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Inner product
Let V be a vector space. An inner product on V is a function, × such that for all , , and , we have:

• , 0 , and , = 0 if and only if = 0
• , = ,
• , + = , + t ,
A vector space V with an inner product is called an inner product
space.
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Inner product
Note: The dot product is an inner product on , called the standard
inner product on .
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Inner product
Note: An extremely important inner product in applied mathematics,
physics, and engineering is:

where f(x) and g(x) are continuous real functions on an interval , .

, ( ) ( )
b

a
f g f x g x dx
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Norm
Let V be a vector space. A norm on V is a function .
such that for all , and we have:

• 0 , and = 0 if and only if = 0
• =

• + +

A vector space V with a norm is called a normed space.
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Note: For a vector , the standard norm is as follows::

where 1 and is called the ( )

Standard Norm
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Note: For a vector , the standard norm is as follows::

where 1 and is called the ( )

Standard Norm
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Note: The important and applicable standard norms are as follows:

The 2 is the usual Euclidean length or RMS value:

The 1
The ( ) 1 21
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Note: for a continuous real function f(x) on an interval , , the
important standard norms are obtained as follows:

Norm

The 2 is the usual Euclidean length or RMS value:

The 1
The ( )

1
( ) ( )

b
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f t f t dt
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Norm
Note: Matrix norms are functions . × that satisfy the
same properties as vector norms. For a matrix × , a few
examples of matrix norms are:

The Frobenius norm:

The sum-absolute-value norm:

The max-absolute-value norm:

2
,,

T
i jF i j

A tr A A a

,, i jsav i j
A a

, ,max i j i jsav
A a
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Norm
Example: Consider f t = > 0 on an interval 0, .
Calculate the 1 , 2 and of f t .
Solution:
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Kronecker Product
Let A be a m× matrix and let B be a p × matrix. Then the
Kronecker product of A and B is that mp × matrix defined by:

11 12 1

21 22 2

1 2

n

n

m m mn mp nq

a B a B a B
a B a B a B

A B

a B a B a B

Note:

Intelligent Control

14

Example: Let

Calculate , .
Solution:

0 1 2 3
,

1 2 0 1
A A

Kronecker Product
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For any vectors , , with 0, we define the projection of
onto by:

Projection

2
.( )u
u vproj v u
u
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Quadratic Forms
A quadratic form on , with corresponding × symmetric matrix

, is a function Q: defined by:

( ) ;T nQ x x Ax x R

Example: Consider , find
corresponding symmetric matrix.

2 2 2
1 1 2 1 3 2 3( ) 2 4 5 6V x x x x x x x x
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Quadratic Forms
A quadratic form Q(x) on is:

Positive definite if Q x > 0 for all x 0
Negative definite if Q x < 0 for all x 0
Indefinite if Q x > 0 for som x Q x < 0for som x
Positive semidefinite if Q x 0 for all x
Negative semidefinite if Q x 0 for all x
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Quadratic Forms
A principal minor of order r of an × matrix A = , is the
determinant of a matrix obtained by deleting rows and

columns such that if the ith row (column) is selected, then so
is the ith column (row).

A principal minor is called a leading principal minors of order r
(1 r n) if it consists of the first (”leading”) r rows and columns
of |A|.
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Quadratic Forms
Theorem: Let Q = be a quadratic form of n variables and let

be the leading principal minors of matrix A. Then

Q(x) positive definite all leading principal minors are positive.

Q(x) negative definite the leading principal minors of even
order are positive and those of odd order are negative..

11 12 13
11 12

1 11 2 3 21 22 23
21 22

31 32 33

, , ,..., n

a a a
a a

A a A A a a a A A
a a

a a a
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Quadratic Forms
Theorem: Let Q = be a quadratic form of n variables and let

be the principal minors of singular matrix A. Then

Q(x) positive semidefinite All the principal minors are positive
or zero.

Q(x) negative semidefinite All the principal minors are of even
order are positive or zero and those of odd order are negative or
zero.

2 3, , ,..., 0 ( )
ii ij ik

ii ij
i ii ji jj jk n

ji jj
ki kj kk

a a a
a a

A a A A a a a A A i j k
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Quadratic Forms
Example: Let

, find k such that V(x) be positive definite.

Solution:

2 2 2
1 2 3 1 2 1 3 2 3( ) 2 2 2 2 2 2V x x x x x x kx x x x
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Vector Calculas
The differentiation of a scalar function , , … , with respect
to x = … is calculated as follows:
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Vector Calculas
The differentiation of a vector function , , … , =… with respect to x = … is a m×

Jacobian matrix of the following form:

1 1 1

1 2

2 2 2

1 2

1 2

n

n

m m m

n m n

f f f
x x x

f f ff x x x
x

f f f
x x x

Jacobian Matrix
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Vector Calculas
The differentiation of a scalar function ( ) with respect to t is
calculated by the following chain rule:

where x = … is a vector.

( ( ))
Td V dxV x t

dt x dt

Example:
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Vector Calculas
Let be a matrix and x, y be vectors, then:

, for A be a symmetric real matrix:

Ax
A

x

T
T

x Ax
Ax A x

x

Tx Ay
Ay

x

Tx Ay
Ax

y

2
Tx Ax

Ax
x
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Comparison Function
A scalar continuous function ( ), defined for r [0, ), belongs
to class if it is strictly increasing and 0 = 0 . It belongs to
class , if it is defined for all r 0 and ( ) , as .

A scalar continuous function ( , ), defined for r [0, ), ands [0, ), belongs to class if, for each fixed s, the mapping( , ) belongs to class with respect to r and, for each fixed r,
the mapping ( , ) is decreasing with respect to s and ( , ) 0
as .

Intelligent Control
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Comparison Function

Intelligent Control

Example: Let = ( ) ; = ; , =
, investigate the class of these functions

Solution:
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Linear Time Invariant Systems
A general linear time invariant dynamical system G with input ( )
and output can be described by the following differential
equation:

( ) ( 1)
1 2 1 0

( ) ( 1)
1 2 1 0

( ) ( ) ... ( ) ( ) ( )

( ) ( ) ... ( ) ( ) ( )

n n
n
m m

n

y t a y t a y t a y t a y t

u t b u t b u t b u t b u t

G ( )y t( )u t
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Linear Time Invariant Systems
There are two standard descriptions for LTI dynamical systems:

Transfer Function:

State Space:

( )( )
( )
Y sG s
U s

( ) ( ) ( )
( ) ( ) ( )
x t Ax t Bu t

G
y t Cx t Du t
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Linear Time Invariant Systems
Example: Consider the following RLC circuit:

, find transfer function and state space representations of this LTI
system.

Solution:
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General Dynamical Systems
A general dynamical system G can be described by the following
nonlinear time variant state space equations:

( ) ( ), ( ),

( ) ( ), ( ),

x t f x t u t t
G
y t g x t u t t
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Example: Consider the following RLC circuit:

, find the state space representation of this nonlinear system.

Solution:

General Dynamical Systems

2
Rv Ri R i

Intelligent Control
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Linearization
An equilibrium point of the nonlinear system = ,
is a point for which , = 0 = 0.

An operating point of the nonlinear system = ,
with a nominal input = is a point for which, = = 0.

Note that the operating point and the equilibrium point 
are usually defined the same

Intelligent Control
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Linearization
Consider a nonlinear system represented as follows:

The corresponding linear model, which defines the system’s dynamic 
behavior about a specific operating point, is:

where = , = and =

( ) ( ), ( ),

( ) ( ), ( ),

x t f x t u t t
G
y t g x t u t t

( ) ( ) ( )

( ) ( ) ( )

f fx t x t u t
x u
g gy t x t u t
x u
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Example: Consider the following nonlinear system:

where , are constant parameters. Find the equilibrium points and its
corresponding linear model.

36

Linearization

Solution:

1 2

2 2 1

( ) ( )
( ) ( ) sin ( ) ( )

x t x t
x t x t x t u t
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Input-Output Stability
A system is BIBO (bounded-input bounded-output) stable if every
bounded input produces a bounded output.

A SISO system is BIBO stable if and only if its impulse response g(t)
is absolutely integrable in the interval [0, ).

Recall that the response of a LTI system is composed of: 
response to initial conditions + response to inputs 

The concept of Input-Output Stability refers to stability of the response to 
inputs only, assuming zero initial conditions. 

Intelligent Control
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Input-Output Stability
A LTI system with proper rational transfer matrix = ( ) is
BIBO stable if and only if every pole of every entry ( of has
negative real part. When the system is represented by state space
equations:

, the BIBO stability will depend on the eigenvalues of the matrix A,
since every pole of is an eigenvalue of A

Note: not every eigenvalue of A is a pole of G(s), since there may be pole-
zero cancellations while computing G(s). Thus, a state equation may be BIBO 

stable even when some eigenvalues of A do not have negative real part.

( ) ( ) ( )
( ) ( ) ( )
x t Ax t Bu t

G
y t Cx t Du t
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Internal Stability
The system = ( ) is Lyapunov stable, or marginally stable,
or simply stable, if every finite initial state excites a bounded
response ( ) .

The system = ( ) is asymptotically stable if every finite
initial state excites a bounded response ( ) that approaches 0 as t
The system = ( ) is unstable if it is not stable

Intelligent Control
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Internal Stability

Lyapunov Stability Asymptotic Stability Instability

Intelligent Control
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Internal Stability
The equation = ( ) is:

Lyapunov stable if and only if all the eigenvalues of A have zero or
negative real parts, and those with zero real part are associated with
a Jordan block of order 1.

Asymptotically stable if and only if all eigenvalues of A have
negative real parts.

Intelligent Control
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Lyapunov Theorem
• An equilibrium point = 0 is stable in the sense of Lyapunov if

for all > 0 there exists > 0 such that (0) < implies( ) < for all 0. Otherwise, the equilibrium point= 0 is unstable.

• An equilibrium point x = 0 is asymptotically stable if it is
stable, and if in addition there exists some r > 0 such thatx(0) < r implies that x(t) 0 as t .

• An equilibrium point x = 0 is exponentially stable if there exist 
two strictly positive numbers and such thatx(t) x 0 ; > 0
in some ball around the origin.

Intelligent Control
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Lyapunov Theorem
Note: If asymptotic (or exponential) stability holds for any initial
states, the equilibrium point is said to be asymptotically (or
exponentially) stable in the large. It is also called globally
asymptotically (or exponentially) stable.

Intelligent Control
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Lyapunov Theorem
An equilibrium point = 0 is stable in the sense of Lyapunov if
there exists a scalar function ( ) with continuous first partial
derivatives in a region around origin such that

• ( ) is positive definite.

• ( ) is semi-negative definite.

If, actually, the derivative V(x) is locally negative definite a region
around origin , then the stability is asymptotic.

Intelligent Control

Example: Consider the following nonlinear system:

, evaluate the stability of this system.

46

Solution:

Lyapunov Theorem

2
1 1 2

3
2 1 2 2

2x x x

x x x x
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Lyapunov Theorem
The system = ( , ) is input-to-state stable if there exist

and such that for any initial state and any
bounded input , , ( sup )
for all t
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Lyapunov Theorem

Uniformly Ultimately bounded
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Linear Controllers
PD Controller: + (.)

Improve stability

Reduce the overshoot

Decrease the rise time

Increase the system bandwidth

+ ( )( ) ( )( ) ( )
: ++; <
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Linear Controllers
PI Controller: + .

Improve the steady-state error

Low-pass filter

Decrease the system bandwidth

: ++; >

+ ( )( ) ( )( ) ( )
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Linear Controllers
PID Controller: + . + (.)

Improve the steady-state error

Improve the transient response

Band-stop filter

+ + ( )( ) ( )( ) ( )
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Linear Controllers
State Feedback:

C
( ) ( ) ( )1( ) ( )

A

BPre-Filter

= + ( )
Stability Tracking

:
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Linear Estimator
Observer: = +== + + ( )=

System

Observer
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Linear Estimator
Observer:

C
( ) ( )1( ) ( )

A

B

C
( ) 1

A

B

L
+

+
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Cost Function Based Linear Controllers
Optimal Controller

Predictive Controller

Robust Controller

…..
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Nonlinear Controllers
Feedback Linearization

Sliding Mode Controller

Backstepping Controller

Dynamic Surface Controller

…..
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Many issues have to be considered in analysis and design of control
systems. The basic requirements are:

SStability

Ability to follow reference signals

Reduction of effects of load disturbances

Reduction of effects of measurement noise

Reduction of effects of model uncertainties

59

Design Issue

Intelligent Control
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Root Locus Technique
The root locus is used to study the location of the poles of the closed
loop transfer function of a given linear system as a function of its
parameters, usually a loop gain, given its open loop transfer function.

( )( ) ( )( ) ( )

Intelligent Control



Example: Consider the following linear system:

, study the effect of gain variation on the system poles.

61

Solution:

Root Locus Technique

1: + 2( ) ( )( ) ( )

Intelligent Control
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Frequency Methods

( ) cos( )u t A t
( )G s

( ) ( ) cos( ( ))y t A G t G

In the Bode Plot, the magnitude in decibels is plotted against the
logarithm of the frequency; on a separate plot, the phase in degrees is
plotted against the logarithm of the frequency.

The Nyquist plot is a plot in the complex plane of Re G(s) andIm G(s) for s = as goes from zero to infinity.
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Frequency Methods
The gain crossover frequency is defined as the frequency at 
which the total magnitude equals 0 . 

The phase crossover frequency is defined as the frequency at 
which the total phase equals 180°.
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Frequency Methods
The system Gain Margin (GM) in dB is the additional gain that
makes the system on the edge of instability. GM can be determined
by calculating the total magnitude at = .

The system Phase Margin (PM) in degrees is the additional phase
that makes the system on the edge of instability. PM can be
determined by calculating the total phase at = .
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Frequency Methods
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Bode Plot
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Frequency Methods
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Nyquist Plot
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