

Robust Control Systems

Loop Shaping Control Design

Hassan Bevrani

Professor, University of Kurdistan

Fall 2023

Contents

- **1. Key points for Loop Shaping**
- **2. Lead-Lag Compensator Design**
- **3. Design Example**
- **4. Loop Shaping (LS) Control**
- **5. Design Examples**

Reference

1. S. Skogestadand I. Postlethwaite, **Multivariable Feedback Control; Analysis and Design**, Second Edition, Wiley, 2005.

2. M. Fujita, **Lecture Notes on Feedback Control Systems**, Tokyo Institute of Technology, 2019.

3. R. Smith, **Lecture Notes on Control Systems**, ETH Zurich, 2020.

Phase Lead-lag Compensator Design

 $K(s) = K \frac{\alpha (Ts+1)}{\alpha Ts+1}$

Improvement of steady-state characteristics

$$
\frac{+20\log\alpha[\text{dB}]}{K(0) = \alpha K, K(\infty) = K}
$$

The corner frequency (T) must be adjusted, appropriately

A Design Example

$$
P(s) = \frac{10}{s(s+1)(s+10)}
$$

Find Controller K(s) to satisfy:

 $K_v \ge 10$
PM $\ge 40^\circ$

Step 1: Focusing on the PM and gain crossover frequency, the controller **gain K** must be determined so that the desired transient response characteristics can be obtained.

A Design Example

Step 2: Draw bode diagram of open-loop transfer function resulted from Step 1 and evaluate its low frequency gain.

Open-loop transfer function:

$$
L' = PK = \frac{10}{s(s+1)(s+10)}
$$

\nSpeed deviation constant:
\n
$$
K_v' = \lim_{s\to 0} sL'(s)
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

\nThe required low frequency gain is 10 times
\nor more: $K_v \ge 10$
\n
$$
K_v = \frac{100}{s+100}
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

\n
$$
= \lim_{s\to 0} \frac{10}{s} = 1
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

\n
$$
= \lim_{s\to 0} \frac{10}{(s+1)(s+10)} = 1
$$

A Design Example

Step 3: Considering that the low-frequency gain increases by $+20\log\alpha[\text{dB}]$ the parameter α must be determined to satisfy the required steady-state characteristics.

A Design Example

Step 4: To keep the stability against the phase delay, select the corner frequency $\omega = 1/T$ about 1 dec below the gain crossover frequency. Then determine second corner frequency $\omega = 1/(\alpha T)$.

 $T = 10$ ($\omega = 0.1$): the corner frequency is sufficiently smaller than the gain

A Design Example

Step 5: Construct the compensator using the determined parameters (K, α, T).

A Design Example

Step 5: Construct the compensator using the determined parameters (K, α, T) .

Phase Lead Compensator Design

Phase Lead Compensator Design $K(s) = K \frac{Ts+1}{T} (\alpha < 1)$ q**Comparison with PD** $20 \log |K(j\omega)|$ [dB] $+\phi_{\text{max}}[^{\circ}]$
 $\left[K(0) = K, K(\infty) = K/\alpha\right]$
 $\alpha \rightarrow 0$ $+20dB/dec$ $20\log(K/\alpha)$ $20\log(K/\sqrt{\alpha})$ $20 \log K$ $K(s) = K(Ts + 1)$ Phase $\angle K(j\omega)$ $1/T$ $\omega_{\text{max}} = 1/\alpha T$ $K_{PD}(s) = K_{P}(T_{D}s + 1)$ 90^{\degree} **Note:** It is difficult to realize an ideal differentiator ϕ_{max} 0° $K'_{PD} = \frac{K_P(1+T_D s)}{1+(T_D/N)s}$ (3 ≤ N ≤ 20) ω [rad/s] Phase lead compensator

H. Bevrani University of Kurdistan 18

 $\overline{10}$ $P(s) = \frac{10}{s(s+1)(s+10)}$ $\omega_{gc} \geq 2$ [rad/s] *Find Controller K(s) to satisfy:* $PM \approx 40^{\circ}$

Step 2: Draw a Bode plot of the open-loop transfer function $\hat{L}(s) = KP(s)$ using K in *Step 1* and evaluate its phase margin \widehat{PM} . The required phase lead amount is the difference between the given phase margin PM and this one ($\hat{\phi} = PM - \widehat{PM}$). Considering an appropriate margin (e.g, 5 deg. or more), set it as $\phi_{\text{max}} = \hat{\phi} + 5^{\circ}$ or more. Δ C

Phase-lead Compensator: Design Example

Step 4: In phase lead compensation, the gain increases by $1/\sqrt{\alpha}$ at the angular frequency where the phase leads, so the angular frequency where $|\hat{L}(j\omega)|$ is $\sqrt{\alpha}$ (= 20log $\sqrt{\alpha}$ [dB]) is set as the new gain crossover frequency ω_{max} after compensation. $\hat{\omega}$
0 [dB]⁸ $20 \log$ $[dB]$

Phase-lead Compensator: Design Example

Step 5: The value of parameter *T* is determined from $\omega_{\text{max}} = \frac{1}{\sqrt{\alpha}}$. At this time, the corner frequency of phase lead compensation is

$$
1/T = \omega_{\text{max}} \sqrt{\alpha}, \quad 1/(\alpha T) = \omega_{\text{max}} / \sqrt{\alpha}
$$
\n
$$
\omega_{\text{max}} = \frac{1}{\sqrt{\alpha}} \implies T = \frac{1}{\sqrt{\alpha} \omega_{\text{max}}}
$$
\n
$$
\omega_{\text{max}} = 3.0 \text{ [rad/s], } \alpha = 0.255
$$
\n
$$
T = 0.660
$$
\n
$$
\omega_{\text{max}} = \frac{1}{T} = 1.52, \quad \frac{1}{\alpha T} = 5.94
$$
\n
$$
\frac{1}{T} = 1.52, \quad \frac{1}{\alpha T} = 5.94
$$
\n
$$
\omega_{\text{inversity of Kurdistan}} = \frac{10^{\circ}}{10^{-1}} = \frac{10^{\circ}}{\omega \text{ [rad/s]}} = \frac{10^{\circ}}{10^{-1}}
$$

Step 6: After finding design parameters K, α, T , the phase lead controller is constructed as follows: $K(s) = K \frac{Ts+1}{\alpha Ts+1}$ $K(s) = K \frac{Ts+1}{\alpha Ts+1}$ 40 ω_{max} 20 $K = 5, \alpha = 0.255, T = 0.660$ Phase Gain Gain $\bf{0}$ -20 $K(s) = 5 \cdot \frac{0.66s + 1}{0.255 \cdot 0.66s + 1}$ -40 -90 $=\frac{19.6(s+1.52)}{s+5.94}$ $\frac{9}{2}$ -120
-150 **PM** Gain crossover frequency $\omega_{gc} = 3.0$ [rad/s] $PM = 13$ -180 10° 1/T 10^{-1} $1/\alpha T$ 10¹ Phase margin $PM = 38^\circ$ ω [rad/s] *H. Bevrani University of Kurdistan* 25

Evaluation

Phase Lead-lag Compensator Design

$$
K(s) = K \left(\frac{T_1 s + 1}{\alpha_1 T_1 s + 1}\right) \left(\frac{\alpha_2 (T_2 s + 1)}{\alpha_2 T_2 s + 1}\right) (a_1 < 1, \alpha_2 > 1)
$$

\n
$$
= \frac{20 \log |K(j\omega)| \text{ [dB]}}{20 \log (K/\alpha_1)} - 20 \log |K(j\omega)| \text{ [dB]}
$$

\n
$$
= 20 \log (K/\alpha_1)
$$

\n
$$
= 20 \log (K
$$

Inverse-based Control Design

Stable, minimum-phase plant

Can choose:

$$
L(s)=\frac{\omega_c}{s}
$$

This will give a phase margin of 90° .

$$
K(s) = \frac{\omega_c}{s} G^{-1}(s)
$$

Inverting the plant can often be done only approximately.

Inverse-based Control Design

The plant is stable and minimum-phase:

The closed-loop bandwidth is very close to $\omega_c \approx 10$ rad/sec.

Disturbance response: $y_d = SG_d d + \dots$

To achieve $|y_d(t)| \leq 1$ for $|d(t)| \leq 1$,

we want $|SG_{d}(j\omega)| < 1$ for all ω .

So, we want:

 $|1 + L(j\omega)| > |G_{d}(j\omega)|$ for all ω .

or, approximately, $|L(j\omega)| > |G_d(\omega)|$ for all ω .

Initial guess:

 $|L_{\min}| \approx |G_{\rm d}|$ or $|K_{\min}| \approx |G^{-1}G_{\rm d}|$
H. Bevrani University of Kurdistan 40

Step 1

Step 2 Increase the gain at low frequency.

To get integral action multiply the controller by:

$$
K_2(s) = \frac{s + \omega_I}{s} K_1(s).
$$

If $\omega_I = 0.2 \omega_c$ we get 11° more phase at ω_c than with K_1 alone.

So,

$$
K_2(s) = 0.5 \frac{(s+2)}{s}
$$

H. Bevrani University of Kurdistan 43

$$
K_1 = 0.5
$$
 and $K_2 = 0.5 \frac{(s+2)}{s}$

Loop Shaping for Disturbance Rejection

Step 2

High frequency correction:

Augment with a lead-lag for "derivative action".

This will also improve the phase margin.

$$
K_3(s) = K_2(s) \frac{(0.05s + 1)}{(0.005s + 1)}
$$

= 0.5 $\frac{(s + 2)}{s} \frac{(0.05s + 1)}{(0.005s + 1)}$

 $K_1 = 0.5,$ $K_2 = 0.5 \frac{(s+2)}{s},$ $K_3 = 0.5 \frac{(s+2)}{s} \frac{(0.05s+1)}{(0.005s+1)}$

Loop Shaping for Disturbance Rejection

Loopshape comparisons

Project: Report 3

Consider your dynamic system. Using loop shaping concept design a controller K(s) to satisfy:

 $K_v \ge 10$ and $PM \ge 40^{\circ}$

Deadline: The day before next Meeting

Please only use this email address: $\frac{\text{bevranih18}(a)}{2}$ because only use this email address:

Thank You!

H. Bevrani University of Kurdistan 51