

# **Robust Control Systems**

# Loop Shaping Control Design

#### Hassan Bevrani

Professor, University of Kurdistan

Fall 2023

#### **Contents**

- 1. Key points for Loop Shaping
- 2. Lead-Lag Compensator Design
- 3. Design Example
- 4. Loop Shaping (LS) Control
- 5. Design Examples

#### Reference

- 1. S. Skogestadand I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.
- **2.** M. Fujita, **Lecture Notes on Feedback Control Systems**, Tokyo Institute of Technology, 2019.
- 3. R. Smith, Lecture Notes on Control Systems, ETH Zurich, 2020.

H. Bevrani University of Kurdistan

# **Key points for Loop Shaping**



### **Key points for Loop Shaping**

#### ☐ Improve high frequency behavior

(Noise reduction)



H. Bevrani University of Kurdistan

# **Phase Lead-lag Compensator Design**

$$K(s) = K \frac{\alpha(Ts+1)}{\alpha Ts+1}$$

Improvement of steady-state characteristics

+ 
$$20 \log \alpha [dB]$$
  
 $\left(K(0) = \alpha K, K(\infty) = K\right)$ 

The corner frequency (T) must be adjusted, appropriately



#### **Phase Lag Compensator Design**

#### **□**Comparison with PI

$$K(s) = K \frac{\alpha(Ts+1)}{\alpha Ts+1} \quad (\alpha > 1)$$

$$+20 \log \alpha \text{ [dB]}$$

$$\left[K(0) = \alpha K, K(\infty) = K\right]$$

$$\alpha \to \infty$$

$$K(s) = K \left(1 + \frac{1}{Ts}\right)$$

$$K_{PI}(s) = K_P \left(1 + \frac{1}{T_I s}\right)$$

$$T_I = \frac{K_P}{K_I}$$
 (Integration time)  $\left(K(0) \approx \infty, K(\infty) = K_P\right)$ 



$$\left(K(0)\approx\infty,\ K(\infty)=K_{P}\right)$$

University of Kurdistan

### Continue



#### A Design Example

$$P(s) = \frac{10}{s(s+1)(s+10)}$$

Find Controller K(s) to satisfy:  $K_{\nu} \ge 10$  $PM \ge 40^{\circ}$ 

**Step 1:** Focusing on the PM and gain crossover frequency, the controller **gain K** must be determined so that the desired transient response characteristics can be obtained.

Gain crossover frequency:  $\omega_{oc} \approx 0.8$ 

Phase margin:  $PM = 47^{\circ}$ 

which meets  $PM \ge 40^{\circ}$ 



H. Bevrani

University of Kurdistan

9

#### A Design Example

(K=1)

**Step 2:** Draw bode diagram of open-loop transfer function resulted from Step 1 and evaluate its low frequency gain.

Open-loop transfer function:

$$L' = PK = \frac{10}{s(s+1)(s+10)}$$

Speed deviation constant:

$$K_{v}' = \lim_{s \to 0} sL'(s)$$

$$= \lim_{s \to 0} \frac{10}{(s+1)(s+10)} = 1 \qquad \text{as } \frac{5}{2} = -150$$

The required low frequency gain is 10 times or more:  $K_v \ge 10$ 

#### A Design Example

**Step 3:** Considering that the low-frequency gain increases by  $+20\log\alpha[\mathrm{dB}]$  the parameter  $\alpha$  must be determined to satisfy the required steady-state

characteristics.

The minimum required

low frequency gain is:







11

 $20 \log \alpha$  [dB]

H. Bevrani University of Kurdistan

#### **A Design Example**

**Step 4:** To keep the stability against the phase delay, select the corner frequency  $\omega = 1/T$  about 1 dec below the gain crossover frequency. Then determine second corner frequency  $\omega = 1/(\alpha T)$ .

T=10 ( $\omega=0.1$ ): the corner frequency is sufficiently smaller than the gain



#### A Design Example

### **Step 5:** Construct the compensator using the determined parameters ( $K, \alpha, T$ ).

Phase lag compensator:  $K(s) = K \frac{\alpha(Ts+1)}{\alpha Ts+1}$ 

$$K = 1$$
,  $\alpha = 10$ ,  $T = 10$ 

$$K(s) = 1 \cdot \frac{10(10s+1)}{10 \cdot 10s + 1}$$
$$= \frac{s+0.1}{s+0.01}$$

Gain crossover frequency:  $\omega_{gc} = 0.8 \text{ rad/s}$ 

Phase margin:  $PM \ge 40^{\circ}$ 



L(s) = P(s)K(s)

H. Bevrani University of Kurdistan 13

### A Design Example

**Step 5:** Construct the compensator using the determined parameters ( $K, \alpha, T$ ).

Phase lag compensator:  $K(s) = K \frac{\alpha(Ts+1)}{\alpha Ts+1}$ 

$$K = 1, \quad \alpha = 10, \quad T = 10$$

$$K(s) = 1 \cdot \frac{10(10s + 1)}{10 \cdot 10s + 1}$$

$$= \frac{s + 0.1}{s + 0.01}$$

Gain crossover frequency:  $\omega_{gc} = 0.8 \text{ rad/s}$ 

Phase margin:  $PM \ge 40^{\circ}$ 



#### **Evaluation**

Speed deviation constant (steady characteristic):  $K_{v} \ge 10$ 

$$K_{..} \ge 10$$

Phase margin (damping characteristic):  $PM \ge 40$  **V** 

$$L(s) = P(s)K(s)$$

$$= \frac{10(s+0.1)}{s(s+0.01)(s+1)(s+10)}$$

$$K_{v} = \lim_{s \to 0} sL(s) = \frac{1}{0.1} = 10$$
  $\checkmark$ 

$$PM \ge 40^{\circ}$$

$$PM \ge 40^{\circ}$$
  $\omega_{gc} \approx 0.8 [rad/s]$   $\checkmark$ 





H. Bevrani

University of Kurdistan

#### **Phase Lead Compensator Design**

$$K(s) = K \frac{Ts+1}{\alpha Ts+1} \quad (\alpha < 1)$$

#### **Stabilizing transient characteristics**

Phase lead 
$$\frac{1}{T} < \omega < \frac{1}{\alpha T}$$

Note: High frequency gain is increased. Noise amplification degrades Robust stability!

Angular frequency where the phase advances most



Maximum value of phase lead:  $\sin \phi_{\text{max}} = \frac{1-\alpha}{1+\alpha} \implies \alpha = \frac{1-\sin \phi_{\text{max}}}{1+\sin \phi}$ 

 $\omega = \omega_{
m max}$  , the gain becomes  $\frac{1}{\sqrt{lpha}}$  times.

15

#### **Phase Lead Compensator Design**

$$\hat{L} = PK$$
,



H. Bevrani University of Kurdistan

### **Phase Lead Compensator Design**

 $20\log |K(j\omega)|$  [dB]

 $20\log(K/\alpha)$ 

 $20\log(K/\sqrt{\alpha})$ 

#### **□** Comparison with PD

$$K(s) = K \frac{Ts+1}{\alpha Ts+1} \ (\alpha < 1)$$

$$\begin{cases} +\phi_{\text{max}}[^{\circ}] \\ K(0) = K, \ K(\infty) = K/\alpha \end{cases}$$

$$\alpha \to 0$$

$$K(s) = K(Ts+1)$$

$$K_{PD}(s) = K_P(T_D s + 1)$$

Note: It is difficult to realize an ideal differentiator

$$K'_{PD} = \frac{K_P (1 + T_D s)}{1 + (T_D / N)s}$$
  $(3 \le N \le 20)$ 



+ 20dB / dec

 $\omega$  [rad/s]



$$P(s) = \frac{10}{s(s+1)(s+10)}$$
 Find Controller K(s) to satisfy: PM  $\approx 40^{\circ}$   $\omega_{gc} \ge 2$  [rad/s]

Step 1: To meet the specifications for quick response and steady-state characteristics, determine the value of gain compensation K.

Gain compensation: K = 5

Open-loop transfer function:

$$\hat{L}(s) = \frac{50}{s(s+1)(s+10)}$$

Gain crossover frequency:

$$\hat{\omega}_{gc} = 2.1 > 2 \text{ [rad/s]} \implies \omega_{gc} \ge 2 \text{ [rad/s]}$$



**Step 2:** Draw a Bode plot of the open-loop transfer function  $\hat{L}(s) = KP(s)$  using K in Step~1 and evaluate its phase margin  $\widehat{PM}$ . The required phase lead amount is the difference between the given phase margin PM and this one ( $\hat{\phi} = PM - \widehat{PM}$ ). Considering an appropriate margin (e.g, 5 deg. or more), set it as  $\phi_{\max} = \hat{\phi} + 5^{\circ}$  or

Phase margin:  $\widehat{PM} = 13.6^{\circ}$ 

more.

Required phase margin:  $PM \approx 40^{\circ}$ 

$$\hat{\phi} = PM - \widehat{PM}$$
  
= 40-13.6 = 26.4°

(Required phase lead amount)



H. Bevrani

University of Kurdistan

21

# **Phase-lead Compensator: Design Example**

**Step 3:** Determine the value of  $\alpha$  from  $\alpha = \frac{1-\sin\phi_{\max}}{1+\sin\phi_{\max}}$ 

$$K(s) = K \frac{Ts + 1}{\alpha Ts + 1}$$

$$\alpha = \frac{1 - \sin \phi_{\text{max}}}{1 + \sin \phi_{\text{max}}}$$

$$\phi_{\text{max}} = 36.4^{\circ} \implies \alpha = 0.255$$



**Step 4:** In phase lead compensation, the gain increases by  $1/\sqrt{\alpha}$  at the angular frequency where the phase leads, so the angular frequency where  $|\hat{L}(j\omega)|$  is  $\sqrt{\alpha}$  (=  $20\log\sqrt{\alpha}$  [dB] ) is set as the new gain crossover frequency  $\omega_{\rm max}$  after







H. Bevrani

University of Kurdistan

23

#### **Phase-lead Compensator: Design Example**

**Step 5:** The value of parameter T is determined from  $\omega_{max} = \frac{1}{\sqrt{\alpha}T}$ . At this time, the corner frequency of phase lead compensation is

$$1/T = \omega_{\text{max}} \sqrt{\alpha}, \ 1/(\alpha T) = \omega_{\text{max}} / \sqrt{\alpha}$$

$$\omega_{\text{max}} = \frac{1}{\sqrt{\alpha}T} \implies T = \frac{1}{\sqrt{\alpha}\omega_{\text{max}}}$$

$$\omega_{\rm max} = 3.0$$
 [rad/s],  $\alpha = 0.255$ 

$$T = 0.660$$

Frequency corners:

$$\frac{1}{T} = 1.52, \frac{1}{\alpha T} = 5.94$$



**Step 6:** After finding design parameters  $K, \alpha, T$ , the phase lead controller is constructed as follows:

$$K(s) = K \frac{Ts + 1}{\alpha Ts + 1}$$

$$K(s) = K \frac{Ts + 1}{\alpha Ts + 1}$$

$$K = 5, \alpha = 0.255, T = 0.660$$

$$K(s) = 5 \cdot \frac{0.66s + 1}{0.255 \cdot 0.66s + 1}$$
$$= \frac{19.6(s + 1.52)}{s + 5.94}$$

Gain crossover frequency  $\omega_{gc} = 3.0$  [rad/s]

Phase margin  $PM = 38^{\circ}$ 



H. Bevrani University of Kurdistan 25

#### **Evaluation**

Gain crossover frequency (rapid response):

$$\omega_{gc} \ge 2 \text{ [rad/s]}$$

Phase margin (damping characteristic):  $PM \approx 40^{\circ}$ 

$$\omega_{gc} = 3.0 (= \omega_{max}) \text{ [rad/s] } \boldsymbol{v}$$

$$PM \cong 38^{\circ}$$

$$K(s) = 1$$

$$K(s) = 5$$

$$K(s) = \frac{19.6(s+1.52)}{s+5.94}$$
2.0



#### **Phase Lead-lag Compensator Design**

$$K(s) = K \underbrace{\left(\frac{T_1 s + 1}{\alpha_1 T_1 s + 1}\right)}_{\text{Lead}} \underbrace{\left(\frac{\alpha_2 (T_2 s + 1)}{\alpha_2 T_2 s + 1}\right)}_{\text{Lag}} \quad (\alpha_1 < 1, \alpha_2 > 1)$$

We may need multiple stages to improve of steady-state characteristics and transient characteristics

$$+20\log\alpha_2$$
 [dB]

Phase lead: 
$$\frac{1}{T_1} < \omega < \frac{1}{\alpha_1 T_1}$$



H. Bevrani University of Kurdistan 27

# **Phase Lead-lag Compensator Design**



#### **Phase Lead-lag Compensator Design**

#### □ Comparison with PID

$$K(s) = K \frac{T_1 s + 1}{\alpha_1 T_1 s + 1} \frac{\alpha_2 (T_2 s + 1)}{\alpha_2 T_2 s + 1} \left| (\alpha_1 < 1, \alpha_2 > 1) \right|$$

+20 log 
$$\alpha$$
 [dB], + $\phi_{\text{max}}$  [°]  

$$\left(K(0) = \alpha_2 K, K(\infty) = K / \alpha_1\right)$$

$$K(s) = K(T_1 s + 1) \underbrace{\left(1 + \frac{1}{T_2 s}\right)}_{\text{PI}}$$

$$= \frac{K(T_1 + T_2)}{T_2} \left(1 + \frac{1}{(T_1 + T_2)s} + \frac{T_1 T_2}{T_1 + T_2} s\right) \Rightarrow K_{PID}(s) = K_P \underbrace{\left(1 + \frac{1}{T_1 s} + T_D s\right)}_{\text{PI}}$$



H. Bevrani University of Kurdistan 29

#### **Example**

$$P(s) = \frac{0.01}{s^2 + 0.04s + 0.01} \xrightarrow{\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}} \qquad \omega_n = 0.1 \text{rad/s}$$

$$\zeta = 0.2$$

Phase lag (PI controller):

$$K_{PI}(s) = 100 \frac{s + 0.1}{s}$$

$$L_1 = PK_{PI}$$

Phase margin: PM = -3.37 deg



#### **Continue**

$$K_L(s) = \frac{14.3(s+0.53)}{s+7.52}$$
  $K = 1,$   $\alpha = 0.07,$   $T = 1.9$ 

Lead-lag compensator:  $|K_{LL}(s)|$  =

$$K_{LL}(s) = \frac{1430(s+0.1)(s+0.53)}{s(s+7.52)}$$



$$PM=$$
 58.5deg  $\omega_{gc}=1.92rad/s$ 



 $4_{t[s]^6}$ 

10

0.4

0.2

H. Bevrani University of Kurdistan 31

# Continue



#### **Loop Shaping Control**



Performance requirements can be approximated by requirements for  $L(j\omega)$ .

$$|L(j\omega)|\gg 1 \quad \Longrightarrow \quad |S(j\omega)|\ll 1 \quad \text{(good tracking performance)}$$
  $|L(j\omega_c)|=1 \quad \text{gives bandwidth} \approx \omega_c$   $|L(j\omega)|\ll 1 \quad \Longrightarrow \quad |T(j\omega)|\ll 1 \quad \text{(good noise rejection)}$ 

H. Bevrani University of Kurdistan 33

# **Inverse-based Control Design**

#### Stable, minimum-phase plant

Can choose:

$$L(s) = \frac{\omega_c}{s}$$

This will give a phase margin of  $90^{\circ}$ .

$$K(s) = \frac{\omega_c}{s} G^{-1}(s)$$

Inverting the plant can often be done only approximately.

#### **Design Example**



#### Objectives:

- 1. Rise time < 0.3 seconds.
- 2. Overshoot < 5%
- 3. Disturbance response,  $y_d(t)$ , satisfies  $|y(t)| \leq 1$ .
- 4. Disturbance response,  $y_d(t)$ , satisfies |y(t)| < 0.1 within 3 seconds.
- 5.  $|u(t)| \leq 1$  at all times.

$$|G_{\sf d}(j\omega)|>1$$
 up to  $\omega_d\approx 10$  rad/sec  $\implies \omega_c\geq 10$  rad/sec.

H. Bevrani University of Kurdistan 35

# **Closed-Loop Performance**



#### **Inverse-based Control Design**

#### The plant is stable and minimum-phase:

$$K_0(s) = \frac{\omega_c}{s} G^{-1}(s)$$

$$= \frac{\omega_c}{s} \frac{(10s+1)}{200} (0.05s+1)^2$$

$$\approx \frac{\omega_c}{s} \frac{(10s+1)}{200} \frac{(0.1s+1)}{(0.01s+1)}$$



H. Bevrani University of Kurdistan 33

# **Inverse-based Control Design**



The closed-loop bandwidth is very close to  $\omega_c \approx 10~{\rm rad/sec.}$ 

#### **Inverse-based Control Design**

$$K_0 = \frac{\omega_c}{s} \frac{(10s+1)}{200} \frac{(0.1s+1)}{(0.01s+1)}$$

#### Reference tracking

#### Disturbance response

39



### **Loop Shaping for Disturbance Rejection**

Disturbance response:  $y_d = SG_d d + \dots$ 

To achieve  $|y_d(t)| \le 1$  for  $|d(t)| \le 1$ ,

we want  $|SG_{\rm d}(j\omega)| < 1$  for all  $\omega$ .

So, we want:

$$|1+L(j\omega)|>|G_{\rm d}(j\omega)|\quad \text{for all }\omega.$$

or, approximately,  $|L(j\omega)| > |G_d(\omega)|$  for all  $\omega$ .

Initial guess:

$$|L_{\rm min}| pprox |G_{
m d}| \quad {
m or} \quad |K_{
m min}| pprox |G^{-1}G_{
m d}|$$

#### Step 1

Initial guess:

$$|K_{\rm min}| pprox |G^{-1}G_{\rm d}|$$

Choose:

$$K_1(s) \approx G^{-1}(s)G_{\mathsf{d}}(s)$$
$$\approx 0.5(0.05s + 1)^2$$
$$= 0.5$$



H. Bevrani University of Kurdistan 41

# **Loop Shaping for Disturbance Rejection**

$$K_1 = 0.5$$
  $\Longrightarrow$   $L_1(s) \approx G_{\mathsf{d}}(s)$ 

#### Reference tracking

# Amplitude 1.5 $y_1(t)$ 0.5 0 01 2 3 time (sec)

#### Disturbance response



# Step 2 Increase the gain at low frequency.

To get integral action multiply the controller by:

$$K_2(s) = \frac{s + \omega_I}{s} K_1(s).$$

If  $\omega_I=0.2\omega_c$  we get  $11^\circ$  more phase at  $\omega_c$  than with  $K_1$  alone.

So,

$$K_2(s) = 0.5 \frac{(s+2)}{s}$$

H. Bevrani University of Kurdistan 43

# **Loop Shaping for Disturbance Rejection**



H. Bevrani University of Kurdistan 44

$$K_1 = 0.5$$
 and  $K_2 = 0.5 \frac{(s+2)}{s}$ 

Reference tracking

Disturbance response



**Loop Shaping for Disturbance Rejection** 

#### Step 2

H. Bevrani

High frequency correction:

Augment with a lead-lag for "derivative action".

This will also improve the phase margin.

$$K_3(s) = K_2(s) \frac{(0.05s+1)}{(0.005s+1)}$$
$$= 0.5 \frac{(s+2)}{s} \frac{(0.05s+1)}{(0.005s+1)}$$



$$K_1 = 0.5,$$
  $K_2 = 0.5 \frac{(s+2)}{s},$   $K_3 = 0.5 \frac{(s+2)}{s} \frac{(0.05s+1)}{(0.005s+1)}$ 

#### Reference tracking

#### Disturbance response



# **Loop Shaping for Disturbance Rejection**

#### Loopshape comparisons



Loopshape comparisons



H. Bevrani University of Kurdistan 49

### **Project: Report 3**

Consider your dynamic system. Using loop shaping concept design a controller K(s) to satisfy:

$$K_v \ge 10$$
 and  $PM \ge 40^\circ$ 

**Deadline: The day before next Meeting** 

Please only use this email address: bevranih18@gmail.com

# Thank You!



H. Bevrani University of Kurdistan 51