - v - - v - v -
[96] - v - v - - - - - -
[97] v v v - - v - v -
[98] v v - v - - v - v -
[99] v v - v - v v v v v
[100] v - - v - - v - v -
[101] v v - - - v - - - -
[102] v v v - - v - v -
[103] v v - v - - v - v -
[104] v v - v - - v - v -
[105] v v - v - - v v v v

evaluate the effect of uncertain parameters on the results, two
criteria including robust planning and risk of planning are pro-
posed in [12,13]. These criteria can be calculated by the
researchers according to the methodologies which are described
in [12,13] and HOMER software is not able to calculate them.
HOMER also produces appropriate figures to show how the best
plans’ output will be changed with uncertain parameters.

3. Equipment modeled in HOMER

In this section, various HRES's equipment modeled in HOMER
and used in different articles is presented. Loads, components, and
grid are three types of the HRES's equipment, which are modeled
in HOMER.

3.1. Loads

HRES should meet the load requirements in each time step.
Electrical, thermal, and hydrogen loads are modeled in HOMER.
Electrical loads are primary and deferrable loads. Primary loads are
the electrical load that must be met in certain time while defer-
rable load is the electrical load that must be met within some time
period, but the exact time is not important. Peak and types of
different loads that are used in different articles are listed in
Table 2. Also, Table 2 shows the locations and countries which are
considered in each article. Locations that are listed for each article,
such as remote area, rural, and village are exactly mentioned in the
same article. Since there are some peak loads data that have not
mentioned in the articles, these data are shown in Table 2 as
unknown data.

Table 2 shows that the wide range of the peak loads from
0.626 kW to 2,213,000 kW are modeled in the articles. The most
loads that are modeled in the articles are electrical loads; while
thermal and hydrogen loads are modeled in few ones.

Fig. 3 shows the percentage of the articles published in differ-
ent continent of the world. As illustrated in Fig. 3, the most articles
are done in Asia. Sixty percent of the world population is living in
Asia and 57.8% of these people are living in rural and remote areas
and also most countries of the Asia are developing countries. So,

these countries have severe need for electrical energy. Taking
these issues into account, large number of the researches about
HRES is done in Asia especially in remote areas.

3.2. Component

In HOMER, each part of HRES that can produce, deliver, convert,
or save energy is named as a component. Ten components are
modeled in the HOMER. WT, PV, and small hydropower are three
renewable energy and non-dispatchable resources. Generators,
grid, and boiler are three dispatchable resources. Converter and
electrolyzer are components that convert electrical energy to other
forms. AC and DC power are converted to each other using con-
verters and electrolyzers consume AC or DC power and generate
hydrogen through electrolyzing water. Batteries and hydrogen
tanks are components that store energy. HRES that are modeled in
the articles have used different components for simulation as
given in Table 3. In some articles, fuel cells are used as generators.
These HRESs with fuel cell have electrolyzer as converter and
hydrogen tank as energy storage as illustrated in Table 3.

Since different combinations of the component that are con-
sidered in the articles are listed in Table 3, this table can be used
by each researcher who intends to design HRES with a specific
combination in his/her regions. PV is the most common resource
from non-dispatchable resources in HRESs that are used in 91.2%
of the studies. In recent papers new resources are considered such
as biogas is used as the fuel resource for generators in [96,102] and
flywheel is used as energy storage in [93].

3.3. Grid

Grid is modeled in the HOMER in three modes, namely, grid-
connected, stand-alone, and compare stand-alone system with
grid extension. Table 4 shows different modes of HRESs used in the
articles. In grid connected mode price and sell back of electricity
should be fed into HOMER in two types, real time prices and
scheduled rates. In compare stand-alone system with grid exten-
sion mode, breakeven grid extension distance will be calculated
using three inputs including capital, operation and maintenance
cost and grid power price. The breakeven grid extension distance
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Table 4

Grid modes in the articles.

S. Bahramara et al. / Renewable and Sustainable Energy Reviews 62 (2016) 609-620

Ref.

Grid connected Stand-alone

Breakeven grid extension distance
(km)

(14]
[15]
[16]
[17]
(18]
[19]
[20,21]
[22]
(23]
[24]
[25]
[26]
(27]
(28]
[29]
(30]
(31]
[32]
(33]
(34]
[35]
(36]
(37]
(38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
(50]
[51]
[52]
[53]
[54]
[55]
[56]
(571
[58]
[59]
(60]
(61]
[62]
(63]
[64]
[65]
(66]
(67]
(68]
[69]
[70]
(71]
[72]
(73]
[74]
[75]
[76]
[77]
(78]
[79]
(80]
(81]
[82]
(83]
(84]
(85]
(86]
(87]
(88]

l [ l

[ I N | [ G G|

NN NN N N N N NEIENENEN

N N N N N N N N N NN

SN N N N N N N N N N N N N A N B N N N N R N N N N N N N N NN NN

37.4 and 15.4 for two cases
17

12.9 and 15.2 for two cases
33

31.6

1.1 for the best plan

1.76 and 1.1 for two cases

Table 4 (continued )

Ref. Grid connected Stand-alone Breakeven grid extension distance
(km)

(89] -
[90] -
o1 -
[92] v
93] -
[94] -
[95] -
[96]
(971 -
(98]

[99]

[100]
[101]
[102]
[103] -
[104]
[0s] -

[

N N N N N N NNARNENEN
I

is the minimum distance from the grid that makes a stand-alone
system cheaper than extending the grid. As illustrated in Table 4,
most of HRESs in the articles are simulated in standalone modes.

4. Sensitivity analysis

To evaluate the effect of uncertain parameters on optimal sizing
of HRES's equipment, sensitivity analysis should be done. Uncer-
tain parameters may differ with notice to the location and type of
the components. Uncertain parameters considered in different
articles are listed in Table 5. Wind speed, solar radiation, fuel price,
component cost, and primary load are the most uncertain para-
meters considered in the researches.

In most articles the effect of uncertain parameters on NPC,
operation results of resources, production of emissions and other
parameters of best plans are evaluated. Moreover, sensitivity analysis
is done in details in recent papers. Effects of real interest rate, fuel
price, and primary load on output results is investigated through
different scenarios in [89]. The simultaneous effects of wind speed
and solar radiation on CoE is studied in [103]. To investigate the effect
of uncertain parameters on the NPC, an appropriate spider graph is
presented in [98]. However, as mentioned before, to evaluate
uncertain parameters and their effect on optimal sizing of HRES's
equipment, two appropriate criteria including robust planning and
risk of planning should be considered as proposed in [12,13]. Sce-
nario technique is one of the appropriate approaches in dealing with
the uncertainties in planning of HRES. To this end, at first, uncertain
parameters and their different values that may occur in the future is
determined and based on them, the scenarios can be constructed. For
example, in one project the uncertain parameters and their different
values may be considered as shown in Table 6. As illustrated in
Table 6, there are three uncertain parameters with different values.
Considering these different values, there are 5 x 6 x 4=120 scenarios
that should be considered in HOMER. The first scenario will occur
when the wind speed is 4, diesel price is 0.2 and solar radiation is
4.5 and the last scenario will occur when wind speed is 8, diesel price
is 0.7 and solar radiation is 6. Simulation and optimization stages are
repeated for each scenario.

When each scenario is considered, even the best plan may
differ. So, the best plan in base scenario may be changed into other
scenarios. The robust plan is the one with the minimum NPC in
most scenarios [12,13].

When one plan is considered as the best one in base scenario,
its parameters such as NPC and production of emissions in other
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Type of uncertain parameters considered in different articles.

Ref. Sensitivity analysis

[14] Wind speed - Fuel price

[15] Wind speed - Solar radiation - Fuel price - Component cost

[16] -

(17] -

(18] -

[19] Component cost

[20,21] -

221 -

[23] Sellback rate - Component cost

[24] Wind speed - Solar radiation - Primary load

[25] Fuel price - Solar radiation - Primary load

[26] Solar radiation - Fuel price - MREF - MACS - PVEOR

[27] Fuel price

[28] Emission penalty - Electricity price - Component cost - Rate of return

[29] Wind speed - Primary load

[30] Fuel price - Component cost

311 -

321 -

331 -

[34] Wind speed - Fuel price - MREF - MACS - WEOR

[35] Battery efficiency - Payback time - Number of battery

(36] -

371 -

[38] Unmet energy - Fuel price

[39] Wind speed - Solar radiation

(401 -

(411 -

[42] Component cost - MACS - Electricity price

[43] Wind speed - Solar radiation - Electricity price

[44] Fuel price - Wind speed - Flow rate

[45] Solar radiation - MACS - MREF - Wind speed - Fuel price

[46] Wind speed - Solar radiation

[47] Carbon tax - Fuel price

(48] -

[49] Electricity price

[50] -

(511 -

(52] -

(53] -

[54] -

[55] -

[56] Solar radiation - Fuel price

[57] -

(58] -

[59] Solar radiation

(60] -

(611 -

62] -

(631 -

[64] Primary load - Solar radiation - Wind speed - Fuel price - Interest
rate - CO, penalty

(65] -

(66] -

[67] Solar radiation - Wind speed - Fuel price

(68] -

(691 -

[70] Primary load - Fuel price

(71] -

[72] -

[73] Solar radiation - Wind speed - Primary load

[74] -

[75] Solar radiation — Wind speed - Fuel price

[76] -

[77] Capacity shortage

[78] Solar radiation — Wind speed - Fuel price

(791 -

[80] Primary load

[81] Wind speed - Fuel price

(82] -

(831 -

[84] Solar radiation - Wind speed - Fuel price

[85] Component cost

(86] -

(871 -

[88] Primary load - Fuel price - Annual interest rate — Stream flow

Table 5 (continued )

Ref. Sensitivity analysis

[89] Primary load - Fuel price - Annual interest rate

[90] Investment costs — Biogas production rate

[91] Solar radiation - Fuel price - Annual interest rate - Component cost

[92] Photovoltaic array size - Converter size

93] -

[94] -

[95] Fuel price

[96] Component size

[97] Maximum CO, emission

[98] Primary load - Wind speed - Solar radiation - Fuel price - Component
cost

[99] Primary load - Wind speed - Solar radiation - Fuel price

[100]  Primary load - Solar radiation - Fuel price - Annual interest rate
[101]  Wind speed - Solar radiation - Grid electricity price

[102] -

[103]  Wind speed - Solar radiation - Component cost

[104] -

[105]  Wind speed - Solar radiation - Annual interest rate

Table 6
Different scenarios for a case study.

Uncertain parameter Different values

Wind speed (m/s) 4,5,6,7 8
Diesel price ($/Liter) 0.2, 0.3, 04, 0.5, 0.6, 0.7
Solar radiation (kWh/m?/day) 45,5,55,6

scenarios may be changed. So, to evaluate these changes an
appropriate criterion, namely risk assessment should be con-
sidered. Risk of planning is evaluated via NPC in base scenario and
in other scenarios [12,13].

5. Discussion on HOMER's outputs

After all required data are fed into HOMER and the simulation
and optimization stages are done, the results of each plan
including the NPC ($), the initial capital cost ($), the operation cost
($/yr), renewable fraction (percent), CoE ($/kWh), and emissions
produced (kg/yr) are calculated. Although best plan is determined
according to the minimum NPC by HOMER, the best plan may be
selected with notice to the other criteria considering the investors’
perspective. This issue is discussed in details in [79].

CoE is an appropriate criterion to choice the best plan that is
used in the literature. This criterion indicates the average cost per
kWh of each plan to supply the demand. Table 7 shows the CoE for
best plans which are obtained in the literature. Since in some
articles the value of CoE for the best plans is not mentioned, these
data is shown in Table 7 as unknown data. The CoE is high in some
cases due to high investment cost of component, high fuel prices,
high distance from the main grid and so on. For electrification to
remote and rural areas which have high distance from the main
grid, there are two main solutions including the extension of the
main grid and using of HRESs. Although extension of the main grid
may lead to lower NPC in comparison with HRESs, it has several
disadvantages including power losses, low power quality, and high
operation and maintenance cost. Moreover, in some cases the grid
extension in not possible with notice to the topography of region.
On the other hand, in urban areas the CoE for best plans is higher
than the grid electricity prices. Therefore, to encourage the private
investors to invest on HRESs in rural and urban areas, the gov-
ernments should determine attractive regulations to give more
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Table 7
CoE for the best plans which are determined in literature.

Ref. CoE ($/kWh) Ref. CoE ($/kWh) Ref. CoE ($/kWh) Ref. CoE ($/kWh)
[14] 0.034 [38] 0.071 [62] 0.554 [85] 0.488
[15] 0.427 [39] 0.212 [63] Unknown [86] Unknown
[16] 0.296 [40] 119 [64] Unknown [87] 0.265

[17] 0.16 [41] 0.101 [65] 0.272 [88] 0.145
[18] 0.363 [42] 0.307 [66] 0.095 [89] 0.569
[19] 0.352 [43] 0.379 [67] 0.216 [90] 0.048
[20,21] 0.425 [44] 0.42 [68] 0.191 [91] 0.348

[22] 0.234 [45] 0.37 [69] 0.172 [92] Unknown
[23] 0.774 [46] 0.47 [70] Unknown [93] 0.369

[24] 1.045 [47] Unknown [71] 0.317 [94] 0.295
[25] 0.65 [48] 0.436 [72] 0.1 [95] 0.306
[26] 0.297 [49] Unknown [73] 0.595 [96] Unknown
[27] 1104 [50] 0.256 [74] 0.751 [97] 0.078
[28] Unknown [51] 0.19 [75] 0.2 [98] 0.288
[29] Unknown [52] 0.727 [76] 1.655 [99] 0.997

[30] 0.871 [54] 0.42 [77] 0.575 [100] 0.142
[31] 017 [55] 13 [78] 0.174 [101] 2.79

[32] 0.149 [56] 0.275 [79] 0.344 [102] 0.085
[33] 0.369 [57] 1.072 [80] 0.2 [103] 0.336
[34] 0.044 [58] 0.785 [81] 0.487 [104] 0324
[35] Unknown [59] 0.672 [82] 0.189 [105] 0.83

[36] 0.231 [60] Unknown [83] 0.707

[37] 0.332 [61] 0.197 [84] 0.281

incentives to investors. These issues are discussed in recent papers
and appropriate solutions are introduced [75,79,80,90,96,103].

6. Conclusion

HRESs are appropriate solution to meet the local loads in rural,
remote, and special urban regions, e.g., universities and hospitals.
Determining the optimal sizes of HRES's equipment is the major
concern of researchers. HOMER software is a powerful tool used by
many researchers around the world for optimal planning of HRES.
According to the ability and widespread use of this software, the
present paper reviewed those articles that have used HOMER for
the optimal planning of HRES. The most remarkable conclusions
from this review are listed as follows:

e The software has been used in developing countries more than
other regions, especially in remote and rural areas.

e The software has been used for wide range of load from
0.626 kW to 2,213,000 kW.

e Many combinations of dispatchable/Non-dispatchable resour-
ces, storages and converters have been modeled in the articles.

® PV is the popular resource considered by many researchers.

e HRESs have been modeled in stand-alone mode more than grid
connected mode.

e Wind speed, solar radiation, fuel price, component cost, and
primary load are the most uncertain parameters referred to in
the articles.
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