



\_₹

Fuzzifier

**Fuzzification** is the process of converting a crisp input value to a fuzzy value. The *fuzzifier* is defined as a mapping from a real-valued point  $x^* \in U \subset \mathbb{R}^n$  to a fuzzy set A' in U. Three well-known *fuzzifiers* are:

Smart/Micro Grids Research Center, University of Kurdistan

- > Singleton Fuzzifier
- > Gaussian Fuzzifier

Intelligent Control

> Triangular Fuzzifier





## $\int \mathbf{Single} = \int \mathbf{Single} = \int \mathbf{Single} + \mathbf{Single}$

Smart/Micro Grids Research Center, University of Kurdistan

Intelligent Control

Intelligent Control



Smart/Micro Grids Research Center, University of Kurdistan

Intelligent Control















\_∀

-∕~ sm₂rc

Intelligent Control

## Maximum Defuzzifier

the *maximum defuzzifier* chooses the  $y^*$  as the point in V at which  $\mu_{BI}(y)$  achieves its maximum value. Define the set

$$hgt(B') = \left\{ y \in V \middle| \mu_{B'}(y) = \sup_{y \in V} \mu_{B'}(y) \right\}$$

that is, hgt(B') is the set of all points in Vat which  $\mu_{B'}(y)$  achieves its maximum value. The *maximum defuzzifier* defines  $y^*$  as an arbitrary element in hgt(B'), that is,

 $y^*$ =any point in hgt(B')

Smart/Micro Grids Research Center, University of Kurdistan

If hgt(B') contains a single point, then  $y^*$  is uniquely defined.







 $\int \mathbf{P} \cdot \mathbf{P}$ 



