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Robust Control of Multivariable Systems

Example: Spinning Satellite

(Ref 4)
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Spinning Satellite

(Ref 4)
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1. Diagonal PID Controller (Decentralized Control)

Robust Control of Multivariable Systems

(Ref 1, pp. 91-93)

P(s)

pidtune
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Continue

X 

(Ref 1, pp. 91-93)

P(s)
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2. Dynamic Decoupling

Loop Shaping Design

Target Loop (Desired Loop)

Inverse-based

Robust Control of Multivariable Systems

√

(Inverse-based Controller               )
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Robust Control of Multivariable Systems

Impact of Uncertainty

X 
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Robust Control of Multivariable Systems

Robust
Controller

X √

2. Robust Controller
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Frequency Response for SISO Systems

Example:
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Frequency Response for MIMO Systems

Example:
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Singular Value

Definition: The singular values of an m×n matrix A are the square roots of the 
non-zero eigenvalues of the symmetric n×n matrix ATA or AAT listed with their 
multiplicities in decreasing order σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Example: Find the singular values for matrix A.

Solution:

2
2 2det ( ) (2 ) 1 0.T TA A I A A Il l l- = - = - - = 1 3l =

2 1l = 1 3s = 2 1s =
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Singular Value Decomposition (SVD)

Theorem: Let A be an m × n matrix with            . Then there exist orthogonal 
matrices U (m×m) and V (n×n) and a diagonal matrix  Σ = #$%& '!, '", … , '# (m ×
n) with order '! ≥ '" ≥ … ≥ '# ≥0, such that A holds 

m n≥

The column vectors of U = [u1, . . . ,um] are called the left singular vectors and 
similarly V = [v1, . . . , vn] are the right singular vectors of matrix A. The columns of 
U and V are orthonormal. The matrix Σ is diagonal with positive real entries of '$ , 
and can be represented as: 

! = #Σ%!
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Singular Value Decomposition (SVD)

Example:

(Ref 1, A.3)
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SVD

Matlab function: > [U, S, V ] = svd(A) 

If !! is the smallest singular value greater than zero then the matrix A has rank r, and              . In 
this case U and V can be partitioned as U=[U1,U2] and V=[V1,V2], where                                       
and                                    have r columns. Then A can be represented as reduced form of SVD as 
follows

0rs >
1 1 2[ , , ..., )rU u u u=

1 1 2[ , , ..., )rV v v v=

Example: Find full and reduced SVD for matrix A.

> [U, S, V ] = svd(A,0) 
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SVD

Solution:
>> A=[0 1;1 1;1 0]
A =

0     1
1     1
1     0

>> [U,S,V] = svd(A)
U =

-0.4082    0.7071    0.5774
-0.8165    0.0000   -0.5774
-0.4082   -0.7071    0.5774

S =
1.7321         0

0    1.0000
0         0

V =
-0.7071   -0.7071
-0.7071    0.7071

>> [U,S,V] = svd(A,0)

U =
-0.4082    0.7071
-0.8165    0.0000
-0.4082   -0.7071

S =
1.7321         0

0    1.0000
V =

-0.7071   -0.7071
-0.7071    0.7071

H. Bevrani    University of Kurdistan 18

Continue

Example:

σ-plot is the extension of Bode gain plot to MIMO Systems

SISO:     Absolute value

MIMO: Singular value plot

(Ref 1, p. 79)



H. Bevrani    University of Kurdistan 19

Internal Stability

Example (SISO):

Stable Unstable

Unstable pole/zero cancellation

In order to avoid pole/zero cancellation, consider input 
injection and output measurement for each dynamic block 
(Gang of Four).

Sensitivity:

Load Sensitivity:

Complementary Sensitivity:

Noise Sensitivity:

(Ref 1, p. 144)
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Internal Stability

Nominal Stability:
: Vectors

: Transfer function matrices

Well-posedness:

(Gang of Four: well-defined and proper)

Theorem: Assume P, K contain no unstable hidden modes. Then, the feedback system in the 
figure is internally stable if and only if all four closed-loop transfer matrices are stable.

Theorem: Assume                    shows the state space representation of above system. The system 

is internally stable if and only if     is stable.
(Ref 1, p. 145)
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Relative Gain Array (RGA)

Example:

element wise multiplication

Rule 1
Rule 2

√
√

(Ref 1, Sec. 3.4, p. 85)
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Steady-State Decoupling

Control of Multivariable Systems

X 

(Ref 1, pp. 91-93)
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Poles

Theorem: The pole polynomial           corresponding to a minimal realization of a 
system with transfer function G(s) is the least common denominator of all non-
identically zero minors of all orders of G(s).

The minors of order 1:

The minors of order 2:

The least common denominator of all the minors:

Example:

(Ref 1, p. 135)
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Zeros

Theorem: The zero polynomial z(s), corresponding to a minimal realization of the 
system, is the greatest common divisor of all the numerators of all order-rminors 
of G(s), where is the normal rank of G(s), provided that these minors have been 
adjusted in such a way as to have the pole polynomial           as their denominator.

The minors of order 2:

The greatest common divisor of numerator:

Example: Normal rank: 2

(Ref 1, p. 139)
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Pole/Zero Cancellation

(Ref 1, Sec. 4.5)

H. Bevrani    University of Kurdistan 26

Sensitivity as a Feedback Performance Index

Disturbance Attenuation in SISO Systems
Open-loop Closed-loop

Small                is a good feedback performance
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Sensitivity as a Feedback Performance Index

Insensitivity to Plant Variations in SISO Systems

Small absolute value of S (              ) is a good feedback performance
(Ref 1, p. 23)
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H∞ Norm as a System Gain

In MIMO Systems, System Gain:

: Proper stable system

Example:
σ-plot

dB

(Ref 1, p. 158)
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Difference Between the H∞ and H2 Norms

Multiplicative property: Multiplicative property:

Minimizing H∞ norm: Push down
“peak of maximum singular value”

Minimizing H2 norm: Push down
“whole thing (all singular values over 
all frequencies)”

(Ref 1, pp. 75, 159)

?2 2 2
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Thank You!


