

Robust Control Systems

Multivariable Control: An Introduction

Hassan Bevrani

Professor, University of Kurdistan

Fall 2023

Contents

- **1.** Example: Sinning Satellite
- 2. Multivariable Feedback Control
- 3. Robust Control of Multivariable Systems
- 4. frequency Response of MIMO System
- 5. Singular Value Decomposition
- 6. Internal Stability
- 7. Relative Gain Array

Reference

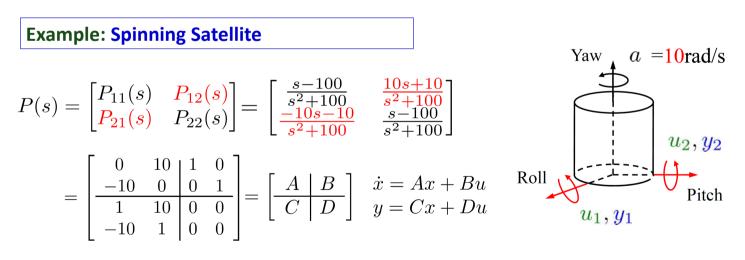
1. S. Skogestadand I. Postlethwaite, **Multivariable Feedback Control; Analysis and Design**, Second Edition, Wiley, 2005.

2. M. Fujita, Lecture Notes on Feedback Control Systems, Tokyo Institute of Technology, 2019.

3. R. Smith, Lecture Notes on Control Systems, ETH Zurich, 2020.

4. H. S. Tsien, Engineering Cybernetics, McGraw-Hill, 1954.

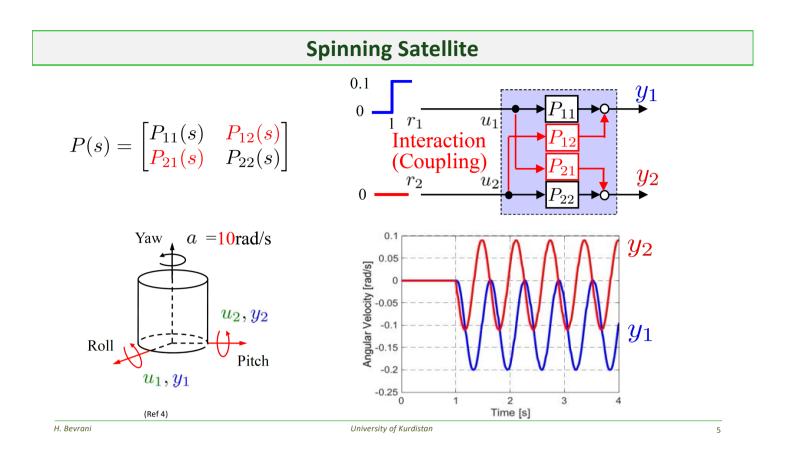
University of Kurdistan



Inputs: $u_1 u_2$ Torque Outputs: $y_1 y_2$ Angular velocity

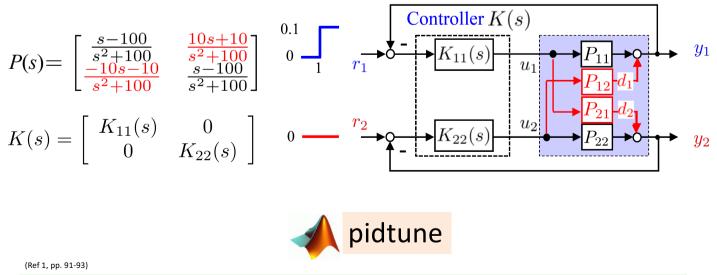
H. Bevrani

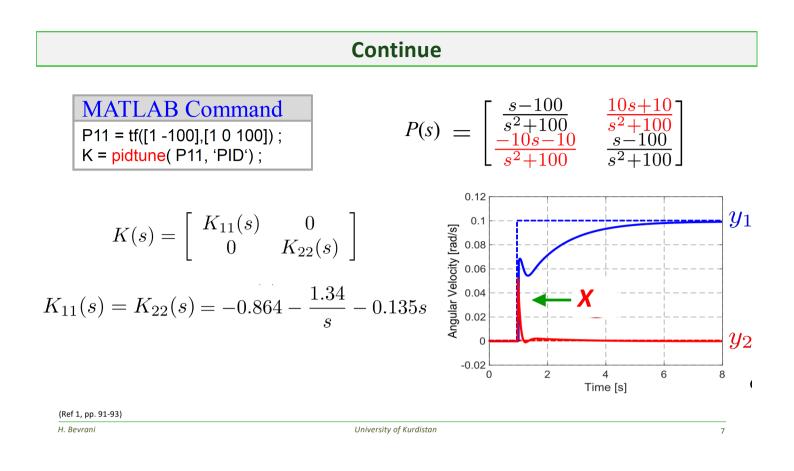
3



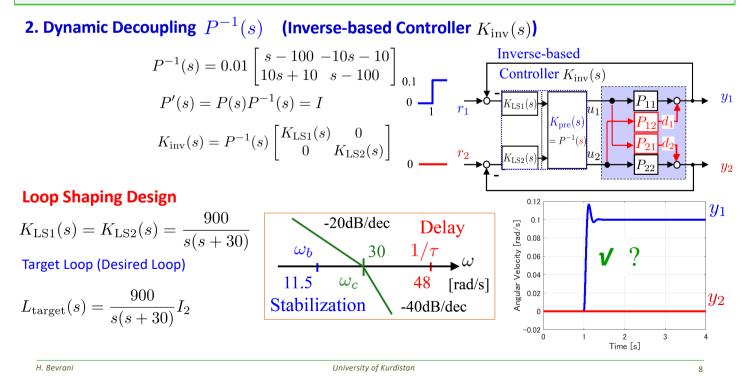
Robust Control of Multivariable Systems

1. Diagonal PID Controller (Decentralized Control)

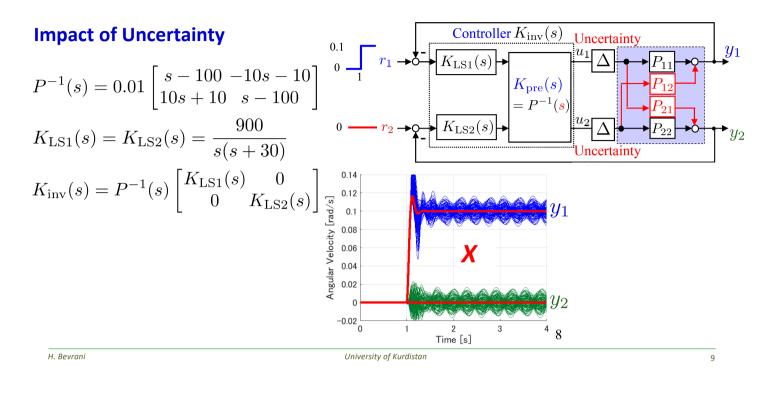


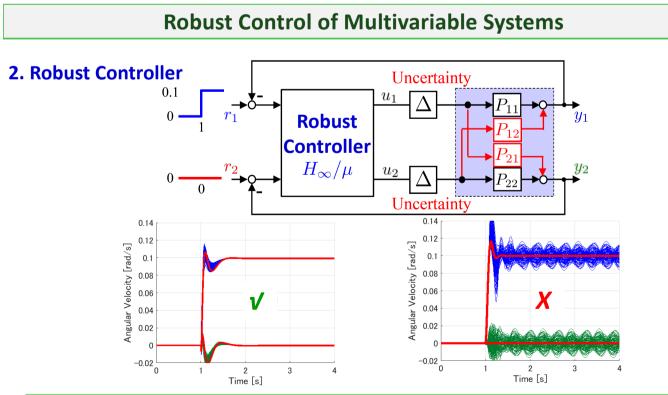


Robust Control of Multivariable Systems

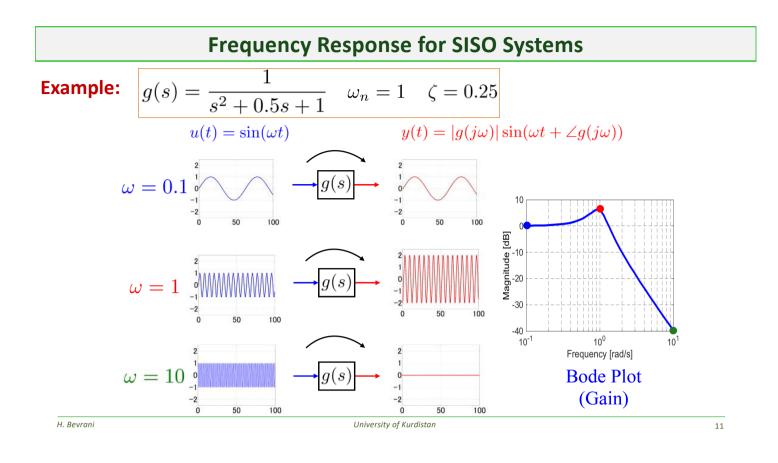


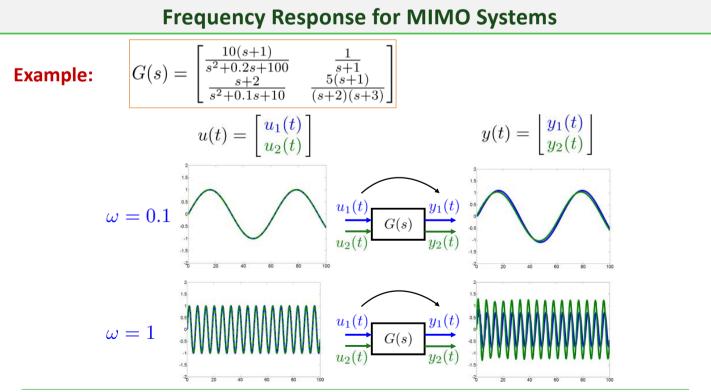
Robust Control of Multivariable Systems





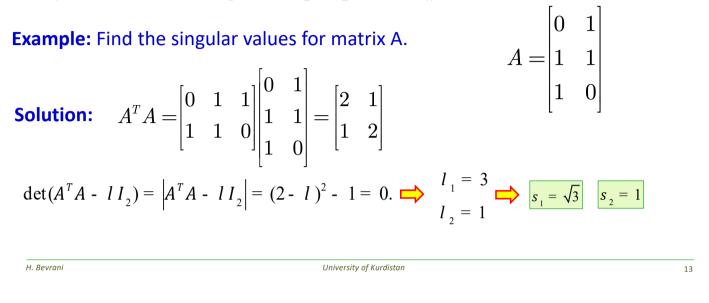
University of Kurdistan





Singular Value

Definition: The singular values of an $m \times n$ matrix A are the square roots of the non-zero eigenvalues of the symmetric $n \times n$ matrix $A^T A$ or AA^T listed with their multiplicities in decreasing order $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$.



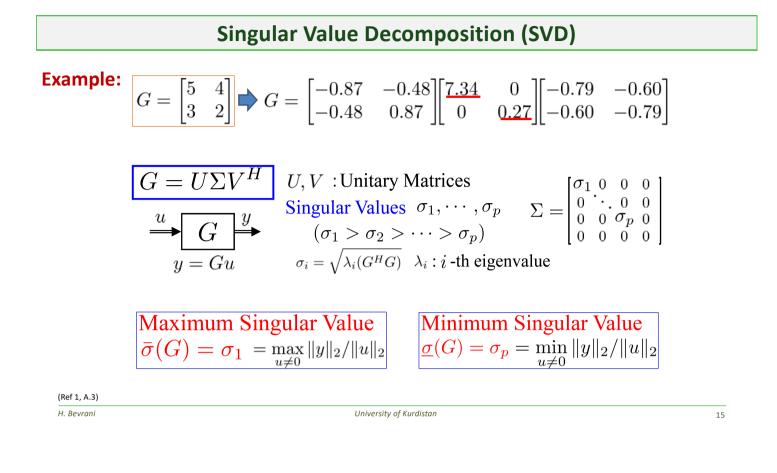
Singular Value Decomposition (SVD)

Theorem: Let **A** be an m × n matrix with $m \ge n$. Then there exist orthogonal matrices **U** (m×m) and V (n×n) and a diagonal matrix $\Sigma = diag(\sigma_1, \sigma_2, ..., \sigma_n)$ (m × n) with order $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0$, such that **A** holds

$$A = U\Sigma V^T$$

The column vectors of $\mathbf{U} = [u1, \ldots, um]$ are called the **left singular vectors** and similarly $\mathbf{V} = [v1, \ldots, vn]$ are the **right singular vectors** of matrix \mathbf{A} . The columns of U and V are orthonormal. The matrix Σ is diagonal with positive real entries of σ_i , and can be represented as:

 $\boldsymbol{\Sigma} = \begin{bmatrix} \tilde{\boldsymbol{\Sigma}}_{l \times l} & \boldsymbol{0}_{l \times (n-l)} \\ \boldsymbol{0}_{(m-l) \times l} & \boldsymbol{0}_{(m-l) \times (n-l)} \end{bmatrix} \quad \begin{array}{l} \text{Where } l = \min(m,n) \text{ and} \\ \tilde{\boldsymbol{\Sigma}} = diag(\boldsymbol{\sigma}_1, \boldsymbol{\sigma}_2, ..., \boldsymbol{\sigma}_l) \end{array}$



SVD

Matlab function: > [U, S, V] = svd(A)

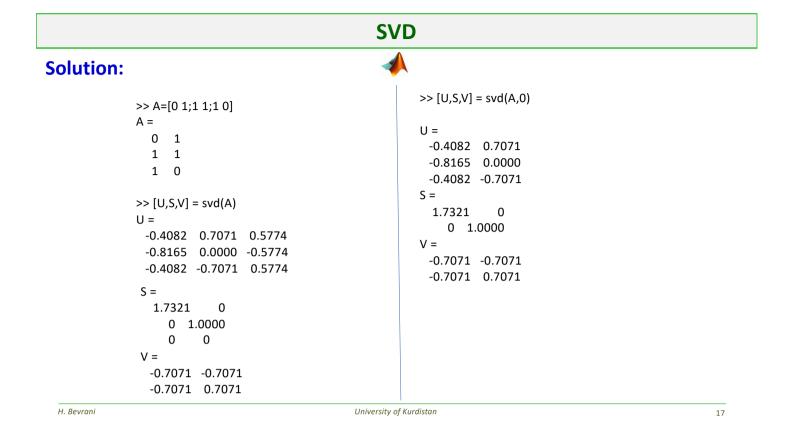
If σ_r is the smallest singular value greater than zero then the matrix A has rank r, and $s_r > 0$. In this case U and V can be partitioned as U=[U1,U2] and V=[V1,V2], where $U_1 = [u_1, u_2, ..., u_r)$ and $V_1 = [v_1, v_2, ..., v_r)$ have r columns. Then A can be represented as **reduced** form of SVD as follows

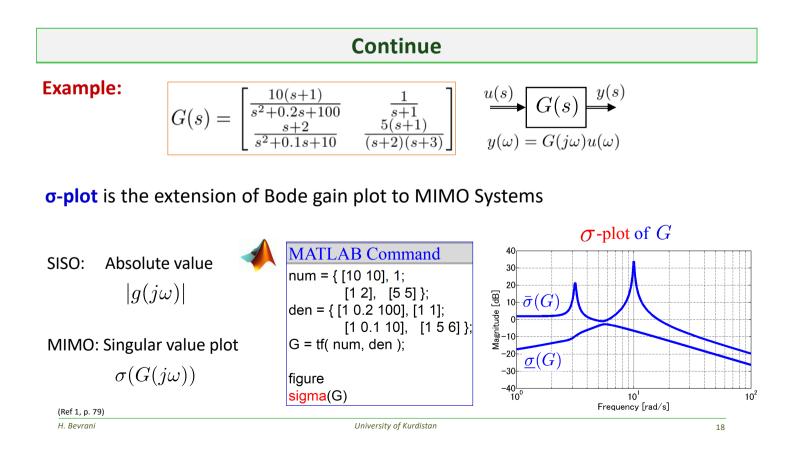
$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_r & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix} \begin{bmatrix} V_1 & V_2 \end{bmatrix}^T = U_1 \boldsymbol{\Sigma}_r V_1^T = \sum_{i=1}^r u_i v_i^T \boldsymbol{\sigma}_i$$

> [U, S, V] = svd(A,0) **Example:** Find full and reduced SVD for matrix A. $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$

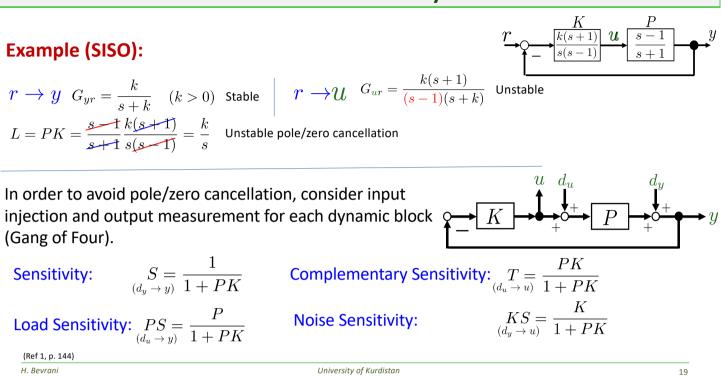
H. Bevrani

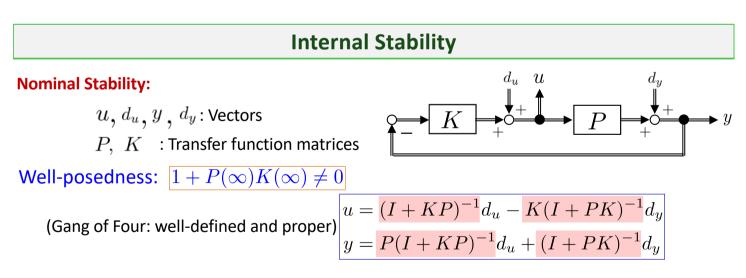
University of Kurdistan





Internal Stability

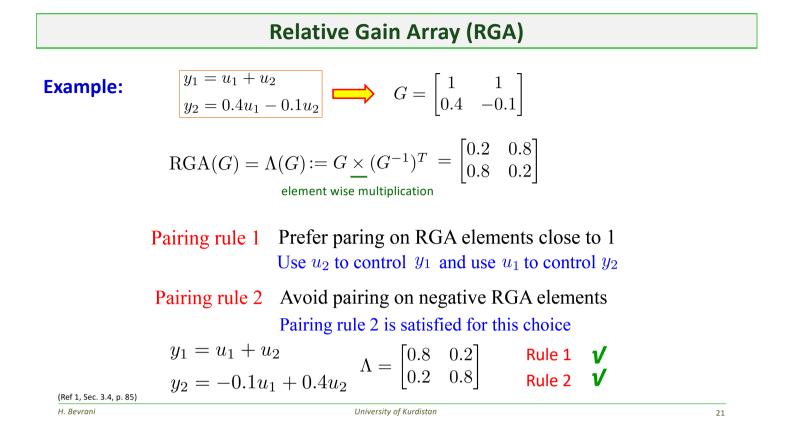




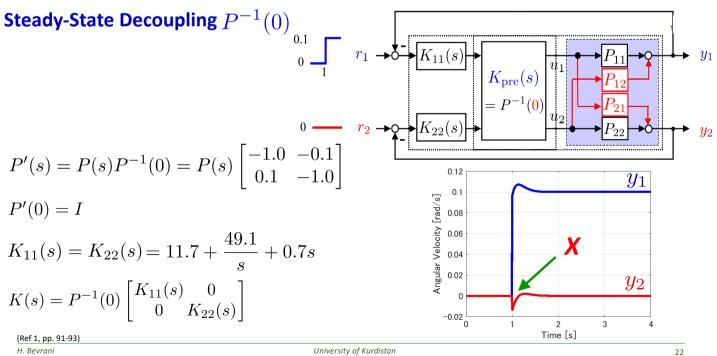
Theorem: Assume *P*, *K* contain no unstable hidden modes. Then, the feedback system in the figure is *internally stable* if and only if all four closed-loop transfer matrices are stable.

Theorem: Assume $\left|\frac{\bar{A} \mid \bar{B}}{\bar{C} \mid \bar{D}}\right|$ shows the state space representation of above system. The system is **internally stable** it and only if \bar{A} is stable.

(Ref 1, p. 145) H. Bevrani



Control of Multivariable Systems



Poles

Theorem: The pole polynomial $\phi(s)$ corresponding to a minimal realization of a system with transfer function G(s) is the least common denominator of all non-identically zero minors of all orders of G(s).

Example:
$$G(s) = \begin{bmatrix} \frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\ \frac{-1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2} \end{bmatrix}$$

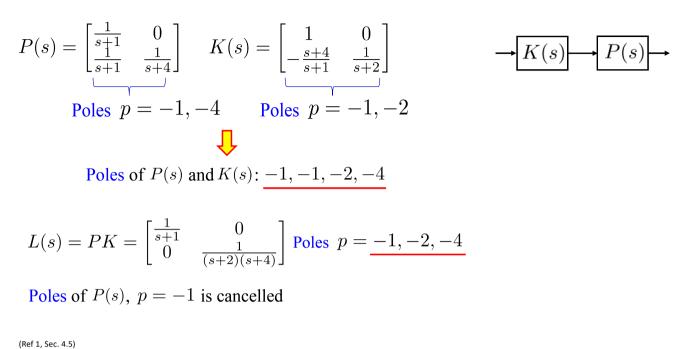
The minors of order 1: $M_{23}^2 = \det \begin{bmatrix} \frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\ \frac{-1}{s+1} & \frac{1}{s+2} & \frac{1}{s+2} \end{bmatrix} = \frac{1}{s+1}$
 $M_{13}^2 = \frac{s-1}{(s+1)(s+2)} M_{23}^2 = \frac{-1}{s-1}$
 $M_{13}^1 = \frac{1}{s+2} & M_{12}^1 = \frac{1}{s+2}$
The minors of order 2: $M_2 = \det \begin{bmatrix} \frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\ \frac{-1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2} \end{bmatrix} = \frac{2}{(s+1)(s+2)} \qquad M_1 = \frac{-(s-1)}{(s+1)(s+2)^2}$
The least common denominator of all the minors:
 $\phi(s) = (s+1)(s+2)^2(s-1) \qquad \text{Poles} \quad p=1,-1,-2,-2$
 $M_1 = \frac{(s+1)(s+2)^2}{(s+1)(s+2)}$

Zeros

Theorem: The zero polynomial z(s), corresponding to a minimal realization of the system, is **the greatest common divisor** of all the numerators of all order-r minors of G(s), where is the normal rank of G(s), provided that these minors have been adjusted in such a way as to have the pole polynomial $\phi(s)$ as their denominator.

Example:
$$G(s) = \begin{bmatrix} \frac{1}{s+1} & 0 & \frac{s-1}{(s+1)(s+2)} \\ \frac{-1}{s-1} & \frac{1}{s+2} & \frac{1}{s+2} \end{bmatrix}$$
 Normal rank: 2
 $\phi(s) = (s+1)(s+2)^2(s-1)$
The minors of order 2: $M_1 = \frac{-(s-1)}{(s+1)(s+2)^2} = \frac{-(s-1)^2}{\phi(s)}$ $M_2 = \frac{2}{(s+1)(s+2)} = \frac{2(s-1)(s+2)}{\phi(s)}$
 $M_3 = \frac{1}{(s+1)(s+2)} = \frac{(s-1)(s+2)}{\phi(s)}$ $M_2 = \frac{2}{(s+1)(s+2)} = \frac{2(s-1)(s+2)}{\phi(s)}$
The greatest common divisor of numerator: $z(s) = (s-1)$ Zeros $z = 1$

Pole/Zero Cancellation



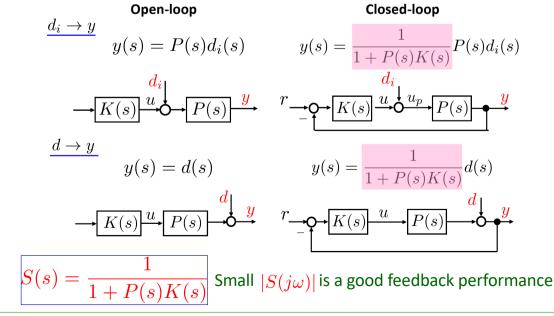
H. Bevrani

University of Kurdistan

25

Sensitivity as a Feedback Performance Index

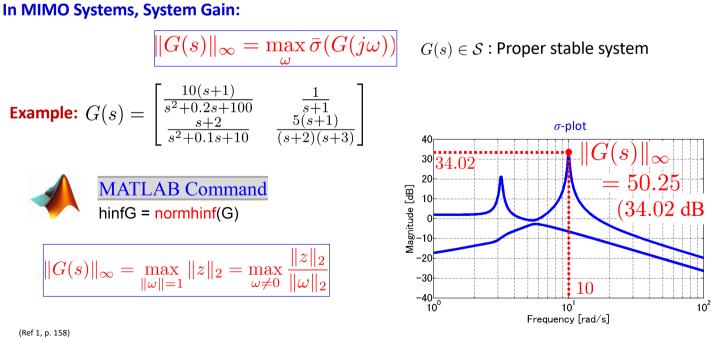
Disturbance Attenuation in SISO Systems



H. Bevrani

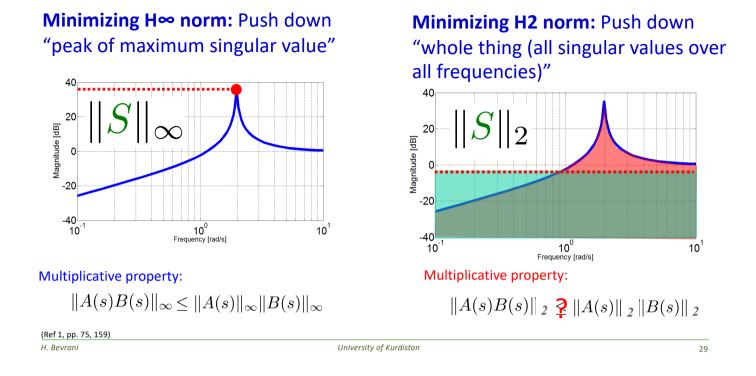
Sensitivity as a Feedback Performance Index

H∞ Norm as a System Gain



27

Difference Between the H∞ and H2 Norms



Thank You!

