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b SMEIC X
Inner product

Let V be a vector space. An inner product on V i1s a function
(,): VXV > Rsuchthatforallv,w,z € Vands,t € R we have:

* (v,v)=0,and(v,v) =0 ifandonlyif v =10
c (v,w)=(w,v)
e (v,swH+tz)=s(v,w)+t{v,2z)

A vector space V with an inner product is called an inner product
space.
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b SMEIC X
Inner product

Note: The dot product is an inner product on R", called the standard
inner product on R™.

n
A
<u,v> = Zuivi =uyv, +u,v, +...+u v
i=1
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b SMEIC X
Inner product

Note: An extremely important inner product in applied mathematics,
physics, and engineering is:

(f.8)2 [ F(Dg)dx

where f(x) and g(x) are continuous real functions on an interval [a, b].
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Norm
Let V be a vector space. A norm on V is a function |[.||:V = R

such that for all v,w € V and s € R we have:

* |lv||=0,and||v| =0 ifand only if v =0
* AIsvl=Isllivl

* lv+wll < Tllvi+lwll

A vector space V with a norm is called a normed space.
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v STGIC R
Norm

Note: For a vector u € R", the standard norm is as follows::

where p > 1 and || u ||, is called the p — norm (or |, — norm)

v STGIC R
Norm

Note: For a vector u € R", the standard norm is as follows::

where p > 1and || u ||, is called the p — norm (or L, — norm)




b SMGIC X

Norm

Note: The important and applicable standard norms are as follows:

* The 2 —norm is the usual Euclidean length or RMS value:

2)%

Jl 2 (J” -+ o+ e

n

* The co — norm (sup — norm)

1 el 2 max{luy
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= The 1 —norm

Jul, 2 timn (j|” + sy + o,

p—>®©

b SMGIC X

Norm

Note: for a continuous real function f(x) on an interval [a,b], the
important standard norms are obtained as follows:

» The 2 —norm is the usual Euclidean length or RMS value:

|7 @), 2 [ |/ @)|dr

" The o0 —norm (sup — norm)
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= The 1 —norm
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Norm

Note: Matrix norms are functions ||.| : R™™ — R that satisfy the

same properties as vector norms. For a matrix A € R™*"  a few
examples of matrix norms are:

HAHF - ‘\/ tr(ATA) = \/Zi,j aiz,j

= The sum-absolute-value norm:

» The max-absolute-value norm:
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= The Frobenius norm:

b SMGIC X
Norm

Example: Consider f(t) =e % (a >0) on an interval (0,o0).
Calculate the 1 — norm, 2 — norm and oo — norm of f(t).

Solution:
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Kronecker Product

Let A be a m X nmatrix and let B be a p X g matrix. Then the
Kronecker product ® of A and B is that mp X nqg matrix defined by:

I a,B a,B a, B ]
AREB a, B a,B a,,B
a,B a,,B amnB_mpan

Note: AQB # BQA
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b SMEIC X
Kronecker Product

a8 3] 4= ]

Calculate AQB, BQA.

Example: Let

Solution:
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Projection

For any vectors u, v € R™, with u # 0, we define the projection of v
onto u by:

. u.v
proj,(v) =—13
e
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Quadratic Forms

A quadratic form on R™, with corresponding n X n symmetric matrix
A, is a function Q: R™ — R defined by:

O(x)=x"Ax ;VxeR"

Example: Consider V'(x) = x; —2x,x, +4x,x, +5x; —6x; , find
corresponding symmetric matrix.
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b SMEIC X
Quadratic Forms

A quadratic form Q(x) on R™ is:

= Positive definite if Q(x) > 0 forall x # 0

Negative definite if Q(x) < 0 forallx # 0

Indefinite if Q(x) > 0 for som x and Q(x) < Ofor som x

Positive semidefinite if Q(x) = 0 for all x

Negative semidefinite if Q(x) < 0 for all x
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b SMEIC X
Quadratic Forms

A principal minor of order r of an n X n matrix A = [ai’ j] is the

determinant of a matrix obtained by deleting n —r rows and
n — r columns such that if the 12 row (column) is selected, then so
is the 1th column (row).

A principal minor is called a leading principal minors of order r

(I<r <n) if it consists of the first ("leading”) » rows and columns
of |Al.
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b SMEIC X
Quadratic Forms

Theorem: Let Q = xT Ax be a quadratic form of  variables and let

4 4 a,, d,, dp;
1 12
|A1|—a11 5

A,|=

A3|: Ay, Qyy  Qyslyeees|A, =|A|

2

Ay, 2
ay; 4z  dsg

be the leading principal minors of matrix A. Then

" Q(x) positive definite < all leading principal minors are positive.

" Q(x) megative definite & the leading principal minors of even
order are positive and those of odd order are negative..
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b SMEIC X
Quadratic Forms

Theorem: Let Q = xT Ax be a quadratic form of  variables and let

a; 4a;
A i 4y
a .

1

4,|=

=a, , , A3|= a, a; agl,..4, =|A|=0 (i<j<k)

Ji i
ak.

1

a;  dy

be the principal minors of singular matrix A. Then

" Q(x) positive semidefinite < All the principal minors are positive
or Zero.

" Q(X) negative semidefinite < All the principal minors are of even
order are positive or zero and those of odd order are negative or
Zero.
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Quadratic Forms

Example: Let
Vi(x)=2x+2x +2x; —2x,x, + 2kx,x, — 2x,x,

, find k such that V(x) be positive definite.

Solution:
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e SGIC X
Vector Calculas

The differentiation of a scalar function J(xq, x5, ..., X,,) with respect
tox =[xy xp -+ Xn]T is calculated as follows:
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- SMEIC R
Vector Calculas

The differentiation of a vector function f(xq,x5,..,%X,) =
[fi fo - fm]" withrespecttox=1[x; x; - Xn]T isam X
n Jacobian matrix of the following form:

I o > -

- SMEIC R
Vector Calculas

The differentiation of a scalar function V(x(t)) with respect to t is
calculated by the following chain rule:

wherex = [x; % - Xn]T is a vector.

Example:
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Vector Calculas

Let A be a matrix and X,y be vectors, then:

G(Ax)

=A

, for A be a symmetric real matrix: -

ox
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b SMGIC X
Comparison Function

= A scalar continuous function a(r), defined for r € [0, a), belongs
to class JC if it is strictly increasing and a(0) = 0 . It belongs to
class K ., if it is defined for all r = 0 and a(r) — o0, as r — oo,

= A scalar continuous function B(r,s), defined for r € [0,a), and
s € [0, ), belongs to class ICL if, for each fixed s, the mapping
P (r,s) belongs to class K with respect to r and, for each fixed r,

the mapping £ (r, s) is decreasing with respect to s and f(r,s) = 0
as s — oo,
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b SMGIC
Comparison Function

Example: Let
a(r) = tan ' (r) ;y(r) =r? B(r,s) =

T

(ksr+1)
, investigate the class of these functions
Solution:
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M SmMgic X
Linear Time Invariant Systems

A general linear time invariant dynamical system G with input u(t)
and output y(t) can be described by the following differential
equation:

z(t)4)| G |_) ¥(t)

[ 25 | Intelligent Control

M SmMgic X
Linear Time Invariant Systems

There are two standard descriptions for LTI dynamical systems:

Y(s)
U(s)

30 | Intelligent Control

= Transfer Function: G(s)=
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Linear Time Invariant Systems

Example: Consider the following RLC circuit:

, find transfer function and state space representations of this LTI
system.

Solution:
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b STGIC X
General Dynamical Systems

A general dynamical system G can be described by the following
nonlinear time variant state space equations:

32 Intelligent Control Smart/Micro Grids Research Center, University of Kurdistan



b SMEIC X
General Dynamical Systems

Example: Consider the following RLC circuit:

L
, find the state space representation of this nonlinear system.
Solution:
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b STAGIC X
Linearization

An equilibrium point X4 of the nonlinear system x = f (x(t), u(t))
is a point for which f(xeq, u(t) = O) = 0.

An operating point X, of the nonlinear system x = f (x(t),u(t))
with a nominal input u(t) =u,, is a point for which

f(xop,u(t) = uop) = 0.
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[Linearization

Consider a nonlinear system represented as follows:

G{)'c(t) = f(x(@),u(t),t)
y(@) = g (x(0),u(?),1)

The corresponding linear model, which defines the system’s dynamic
behavior about a specific operating point, is:

where Ax = X — Xop , AU = U — Uyp and Ay =y — Yy
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b SMGIC X
[Linearization

Example: Consider the following nonlinear system:

x,(¢) =x,(?)
X,(t) = ux,(¢t)+ Asin (x1 (t)) +u(?)

where p, A are constant parameters. Find the equilibrium points and its
corresponding linear model.

Solution:
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b SMGIC X
Input-Output Stability

A system is BIBO (bounded-input bounded-output) stable if every
bounded input produces a bounded output.

A SISO system is BIBO stable if and only if its impulse response g(t)
is absolutely integrable in the interval [0, o).

response to initial conditions + response to inpu’rs
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b STGIC X

Input-Output Stability

A LTI system with proper rational transfer matrix G(s) = [G; i (s)] is
BIBO stable if and only if every pole of every entry G;;(s of G(s) has
negative real part. When the system is represented by state space

equations: . { x(1) = Ax(t) + Bu(?)

() =Cx(t) + Du(t)

, the BIBO stability will depend on the eigenvalues of the matrix A,
since every pole of G(s) is an eigenvalue of A
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b STGIC X
Internal Stability

The system x(t) = Ax(t) is Lyapunov stable, or marginally stable,
or simply stable, if every finite initial state x, excites a bounded
response x(t) .

The system x(t) = Ax(t) is asymptotically stable if every finite
initial state x, excites a bounded response x(t) that approaches 0 as t
— 00

The system x(t) = Ax(t) is unstable if it is not stable
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Internal Stability

Lyapunov Stability — Asymptotic Stability ~ Instability
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b SMEIC X
Internal Stability

The equation x(t) = Ax(t) is:

= Lyapunov stable if and only if all the eigenvalues of A have zero or
negative real parts, and those with zero real part are associated with
a Jordan block of order 1.

= Asymptotically stable if and only if all eigenvalues of A have
negative real parts.

42 Intelligent Control Smart/Micro Grids Research Center, University of Kurdistan



b SMEIC X
Lyapunov Theorem

* An equilibrium point x,, = 0 is stable in the sense of Lyapunov it

for all € > 0 there exists § > 0 such that |[x(0)|] < & implies
lx(t)]| < &for all £ = 0. Otherwise, the equilibrium point x,,

= 0 1s unstable.

* An equilibrium point Xeq = 0 is asymptotically stable if it is
stable, and if in addition there exists some r > 0 such that
[x(0)|| < r implies that x(t) - 0 as t — oo,

* An equilibrium point x.q = 0 is exponentially stable if there exist
two strictly positive numbers aand A such that
Ix(®]l < allx(0)lle™ ; vt >0
in some ball around the origin.
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b SMEIC X
Lyapunov Theorem

Note: If asymptotic (or exponential) stability holds for any initial
states, the equilibrium point i1s said to be asymptotically (or
exponentially) stable in the large. It is also called globally
asymptotically (or exponentially) stable.
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b SMEIC X

Lyapunov Theorem

An equilibrium point x,, = 0 is stable in the sense of Lyapunov if
there exists a scalar function V(x) with continuous first partial
derivatives in a region around origin such that

* V(x) is positive definite.

 V(x) is semi-negative definite.

If, actually, the derivative V(x) is locally negative definite a region
around origin , then the stability is asymptotic.
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b SMEIC X
Lyapunov Theorem

Example: Consider the following nonlinear system:

. 2

. 3
Xy = XXy — X,

, evaluate the stability of this system.

Solution:
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b SMEIC
Lyapunov Theorem

The system x(t) = f(x(t), u(t)) is input-to-state stable if there exist
BeE KLand y € KX such that for any initial state x(t,) and any

bounded input u(t)

Ix(OIl < max {[)’(le(to)ll,t — to),Y( sup Ilu(T)II)}

to <T<t

forall t > ¢,
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b SMEIC

Lyapunov Theorem

Uniformly Ultimately bounded
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b SMEIC X
Linear Controllers

= PD Controller: K, + K4 %

r@®) , — e(t)

u(t) t
K, +Kgs —1 G(s) . )>

- N " Improve stability
as+1
lired Qemisratlizn: (o » Reduce the overshoot
1 1
Jor 2<% » Decrease the rise time
_ J

Increase the system bandwidth
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b SMEIC X
Linear Controllers

=PI Controller: K,+K; [(.)dt

r(t) |~ e® K, |©® y(t)
K,+— [ G(s) >
P g
Ve > " Improve the steady-state error
As+1
Lag Controller: K s+ 1 [ /.DW’PﬂSS ﬁ'lfer
1 1
; for 2>3 * Decrease the system bandwidth
\ J
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b SMEIC X

Linear Controllers

= PID Controller:K, + K; [()dt + K4 %
r®) , e K, u(t) )
Ky +—+Kgs 2 G(s) g
S
- N

" Improve the steady-state error

Lead — Lag Controller ‘
g " Improve the transient response

\ 2 Band-stop filter
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b SMGIC X

Linear Controllers

= State Feedback:

r(t) + u(t)
31 Pre-Filter

A_

x(t) y(t)

s I A=

Kk
A= BK:Hurwitz.
u(t) = —Kx (t) +{C[—(A— BK)|"B} 'r(t)
Stability Tracking
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b SMGIC X
Linear Estimator

»  Observer:

System > £ (t) = AE (t) + Bu(t)
y(t) = Cx (1)

Observer > X(t) - AX(t) + Bu(t)
y(®) = Cx(t)
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b SMEIC X

Linear Estimator

»  QObserver:

u(t) + x(t)
O
_|_

y(t)

n| =
| &=
=

u(t)
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b SMEIC X

Cost Function Based Linear Controllers

= Optimal Controller
=  Predictive Controller

= Robust Controller
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Nonlinear Controllers

Feedback Linearization

Sliding Mode Controller

Backstepping Controller

Dynamic Surface Controller
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b SMEIC X
Design Issue

Many issues have to be considered in analysis and design of control
systems. The basic requirements are:

= Stability

= Ability to follow reference signals

»  Reduction of effects of load disturbances

n  Reduction of effects of measurement noise

»  Reduction of effects of model uncertainties
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b SMEIC X
Root Locus Technique

The root locus is used to study the location of the poles of the closed
loop transfer function of a given linear system as a function of its
parameters, usually a loop gain, given its open loop transfer function.

r@®) , — e(t)

u(t) t
K M G(s) > )>
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b SMEIC X
Root Locus Technique

Example: Consider the following linear system:

r() | e(t) o u(t) T y(t)>

, study the effect of gain variation on the system poles.

Solution:
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b SMEIC X

Frequency Methods

In the Bode Plot, the magnitude in decibels is plotted against the
logarithm of the frequency; on a separate plot, the phase in degrees is
plotted against the logarithm of the frequency.

The Nyquist plot is a plot in the complex plane of Re{G(s)} and
Im{G(s)} for s = jw as w goes from zero to infinity.

u(t) = Acos(wt) ¥(t) = A|G(w)|cos(wt + LG(w))
— G(s) pP——
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Frequency Methods

* The gain crossover frequency w is defined as the frequency at
which the total magnitude equals 0 dB.

* The phase crossover frequency w, is defined as the frequency at
which the total phase equals —180°.

AGain
[dB]

0dB

Phase
[deg] 5

phas: { phase
margin : crossover f
-180 deg
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b SMGIC X

Frequency Methods

» The system Gain Margin (GM) in dB is the additional gain that
makes the system on the edge of instability. GM can be determined
by calculating the total magnitude at w = wy,.

= The system Phase Margin (PM) in degrees is the additional phase

that makes the system on the edge of instability. PM can be
determined by calculating the total phase at w = .
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Frequency Methods Bode Plot

i |
| Stable system | [_L.Instahle system ]
|G|{dB) |Gl{dB)
ot b T —
i  Positive | i Megaftive \I
| gainmargin | ! gain mangin ,I
0 i > (1) 0 i = ()
I 1
| ]
) L
i . - I
L b
LG | Prel | ) i
= | o i
I :- :
I
Y
_1BDU h- w —'!-E||]‘ F Yy .' m
Posilive Megative
phase margin phase margin
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b SMGIC

Frequency Methods Nyguist Plot

Im{T(s]]

Unit Circle

1/GM

Re[Tis)]
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