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Motivations
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Preamble

• Let’s consider the two-machine system:

Gen A

LA B

Load
pA pB

Gen B

• Conventional Model:

dδA
dt

= ωn(ωA − ωs)
dδB
dt

= ωn(ωB − ωs)

dωA

dt
=

1

MA

(pmA − pA)
dωB

dt
=

1

MB

(pmB − pB)

pA =
e′AvL

x′
dA + xAL

sin(δA − δL) pB =
e′BvL

x′
dA + xBL

sin(δB − δL)
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Turkey Blackout on 31st of March 2015 – I

• The blackout in Turkey led to the outage of 32 GW.
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Turkey Blackout on 31st of March 2015 – II

• As a consequence of

the line outages and

the blackout in Turkey,

the Romanian system

experimented severe

frequency oscillations.

• Bigger oscillations

were measured at lo-

cations geographically

closer to Turkey.
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Challenges

• The electric power system is currently undergoing a period of unprecedented changes

• This transition involves the major challenge of substituting synchronous machines with

power electronics-interfaced generation (CIG)

• The regulation and interaction with the rest of the system of CIG is yet to be fully

understood!

3rd February 2021 Motivations - 5



Time scales

• Typical time scales related to inertia and frequency control
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Generator ReschedulingInertial Response

time
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75 min
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Time Scales of a Conventional Power System & CIG

• CIG controllers can be fast (is this good?)

of Converter−Interfaced Generation

15 min
Secondary Control (AGC)

Primary Control

Primary Control

5 s 30 s
Generator ReschedulingInertial Response

time75 min
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Electro-mechanical Dynamics – I

• Neglecting network topology, a conventional system where generation is attained with

synchronous generation can be represented as

Mω̇COI(t) = ps(t)− pl(t)− pj(t) ,

where

• M is the total inertia of the synchronous machines

• ωCOI(t) is the average frequency of the system

• ω̇(t) is called Rate of Change of Frequency (RoCoF)

• ps is the power of synchronous machines

• pl + pj are load demand and losses respectively.
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Center of Inertia

• The center of inertia (COI) is a weighted arithmetic average of the rotor speeds of

synchronous machines that are connected to a transmission system:

ωCOI =

∑

j∈G
Hjωj

∑

j∈G
Hj

where ωj and Hj are the rotor speed and the inertia constant, respectively, of the

synchronous machine j and G is the set of synchronous machines belonging to a

given cluster.
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Electro-mechanical Dynamics – II

• A system where generation is attained with synchronous as well as non-synchronous

generation can be represented as

M̃ω̇COI(t) = ps(t) + pns(t)− pl(t)− pj(t) ,

where

• M̃ is the total inertia of the synchronous machines, with M̃ < M or, in certain

periods and certain systems, M̃ ≪ M

• pns is the powers provided by CIG
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Volatility of the inertia

• M̃ is a function of time!
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Acknowledgment: Thanks to A. Ulbig and G. Andersson for data and script to generate figure
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Extreme Case

• In a hypothetical system where there are no synchronous machines at all, M ≈ 0 and

the frequency is completely decoupled from the power balance of the system:

0 = pns(t)− pl(t)− pj(t)

• This opertaing condition has never really happened in large networks (only in

microgrids and small islanded systems)

• In this case, is still the frequency meaningful?
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Analogy between Synchronous Machine and CIG
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Drawbacks of CIG

• Reduce the inertia

• The local frequency must be measured (and properly defined) first!

• Often introduce volatility and uncertainty (e.g., wind and solar power plants)

• Often do not provide primary and/or secondary frequency control

• Since it is based on converter, its control can be potentially very fast
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Phase-Locked Loop

• The phase-locked loop (PLL) is the most common device utilized in power converters

to track the phase of the ac voltage at the bus where the converter is connected.

• It is composed of a phase detector (PD); a loop filter (LF); and and a voltage oscillator

control (VOC).
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Advantages of CIG

• Can provide primary and secondary control (if the resources are properly handled

and/or storage is included)

• Quantities other than the frequency can be utilized (voltage?)

• Since it is based on converter, its control can be potentially very fast
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Modelling Issues – I

• The conventional power system model for transient stability analysis is based on the

assumption of quasi-steady-state phasors for voltages and currents.

• The crucial hypothesis on which such a model is defined is that the frequency required

to define all phasors and system parameters is constant and equal to its nominal value.

• This model is appropriate as long as only the rotor speed variations of synchronous

machines is needed to regulate the system frequency through standard primary and

secondary frequency regulators.
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Derivative of the Bus Voltage Phase Angle (θ)

• The frequency estimation is obtained by means of a washout and a low-pass filter.

• The washout filter approximates the derivative of the input signal.

• Tf = 3/Ωn s and Tω = 0.05 s are used as default values for all simulations.

washout lag

∆ω ω

ω0

θ

θ0

11 p +

+

+

−
Ωn 1 + pTf 1 + pTω
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Modelling Issues – II

• In recent years, however, an increasing number of devices other than synchronous

machines are expected to provide frequency regulation.

• These include, among others:

– distributed energy resources, e.g., wind and solar generation

– flexible loads providing load demand response

– HVDC transmission systems

– energy storage devices

• However, these devices do not impose the frequency at their connection point with the

grid.

• There is thus the need to define with accuracy the local frequency at every bus of the

network.
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Frequency Divider Formula
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Derivation of the FDF

• The very starting point is the augmented admittance matrix, with inclusion of

synchronous machine internal impedances as it is commonly defined for fault analysis.

• System currents and voltages are linked as follows:





ī
G

ī
B



 =





Ȳ
GG

Ȳ
GB

Ȳ
BG

Ȳ
BB









ē
G

v̄
B



 (1)

where v̄
B

and ī
B

are bus voltages and current injections, respectively, at network

buses; ī
G

are generator current injections; e
G

are generator emfs behind the internal

generator impedance; Ȳ
BB

is the standard network admittance matrix plus a diagonal

matrix that accounts for the internal impedances of the synchronous machines at

generator buses, i.e., Ȳ
BB

= Ȳbus + Ȳ
G0

; Ȳ
GG

, Ȳ
GB

and Ȳ
BG

are admittance

matrices obtained using the internal impedances of the synchronous machines.
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Nodal Equations

• To further elaborate on (1), let us assume that load current injections ī
B

can be

neglected in (1).

• Let’s rewrite (1) as follows:





ī
G

0



 =





Ȳ
GG

Ȳ
GB

Ȳ
BG

Ȳ
BB









ē
G

v̄
B



 (2)

• Bus voltages v̄
B

are thus a function of generator emfs and can be computed explicitly:

v̄
B
= −Ȳ

−1

BB
Ȳ

BG
ē

G
= D̄ ē

G
(3)
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Time Derivative in the dq-frame – I

• Let’s consider the time derivative – indicated with the functional p(·) – of the bus

voltage phasors in a dq-frame rotating with frequency ω0:

pv̄dq,h =
d

dt
v̄dq,h + jω0v̄dq,h (4)

where v̄dq,h = vd,h + jvq,h.

• Assuming “slow” electromechanical transient, (4) can be approximated as:

p v̄h ≈ j ωh v̄h (5)

where ∆ωh = ω0 +∆ωh is the frequency at bus h.
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Other Approximations

• The following approximations and assumptions are applied:

• v̄
B
≈ 1 pu and ē

G
≈ 1 pu;

• The conductances of the elements of all admittance matrices utilized to compute D̄

are negligible, e.g., Ȳ
BB

≈ jB
BB

;

• Finally, let us define bus abd generator frequency variations as:

∆ω
B
= ω

B
− ω0 · 1 (6)

∆ω
G
= ω

G
− ω0 · 1

where, usually, ω0 = 1 pu.
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Frequency Divider Formula

• After applying all approximations above, we obtain again the frequency divider

formula:

BBB ∆ωB = −BBG∆ωG (7)

or, alternatively:

∆ωB = D∆ωG (8)

were D = −B
−1
BB

BBG.

• The latter formula has the same formal structure of voltage dividers in resitive dc

circuits, hence the proposed name.
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Illustrative Example
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Radial System – I

• Let assume a lossless connection, with total reactance xhk = xhi + xik.

• The frequencies at buses h and k, say ωh and ωk, respectively, are the rotor speeds

of the synchronous generators.

x

xhk

ih kxhi xik

ωh(t)

ωk(t)ωi(t)
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Radial System – II

• Applying the frequency divider formula (8), we obtain:

ωi(t) = D ·





ωh(t)

ωk(t)



 = −B
−1
BB

BBG ·





ωh(t)

ωk(t)





=
[

1
xhi

+ 1
xik

]−1
[

1

xhi

1

xki

]

·





ωh(t)

ωk(t)



 (9)

=
xik

xhk

· ωh(t) +
xhi

xhk

· ωk(t)

• The instantaneous frequency ωi(t) at a generic point i between the boundaries h and

k is a linear interpolation between ωh(t) and ωk(t).
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Example – I

• Let’s first consider a standard model for transient stability analysis where transmission

lines are lumped and modeled as constant impedances and generator flux dynamics

are neglected.

• Generators are equal and are modeled as a 6th order synchronous machine with AVRs

and turbine governors.

• The load is modeled as a constant admittance. The disturbance is a three-phase fault

that occurs at bus 3 at t = 1 s and is cleared after 150 ms by opening one of the two

lines connecting buses 1 and 3.

1 3 2
2z̄

z̄

z̄
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Example – II

• Transient behavior of synchronous machine rotor speeds, the frequency of the COI

(ωCOI), and the estimated frequency at the load bus using the proposed frequency

divider approach.
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Example – III

• Graphical representation of the frequency divider.
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Example – IV

• Frequency at bus 3 estimated with the frequency divider (FD) and the conventional

washout filter (WF). The system is simulated using the fully-fledged dq-axis model.
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Example – V

• Frequency at bus 3 estimated with the frequency divider (FD) and the conventional

washout filter (WF). The load is modelled as a frequency-dependent load representing

an aluminum plant
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Example – VI

• Frequency at bus 3 estimated with the frequency divider (FD) and the conventional

washout filter (WF). The load is a squirrel cage induction motor with a 5th-order dq-axis

model.
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Properties of Matrix D
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Physical Meaning of Matrix D – I

• Let’s look again at the FDF:

∆ωB = D∆ωG

where

∆ωB = ωB − 1n

∆ωG = ωG − 1m

• We can think of the element Di,j matrix D as the participation factor of rotor speed

ωGj to bus frequency ωBi.
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Physical Meaning of Matrix D – II

• We know that D is dense . . .

– Let dD be the density index of matrix D, such that:

dD = 100 ·
NNZ(D)

(m · n)

where NNZ(D) is the number of non-zero elements of D.

– Since D is dense, dD ≈ 100%.

• ... hence, in principle, all machine rotor speeds participate to all bus frequencies.

• This conclusion is mathematically correct but . . .

• . . . it clahses with common sense: is it possible that a machine in Poland affects the

frequency of a bus in Spain?
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Relevant Property of Matrix D

• It can be shown that the sum of the elements of each row of D is:

∑

Di ≈ 1, ∀i = 1, . . . , n

• The key point is that not all elements of each row weight in the same way.

• The intuition would suggest that a generator in Poland participate more to the

frequency deviations of buses in Poland, and less to the buses in Spain.
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Dr – Reduced D – I

• Let’s sort the elements of each row i of D in descending order.

• The first, and thus the biggest ki elements of each row of the sorted matrix D̃ are

summed such that:
ki
∑

h=1

D̃i,h < αDσD,i

where αD ∈ [0, 1] is a given threshold.

• Finally, the reduced matrix Dr is obtained by setting to zero all elements D̃i,H with

H = ki + 1, . . . , n, and rearranging D̃i,h∪H according to their original positions

before the sorting, i.e., Di,j .
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Dr – Reduced D – II

• Limits cases for Dr are as follows:

Dr =







0 , if αD = 0 ;

D , if αD = 1 .

• The main property of Dr is that it guarantees at least the specified accuracy αD.

• However, sorting each row can be computationally demanding is the system is large.
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Example 2: ENTSO-E System

• 21,177 buses, 30,968 branches, 15,756 loads, and 4,832 power plants.

• Density of matrix Dr of the ENTSO-E transmission system for αD ∈ [0.8, 1].
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Dynamic State Estimation
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Dynamic State Estimation

• In practice, a very reduced number of rotor speeds are needed to estimate a given bus

frequency.

• Typically, required rotor speeds are also those of the generators that are

geographically close.

• A dynamic state estimation problem based on the FDF is presented in:

J. Zhao, L. Mili, F. Milano, “Robust Frequency Divider for Power System Online

Monitoring and Control,” IEEE Transactions on Power Systems, accepted on

December 2017, in press.
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Dynamic State Estimation

• In practice, a very reduced number of rotor speeds are needed to estimate a given bus

frequency.

• Typically, required rotor speeds are also those of the generators that are

geographically close.

• A dynamic state estimation problem based on the FDF is presented in:

J. Zhao, L. Mili, F. Milano, “Robust Frequency Divider for Power System Online

Monitoring and Control,” IEEE Transactions on Power Systems, accepted on

December 2017, in press.

• However, the problem is to have a good estimation of ωG . . .
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Dynamic State Estimation – Continued

• What the TSO really knows is not ωG, but ωB.

• In fact, the TSO can install PMUs on (virtually) every node of the system but generator

rotor speed are not accessible (in general)

• Is it possible to use the FDF to estimate ωG given ωB?

• Matrix D is not square, it is actually a n×m, matrix, with n ≫ m (there are many

more buses than generators).
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Pseudo Inverse D
+

• For this kind of problems we can use the Moore-Penrose pseudo-inverse:

∆ω∗
G
= (DT

D)−1
D

T∆ω̃B = D
+∆ω̃B , (10)

where ∆ω̃B are the measures of the bus frequency deviations and ∆ω∗
G

the

estimated rotor speed deviations.

• D
+

is unique if D has rank m.
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Pseudo Inverse D
+

• For this kind of problems we can use the Moore-Penrose pseudo-inverse:

∆ω∗
G
= (DT

D)−1
D

T∆ω̃B = D
+∆ω̃B , (11)

where ∆ω̃B are the measures of the bus frequency deviations and ∆ω∗
G

the

estimated rotor speed deviations.

• D
+

is unique if D has rank m.

• It turns out that (12) is the solution of a weighted least square problem (with

independent measures).

• So this is actually a classical (and linear) state estimation problem!
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Pseudo Inverse D
+

• For this kind of problems we can use the Moore-Penrose pseudo-inverse:

∆ω∗
G
= (DT

D)−1
D

T∆ω̃B = D
+∆ω̃B , (12)

where ∆ω̃B are the measures of the bus frequency deviations and ∆ω∗
G

the

estimated rotor speed deviations.

• D
+

is unique if D has rank m.

• It turns out that (12) is the solution of a weighted least square problem (with

independent measures).

• So this is actually a classical (and linear) state estimation problem!

• ∆ω∗
G

is also the optimal value of the rotor speed estimations.

3rd February 2021 Applications of the FDF - 14



Density of D
+

• At this point, one may ask whether D
+

is dense or not.
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Density of D
+

• At this point, one may ask whether D
+

is dense or not.

• If it is dense, in fact, the state estimation problem (12) would be useless . . .
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Density of D
+

• At this point, one may ask whether D
+

is dense or not.

• If it is dense, in fact, the state estimation problem (12) would be useless . . .

• Surprisingly, even if D is dense, D
+

is extremely sparse!
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Examples
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Example: WSCC 9-bus System – Topology

• 9 buses, 9 branches, 3 loads, and 3 machines

G

G G

1

2 3

4

5 6

7 8 9
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Example: WSCC 9-bus System – Matrix BBB

Bus Bus #

# 1 2 3 4 5 6 7 8 9

1 -30.04 0 0 17.36 0 0 0 0 0

2 0 -22.32 0 0 0 0 16.00 0 0

3 0 0 -21.70 0 0 0 0 0 17.06

4 17.36 0 0 -39.31 11.60 10.51 0 0 0

5 0 0 0 11.60 -17.34 0 5.975 0 0

6 0 0 0 10.51 0 -15.84 0 0 5.588

7 0 16.00 0 0 5.975 0 -35.45 13.70 0

8 0 0 0 0 0 0 13.70 -23.30 9.784

9 0 0 17.06 0 0 5.588 0 9.784 -32.15
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Example: WSCC 9-bus System – Matrix B
T

BG

Gen. Bus #

# 1 2 3 4 5 6 7 8 9

1 12.682 0 0 0 0 0 0 0 0

2 0 6.315 0 0 0 0 0 0 0

3 0 0 4.637 0 0 0 0 0 0
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Example: WSCC 9-bus System – Matrix D
T

Gen. Bus #

# 1 2 3 4 5 6 7 8 9

1 0.8225 0.2510 0.2847 0.6928 0.5843 0.5874 0.3500 0.3578 0.3620

2 0.1249 0.6499 0.2327 0.2163 0.3211 0.2479 0.5118 0.4251 0.2959

3 0.1041 0.1708 0.5668 0.1801 0.2027 0.2780 0.2383 0.3287 0.4492
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Example: WSCC 9-bus System – Matrix D
+

∂ωGi

∂ω̃Bj

1 2 3 4 5 6 7 8 9

1 2.369 0 0 -1.369 0 0 0 0 0

2 0 3.534 0 0 0 0 -2.534 0 0

3 0 0 4.680 0 0 0 0 0 -3.680

• Note that D
+

can be also viewed as the matrix of the sensitivities or participation

factors ∂ωGi/∂ω̃Bj .
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Example: WSCC 9-bus System – Simulation

• There is more than one way to estimate a rotor speed
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Estimation of the Frequency of the COI

• A relevant byproduct of the estimation of the vector of ωG is that we can effectively

estimate the freqeuncy of the COI if we know the inertia of the machines.

• One has:

ωCOI = h
TωG ,

• where h is the vector of weights, hi = Hi/
∑m

i Hj .

• Then:

ωCOI − 1 = −h
T
B

+
BG(BBB +BBS)(ωB − 1n,1)

= ξT (ωB − 1n,1)

and, finally:

ω∗
COI = ξTωB +α

where α = 1− ξT1n,1 is an offset, with |α| ≪ 1.
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Example: All-island Irish System – Estimation of the COI

• Simulated and estimated COI for the all-island Irish system. Only 42 PMU measures

are needed (over 1,479 buses).
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Example: All-island Irish System – Estimation of the COI

• If we used only the bus frequencies at the generator buses (22 measurements), the

estimation of the COI would not be so good.
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Frequency Influencers

(Rate of Change of Power)
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Power Flow Equations – I

• Let’s start from the well-knonw power flow equations:

s̄B(t) = p
B
(t) + jq

B
(t) = v̄B(t) ◦

[

Ȳbus v̄B(t)
]

, (13)

• For the sake of the derivation, it is convenient to rewrite (13) in an element-wise

notation and extract the active power:

pB,h(t) = vB,h(t)
∑

k∈B

vB,k(t)G
hk
bus cos θB,hk(t)

+ vB,h(t)
∑

k∈B

vB,k(t)B
hk
bus sin θB,hk(t) ,

(14)
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Power Flow Equations – II

• Let us differentiate (15) and write the active power injections as the sum of two

components:

dpB,h =
∑

k∈B

∂pB,h

∂θB,k

dθB,k +
∑

k∈B

∂pB,h

∂vB,k

dvB,k

= dp′
B,h + dp′′

B,h ,

(15)

• In (15), dpB,h is the total variation of power at bus h, while dp′
B,h is what, in the

following, we will call “regulating active power”

• The other component, dp′′
B,h, is the “passive” component of the active power.
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Simplifications

• The exact expression of the regulating power is thus:

dp′
B,h =

∑

k∈B

∂pB,h

∂θB,k

dθB,k (16)

• This expression can be conveniently simplified by assuming that, in
∂pB,h

∂θB,k
:

– voltage magnitudes are ≈ 1;

– line resistances are negligible; and

– cos(θB,h − θB,k) ≈ 1.
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Link between Regulating Power and Frequency

• Recovering the vector notation, equation (16) can be thus approximated (without loss

of accuracy) as:

p′
B
(t) = −BbusθB(t) , (17)

• Then, differentiating (17) with respect to time gives the most important equation of this

presentation, namely:

ṗ′
B
(t) = −ΩbBbus∆ωB(t) = −B̂bus∆ωB(t) (18)

• In (18), ṗ′
B
(t) is the rate of change of (regulating) power or RoCoP, and ∆ωB(t) are

the variations of frequency at network buses.
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Applications?

• So, the first question that one may ask is: Why would we even need the definition of

the RoCoP?

• The answer relies on the ability to define, for each component of the grid, an

expression of ṗ′
B,h.

• Fortunately, there are some very relevant cases for which one can determine ṗ′
B,h

analytically (we will discuss these cases next).

• In all other cases, we need to rely on measurements of bus frequencies to deduce

ṗ′
B,h (we will see an application at the end of this presentation).
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Two (Very) Relevant Cases – I

• Constant Admittance Loads: for this kind of loads, one can show that:

ṗ′
B,h ≡ 0 , (19)

which, incidentally, implies ṗB,h = ṗ′′
B,h (fully passive device!) or, equivalently,

constant admittances do not modify the frequency.

• Note that, for all other types of loads, ṗ′
B,h 6= 0, which means that loads that are not

pure admittances do modify the freqeuncy at their point of connection.

• In other words, non-constant admittance loads imply some sort of regulation.
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Two (Very) Relevant Cases – II

• Synchronous Machines: In this case it is possible to show that:

ṗ′
B
(t) ≈ Ωb[BBG∆ωG(t) +BG∆ωB(t)] , (20)

where BBG and BG and the incidence susceptance matrices formed with the internal

reactances of the machines and ∆ωG(t) are the machine rotor speeds.

• Equation (20) can be rewritten as:

ṗ′
B
(t) = B̂BG [∆ωG(t)−∆ωBG(t)] , (21)

• Putting together (18) and (21), we obtain another very relevant expression:

BBG∆ωG(t) = −BBB∆ωB(t) , (22)

where BBB = Bbus +BG.

• We have just (re)obtained the Frequency Divider Formula!

3rd February 2021 Frequency Influencers - 8



Examples on the RoCoP
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Section of the Irish System

• Let consider a section of the Irish system with conventional generation and WECS.
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RoCoP and Freqeuncy Variations

• The RoCoP is able to identify the WECS that provide fast frequency regulation.
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Voltage Dependent Loads – I

• Voltage dependent loads can be modelled as:

pD(t) = pD,o v
γp

h (t) , qD(t) = qD,o v
γq

h (t) ,

• Using the RoCoP theory, one ca find out that:

γp ṗ′h ṗ′′h ṗh

0 −ṗ′′h −ṗ′h 0

1 ṗh 0 ṗ′h

2 0 ṗh ṗ′′h
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Voltage Dependent Loads – II

• The previous table leads to the following formula:

γ̆p(t) ≈ 2
ṗh(t)

ṗh(t) + ṗ′h(t)
≈ 2

∆ph(t)

∆ph(t) + ∆p′h(t)
,

• Hence, measuring ∆ph and estimating ṗ′h through frequency measurements, one can

estimate the coefficients γp.

• A similar expression holds for γq

• Note that no voltage measurements are involved!
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Example of Estimation of VDL

• Example of estimation of γp for different scenarios, i.e., different values of γq .
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Estimation of the Inertia

• The FDF allows estimating the rotor speed of synchronous machines.

• Using the well-known swing equation of the machine and estimating the value of the

RoCoP, the inertia of the machine can be estimated as follows:

MG,h(t) ≈
−ṗ′

B,h(t)

d2

dt2

[

∆ωB,h(t)− x̂G,hṗ′B,h(t)
] , for t < t∗ ,

where t∗ is a suitable time interval (2 to 5 seconds).
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Example

• The previous formula is quite reliable, and can be improved with some filtering.
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Estimation of the Virtual Inertia

• Interestingly, the previous formula can be utilized to estimate the inertia of

non-synchronous devices.

• The only additional information is to assign a value to the reactance x̂G,h.
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Example – I

• WECS without fast frequency control
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Example – II

• WECS with an energy storage system that provides fast frequency control
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Conclusions, Future Work

and References
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Conclusions (for now . . . )

• A general but approximated expression to estimate frequency variations during the

transient of electric power systems has been deduced.

• It appears that “frequency variations” in an AC system are strictly related to power

variations, hence freqeuncy can be relevant also in low or no inertia systems.

• Simulation results show that the proposed formulas are quite accurate, numerically

robust and computationally efficient.

• These formulas have relevant applications in dynamic state estimation and control.
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Open Questions

• How to take into account fast flux transients and wave propagation?

• Effect of loads?

• Ho to derive ṗ′
B,h in general, i.e., for any device connected to the grid?

• How to take into reactive power?

• Future work will focus on a generalized definition of “frequency” that is able to take into

account complex power variations and does not require model simplifications.
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Book on the FDF
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Thanks much for your attention!
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