

Intelligent Control

Fundamentals in Control Systems Theory

By: Barmak Baigzadehnoe b.baigzadeh@uok.ac.ir

Smart/Micro Grids Research Center, University of Kurdistan

Content

- Mathematical Preliminaries
- System Descriptions
- Stability Definitions
- Classical Controllers
- Classical Design Tools

Inner product

Let V be a vector space. An inner product on V is a function $\langle , \rangle : V \times V \to R$ such that for all $v, w, z \in V$ and $s, t \in R$ we have:

- $\langle v, v \rangle \ge 0$, and $\langle v, v \rangle = 0$ if and only if v = 0
- $\langle v, w \rangle = \langle w, v \rangle$
- $\langle v, sw + tz \rangle = s \langle v, w \rangle + t \langle v, z \rangle$

A vector space V with an inner product is called an *inner product* space.

3

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Inner product

Note: The dot product is an inner product on \mathbb{R}^n , called the standard inner product on \mathbb{R}^n .

$$u = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}^T$$

$$v = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}^T$$

$$\langle u, v \rangle \triangleq \sum_{i=1}^{n} u_{i} v_{i} = u_{1} v_{1} + u_{2} v_{2} + \dots + u_{n} v_{n}$$

Inner product

Note: An extremely important inner product in applied mathematics, physics, and engineering is:

$$\langle f, g \rangle \triangleq \int_{a}^{b} f(x)g(x)dx$$

where f(x) and g(x) are continuous real functions on an interval [a, b].

5

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Norm

Let V be a vector space. A norm on V is a function $\| \cdot \| : V \to R$ such that for all $v, w \in V$ and $s \in R$ we have:

- $||v|| \ge 0$, and ||v|| = 0 if and only if v = 0
- ||sv|| = |s|||v||
- $||v + w|| \le ||v|| + ||w||$

A vector space V with a norm is called a *normed space*.

Norm

Note: For a vector $u \in \mathbb{R}^n$, the standard norm is as follows::

$$\left\|u\right\|_{p} \triangleq \left(\sum_{i=1}^{n} \left|u_{i}\right|^{p}\right)^{\frac{1}{p}}$$

$$||u||_p \triangleq (|u_1|^p + |u_2|^p + \dots + |u_n|^p)^{1/p}$$

where $p \ge 1$ and $||u||_p$ is called the p - norm (or $l_p - norm$)

7

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Norm

Note: For a vector $u \in \mathbb{R}^n$, the standard norm is as follows::

$$||u||_p \triangleq \left(\sum_{i=1}^n |u_i|^p\right)^{1/p}$$

$$||u||_p \triangleq (|u_1|^p + |u_2|^p + \dots + |u_n|^p)^{1/p}$$

where $p \ge 1$ and $||u||_p$ is called the p - norm (or $l_p - norm$)

Norm

Note: The important and applicable standard norms are as follows:

The 2 - norm is the usual Euclidean length or RMS value:

$$||u||_2 \triangleq (|u_1|^2 + |u_2|^2 + \dots + |u_n|^2)^{\frac{1}{2}}$$

The 1 - norm

$$||u||_1 \triangleq |u_1| + |u_2| + \dots + |u_n|$$

The ∞ – norm (sup – norm)

$$\|u\|_{\infty} \triangleq \lim_{p \to \infty} (|u_1|^p + |u_2|^p + \dots + |u_n|^p)^{1/p}$$
 $\|u\|_{\infty} \triangleq \max_{1 \le i \le n} \{|u_i|\}$

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Norm

continuous real function f(x) on an interval [a, b], the important standard norms are obtained as follows:

The 2 - norm is the usual Euclidean length or RMS value:

$$||f(t)||_{1} \triangleq \int_{a}^{b} |f(t)| dt$$

The 1 - norm

$$||f(t)||_2 \triangleq \left(\int_a^b (f(t))^2 dt\right)^{\frac{1}{2}}$$

The ∞ – *norm* (sup – norm)

$$||f(t)||_{\infty} \triangleq \sup_{a \le t \le b} \{|f(t)|\}$$

Norm

Note: Matrix norms are functions $\| . \| : R^{m \times n} \to R$ that satisfy the same properties as vector norms. For a matrix $A \in R^{m \times n}$, a few examples of matrix norms are:

■ The Frobenius norm:

$$||A||_F = \sqrt{tr(A^T A)} = \sqrt{\sum_{i,j} a_{i,j}^2}$$

• The sum-absolute-value norm:

$$||A||_{sav} = \sum_{i,j} |a_{i,j}|$$

• The max-absolute-value norm:

$$||A||_{sav} = \max_{i,j} |a_{i,j}|$$

11 Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Norm

Example: Consider $f(t) = e^{-at}$ (a > 0) on an interval $(0, \infty)$. Calculate the 1 - norm, 2 - norm and $\infty - norm$ of f(t).

Solution:

Kronecker Product

Let A be a $m \times n$ matrix and let B be a $p \times q$ matrix. Then the **Kronecker product** \otimes of A and B is that $mp \times nq$ matrix defined by:

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & & a_{1n}B \\ a_{21}B & a_{22}B & & a_{2n}B \\ \\ a_{m1}B & a_{m2}B & & a_{mn}B \end{bmatrix}_{mp \times nq}$$

Note: $A \otimes B \neq B \otimes A$

13

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Kronecker Product

Example: Let

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} , A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$

Calculate $A \otimes B$, $B \otimes A$.

Solution:

Projection

For any vectors $u, v \in \mathbb{R}^n$, with $u \neq 0$, we define the projection of v onto u by:

$$proj_{u}(v) = \frac{u.v}{\|u\|^{2}}u$$

15

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Quadratic Forms

A *quadratic form* on R^n , with corresponding $n \times n$ symmetric matrix A, is a function $Q: R^n \to R$ defined by:

$$Q(x) = x^T A x \quad ; \ \forall x \in \mathbb{R}^n$$

Example: Consider $V(x) = x_1^2 - 2x_1x_2 + 4x_1x_3 + 5x_2^2 - 6x_3^2$, find corresponding symmetric matrix.

Quadratic Forms

A quadratic form Q(x) on R^n is:

- Positive definite if Q(x) > 0 for all $x \neq 0$
- Negative definite if Q(x) < 0 for all $x \ne 0$
- Indefinite if Q(x) > 0 for som x and Q(x) < 0 for som x
- Positive semidefinite if $Q(x) \ge 0$ for all x
- Negative semidefinite if $Q(x) \le 0$ for all x

17

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Quadratic Forms

A *principal minor* of order r of an $n \times n$ matrix $A = [a_{i,j}]$ is the determinant of a matrix obtained by deleting n - r rows and n - r columns such that if the *ith* row (column) is selected, then so is the *ith* column (row).

A principal minor is called a *leading principal minors* of order r $(1 \le r \le n)$ if it consists of the first ("leading") r rows and columns of |A|.

Quadratic Forms

Theorem: Let $Q = x^T Ax$ be a quadratic form of *n* variables and let

$$|A_1| = a_{11}$$
, $|A_2| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$, $|A_3| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$,..., $|A_n| = |A|$

be the leading principal minors of matrix A. Then

- Q(x) positive definite \Leftrightarrow all leading principal minors are positive.
- Q(x) *negative definite* \Leftrightarrow the leading principal minors of even order are positive and those of odd order are negative..

19

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Quadratic Forms

Theorem: Let $Q = x^T A x$ be a quadratic form of n variables and let

$$|A_{i}| = a_{ii}, |A_{2}| = \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix}, |A_{3}| = \begin{vmatrix} a_{ii} & a_{ij} & a_{ik} \\ a_{ji} & a_{jj} & a_{jk} \\ a_{ki} & a_{kj} & a_{kk} \end{vmatrix}, \dots, |A_{n}| = |A| = 0 \quad (i < j < k)$$

be the principal minors of *singular* matrix A. Then

- Q(x) *positive semidefinite* \Leftrightarrow All the principal minors are positive or zero.
- Q(x) negative semidefinite \Leftrightarrow All the principal minors are of even order are positive or zero and those of odd order are negative or zero.

Quadratic Forms

Example: Let

$$V(x) = 2x_1^2 + 2x_2^2 + 2x_3^2 - 2x_1x_2 + 2kx_1x_3 - 2x_2x_3$$

, find k such that V(x) be positive definite.

Solution:

21

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

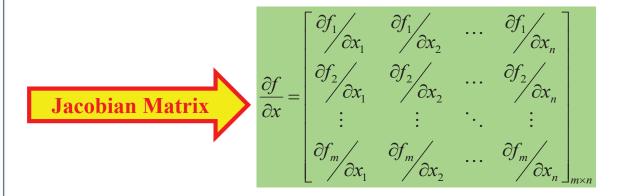
Vector Calculas

The *differentiation* of a scalar function $J(x_1, x_2, ..., x_n)$ with respect to $\mathbf{x} = [x_1 \ x_2 \ ... \ x_n]^T$ is calculated as follows:

$$\frac{\partial J}{\partial x} = \begin{bmatrix} \frac{\partial J}{\partial x_1} \\ \frac{\partial J}{\partial x_2} \\ \vdots \\ \frac{\partial J}{\partial x_n} \end{bmatrix}$$

Vector Calculas

The **differentiation** of a vector function $f(x_1, x_2, ..., x_n) = [f_1 \ f_2 \ ... \ f_m]^T$ with respect to $\mathbf{x} = [x_1 \ x_2 \ ... \ x_n]^T$ is a m \times n **Jacobian matrix** of the following form:



23

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Vector Calculas

The *differentiation* of a scalar function V(x(t)) with respect to t is calculated by the following *chain rule*:

$$\frac{d}{dt} (V(x(t))) = \left(\frac{\partial V}{\partial x}\right)^T \frac{dx}{dt}$$

where $\mathbf{x} = [x_1 \quad x_2 \quad \dots \quad x_n]^T$ is a vector.

Example:

Vector Calculas

Let A be a matrix and x, y be vectors, then:

$$\frac{\partial \left(Ax\right)}{\partial x} = A$$

- $\frac{\partial \left(x^T A x\right)}{\partial x} = A x + A^T x$, for A be a symmetric real matrix: $\frac{\partial \left(x^T A x\right)}{\partial x} = 2A x + A^T x$, for A be a symmetric real matrix: $\frac{\partial \left(x^T A x\right)}{\partial x} = 2A x + A^T x$
- $\frac{\partial \left(x^T A y\right)}{\partial x} = A y$
- $\frac{\partial \left(x^T A y\right)}{\partial y} = A x$

25

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Comparison Function

- A scalar continuous function $\alpha(r)$, defined for $r \in [0, a)$, belongs to *class* \mathcal{K} if it is strictly increasing and $\alpha(0) = 0$. It belongs to *class* \mathcal{K}_{∞} , if it is defined for all $r \geq 0$ and $\alpha(r) \rightarrow \infty$, as $r \rightarrow \infty$.
- A scalar continuous function $\beta(r,s)$, defined for $r \in [0,a)$, and $s \in [0,\infty)$, belongs to *class* \mathcal{KL} if, for each fixed s, the mapping $\beta(r,s)$ belongs to class \mathcal{K} with respect to r and, for each fixed r, the mapping $\beta(r,s)$ is decreasing with respect to s and $\beta(r,s) \to 0$ as $s \to \infty$.

Comparison Function

Example: Let

$$\alpha(r) = tan^{-1}(r) ; \gamma(r) = r^2; \ \beta(r,s) = \frac{r}{(ksr+1)}$$

, investigate the class of these functions

Solution:

27

ntelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Content

- Mathematical Preliminaries
- System Descriptions
- Stability Definitions
- Classical Controllers
- Classical Design Tools

Linear Time Invariant Systems

A general linear time invariant dynamical system G with input u(t)and output y(t) can be described by the following differential equation:

$$y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_2\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t)$$

$$= u^{(m)}(t) + b_{n-1}u^{(m-1)}(t) + \dots + b_2\ddot{u}(t) + b_1\dot{u}(t) + b_0u(t)$$

$$\underline{u}(t) \longrightarrow \underline{y}(t)$$

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Linear Time Invariant Systems

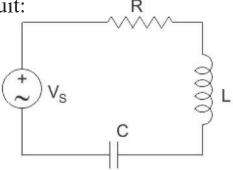
There are two standard descriptions for LTI dynamical systems:

Transfer Function:
$$G(s) = \frac{Y(s)}{U(s)}$$

State Space:
$$G \begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Linear Time Invariant Systems

Example: Consider the following RLC circuit:



, find transfer function and state space representations of this LTI system.

Solution:

31 Intelligent Control

 $Smart/Micro\ Grids\ Research\ Center,\ University\ of\ Kurdistan$

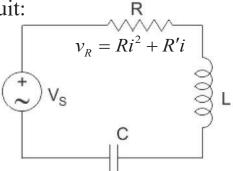
General Dynamical Systems

A general dynamical system G can be described by the following nonlinear time variant state space equations:

$$G\begin{cases} \dot{x}(t) = f\left(x(t), u(t), t\right) \\ y(t) = g\left(x(t), u(t), t\right) \end{cases}$$

General Dynamical Systems

Example: Consider the following RLC circuit:



, find the state space representation of this nonlinear system.

Solution:

33 Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Linearization

An *equilibrium point* x_{eq} of the nonlinear system $\dot{x} = f(x(t), u(t))$ is a point for which $f(x_{eq}, u(t) = 0) = 0$.

An *operating point* x_{op} of the nonlinear system $\dot{x} = f(x(t), u(t))$ with a nominal input $u(t) = u_{op}$ is a point for which $f(x_{op}, u(t) = u_{op}) = 0$.

Note that the operating point and the equilibrium point are usually defined the same

Linearization

Consider a nonlinear system represented as follows:

$$G\begin{cases} \dot{x}(t) = f\left(x(t), u(t), t\right) \\ y(t) = g\left(x(t), u(t), t\right) \end{cases}$$

The corresponding linear model, which defines the system's dynamic behavior about a specific operating point, is:

$$\begin{cases} \Delta \dot{x}(t) = \frac{\partial f}{\partial x} \Delta x(t) + \frac{\partial f}{\partial u} \Delta u(t) \\ \Delta y(t) = \frac{\partial g}{\partial x} \Delta x(t) + \frac{\partial g}{\partial u} \Delta u(t) \end{cases}$$

where $\Delta x = x - x_{op}$, $\Delta u = u - u_{op}$ and $\Delta y = y - y_{op}$

35

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistar

Linearization

Example: Consider the following nonlinear system:

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = \mu x_2(t) + \lambda \sin(x_1(t)) + u(t) \end{cases}$$

where μ , λ are constant parameters. Find the equilibrium points and its corresponding linear model.

Solution:

Content

- Mathematical Preliminaries
- System Descriptions
- Stability Definitions
- Classical Controllers
- Classical Design Tools

37

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Input-Output Stability

A system is *BIBO* (bounded-input bounded-output) stable if every bounded input produces a bounded output.

A SISO system is *BIBO stable* if and only if its impulse response g(t) is absolutely integrable in the interval $[0, \infty)$.

Recall that the response of a LTI system is composed of: response to initial conditions + response to inputs

The concept of Input-Output Stability refers to stability of the response to inputs only, assuming zero initial conditions.

Input-Output Stability

A LTI system with proper rational transfer matrix $G(s) = [G_{ij}(s)]$ is **BIBO stable** if and only if every pole of every entry $G_{ij}(s)$ of G(s) has negative real part. When the system is represented by state space equations:

 $G\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$

, the **BIBO** stability will depend on the eigenvalues of the matrix A, since every pole of G(s) is an eigenvalue of A

Note: not every <u>eigenvalue</u> of A is a <u>pole</u> of G(s), since there may be polezero cancellations while computing G(s). Thus, a state equation may be BIBO stable even when some eigenvalues of A do not have negative real part.

39

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

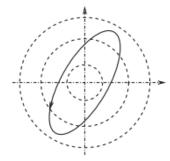
Internal Stability

The system $\dot{x}(t) = Ax(t)$ is **Lyapunov stable**, or **marginally stable**, or **simply stable**, if every finite initial state x_0 excites a bounded response x(t).

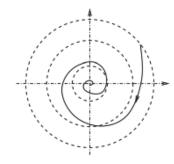
The system $\dot{x}(t) = Ax(t)$ is **asymptotically stable** if every finite initial state x_0 excites a bounded response x(t) that approaches 0 as t $\to \infty$

The system $\dot{x}(t) = Ax(t)$ is **unstable** if it is not stable

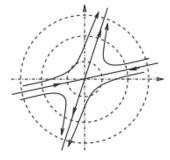
Internal Stability



Lyapunov Stability



Asymptotic Stability



Instability

41

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Internal Stability

The equation $\dot{x}(t) = Ax(t)$ is:

- *Lyapunov stable* if and only if all the eigenvalues of A have zero or negative real parts, and those with zero real part are associated with a Jordan block of order 1.
- Asymptotically stable if and only if all eigenvalues of A have negative real parts.

Lyapunov Theorem

- An equilibrium point $x_{eq} = 0$ is stable *in the sense of Lyapunov* if for all $\varepsilon > 0$ there exists $\delta > 0$ such that $||x(0)|| < \delta$ implies $||x(t)|| < \varepsilon$ for all $t \ge 0$. Otherwise, the equilibrium point $x_{eq} = 0$ is *unstable*.
- An equilibrium point $x_{eq} = 0$ is *asymptotically stable* if it is stable, and if in addition there exists some r > 0 such that ||x(0)|| < r implies that $x(t) \to 0$ as $t \to \infty$.
- An equilibrium point $x_{eq} = 0$ is *exponentially stable* if there exist two strictly positive numbers α and λ such that

$$||x(t)|| \le \alpha ||x(0)|| e^{-\lambda t}$$
; $\forall t > 0$

in some ball around the origin.

43 Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Lyapunov Theorem

Note: If asymptotic (or exponential) stability holds for any initial states, the equilibrium point is said to be asymptotically (or exponentially) stable in the large. It is also called *globally asymptotically (or exponentially) stable*.

Lyapunov Theorem

An equilibrium point $x_{eq} = 0$ is stable *in the sense of Lyapunov* if there exists a scalar function V(x) with continuous first partial derivatives in a region around origin such that

- V(x) is positive definite.
- $\dot{V}(x)$ is semi-negative definite.

If, actually, the derivative V(x) is locally negative definite a region around origin, then the stability is *asymptotic*.

45

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Lyapunov Theorem

Example: Consider the following nonlinear system:

$$\begin{cases} \dot{x}_1 = -x_1 - 2x_2^2 \\ \dot{x}_2 = x_1 x_2 - x_2^3 \end{cases}$$

, evaluate the stability of this system.

Solution:

Lyapunov Theorem

The system $\dot{x}(t) = f(x(t), u(t))$ is *input-to-state stable* if there exist $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that for any initial state $x(t_0)$ and any bounded input u(t)

$$\|x(t)\| \leq \max \left\{\beta(\|x(t_0)\|, t-t_0), \gamma(\sup_{t_0 \leq \tau \leq t} \|u(\tau)\|)\right\}$$

for all $t \ge t_0$

47

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Lyapunov Theorem

Uniformly Ultimately bounded

Content

- Mathematical Preliminaries
- System Descriptions
- Stability Definitions
- Classical Controllers
- Classical Design Tools

49

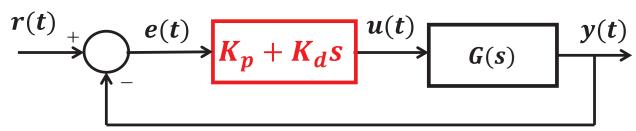
Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

- smgrc

Linear Controllers

• PD Controller: $K_p + K_d \frac{d(.)}{dt}$



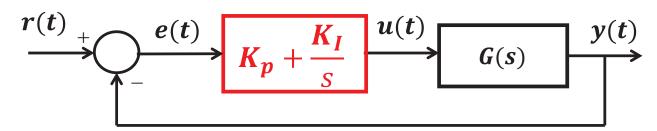
Lead Controller: $K \frac{\alpha s + 1}{\beta s + 1}$

; for
$$\frac{1}{\alpha} < \frac{1}{\beta}$$

- Improve stability
- Reduce the overshoot
- Decrease the rise time
- Increase the system bandwidth

Linear Controllers

• PI Controller: $K_p + K_I \int (.) dt$



Lag Controller: $K \frac{\lambda s + 1}{\gamma s + 1}$; for $\frac{1}{\lambda} > \frac{1}{\gamma}$

- Improve the steady-state error
- Low-pass filter
- Decrease the system bandwidth

51

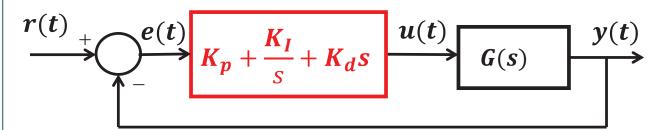
Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

- smgrc

Linear Controllers

• PID Controller: $K_p + K_I \int (.) dt + K_d \frac{d(.)}{dt}$

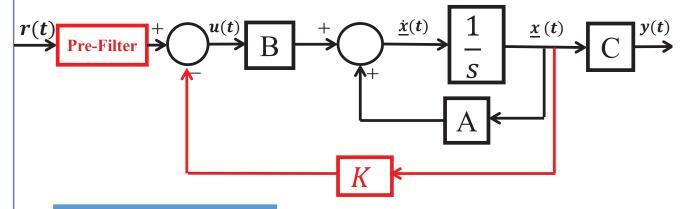


Lead – Lag Controller

- Improve the steady-state error
- Improve the transient response
- Band-stop filter

Linear Controllers

• State Feedback:



A - BK: Hurwitz

$$u(t) = -K\underline{x}(t) + \{C[-(A - BK)]^{-1}B\}^{-1}r(t)$$
Stability Tracking

53

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

-/w smgrc -

Linear Estimator

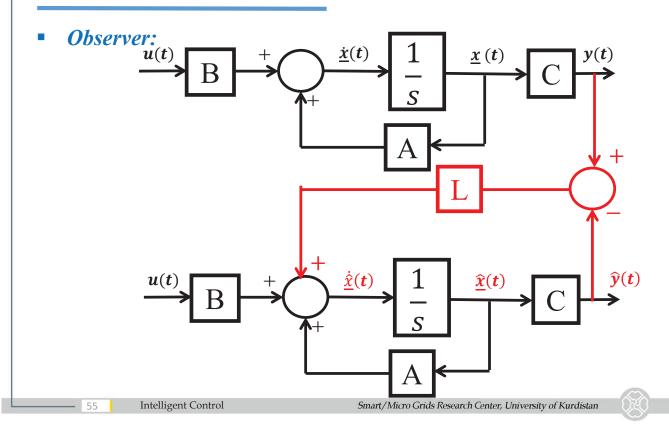
• Observer:

$$\frac{\dot{x}(t) = A\underline{x}(t) + Bu(t)}{y(t) = Cx(t)}$$

$$\frac{\dot{\widehat{x}}(t) = A\widehat{x}(t) + L\left(y(t) - C\widehat{x}(t)\right) + Bu(t)}{\widehat{y}(t) = C\widehat{x}(t)}$$

-M smgrc ----

Linear Estimator



Cost Function Based Linear Controllers

- Optimal Controller
- Predictive Controller
- Robust Controller
- **....**

Nonlinear Controllers

- Feedback Linearization
- Sliding Mode Controller
- Backstepping Controller
- Dynamic Surface Controller

57

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Content

- Mathematical Preliminaries
- System Descriptions
- Stability Definitions
- Classical Controllers
- Classical Design Tools

Design Issue

Many issues have to be considered in analysis and design of control systems. The basic requirements are:

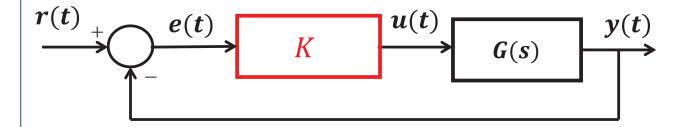
- Stability
- Ability to follow reference signals
- Reduction of effects of load disturbances
- Reduction of effects of measurement noise
- Reduction of effects of model uncertainties

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

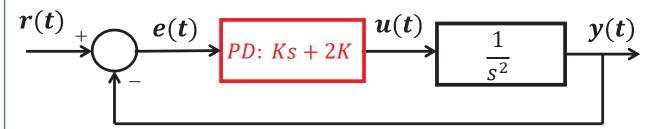
Root Locus Technique

The root locus is used to study the location of the poles of the closed loop transfer function of a given linear system as a function of its parameters, usually a loop gain, given its open loop transfer function.



Root Locus Technique

Example: Consider the following linear system:



, study the effect of gain variation on the system poles.

Solution:

61 Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Frequency Methods

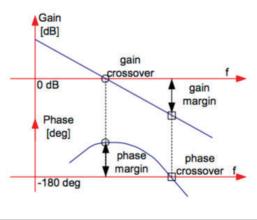
In the *Bode Plot*, the magnitude in decibels is plotted against the logarithm of the frequency; on a separate plot, the phase in degrees is plotted against the logarithm of the frequency.

The *Nyquist plot* is a plot in the complex plane of Re{G(s)} and Im{G(s)} for $s = j\omega$ as ω goes from zero to infinity.

$$u(t) = A\cos(\omega t) \qquad y(t) = A|G(\omega)|\cos(\omega t + \angle G(\omega))$$

Frequency Methods

- The *gain crossover frequency* ω_g is defined as the frequency at which the total magnitude equals 0 dB.
- The *phase crossover frequency* ω_p is defined as the frequency at which the total phase equals -180° .



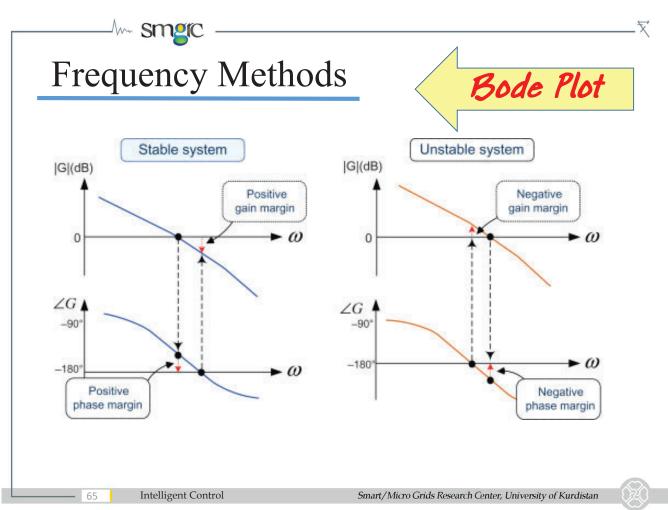
63 lı

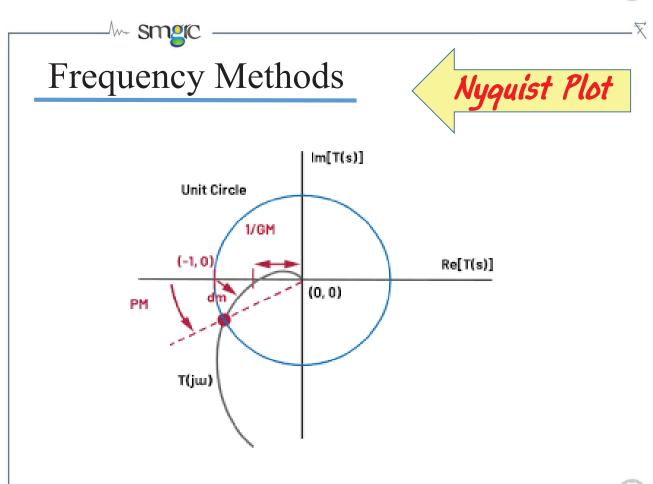
Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan

Frequency Methods

- The system *Gain Margin* (GM) in dB is the additional gain that makes the system on the edge of instability. GM can be determined by calculating the total magnitude at $\omega = \omega_p$.
- The system *Phase Margin* (PM) in degrees is the additional phase that makes the system on the edge of instability. PM can be determined by calculating the total phase at $\omega = \omega_q$.





Smart/Micro Grids Research Center, University of Kurdistan

Intelligent Control

