

Robust Control Systems

Uncertainty and Robust Performance

Hassan Bevrani

Professor, University of Kurdistan

Fall 2023

Contents

- 1. Nominal and Robust Performance
- 2. Performance Indices and Examples
- 3. Loop Shaping-based Robust Stability and Robust Performance
- 4. Key Points

Reference

- 1. S. Skogestadand I. Postlethwaite, Multivariable Feedback Control; Analysis and Design, Second Edition, Wiley, 2005.
- **2.** M. Fujita, **Lecture Notes on Feedback Control Systems**, Tokyo Institute of Technology, 2019.
- 3. R. Smith, Lecture Notes on Control Systems, ETH Zurich, 2020.
- 4. H. Bevrani, Lecture Notes on Robust Control, University of Kurdistan, 2018.
- 5. M. Hirata, Practical Robust Control, CORONA Press, 2017 (In Japanese).

H. Bevrani University of Kurdistan

Nominal Stability and Robust Stability (Review)

o Nominal Stability: $T(s) = \frac{P(s)K(s)}{1 + P(s)K(s)} = \frac{L(s)}{1 + L(s)}$

$$\left| \frac{W_2 L}{1 + L} \right| < 1, \forall \omega \implies |W_2 T| < 1, \forall \omega \qquad \Longrightarrow |T| < \frac{1}{|W_2|},$$

Nominal Performance

Sensitivity to parameter changes: $\Delta_T = \frac{1}{1 + PK} \Delta_P$ Disturbance sensitivity: $y = \frac{1}{1 + PK} d$

Tracking: $e = \frac{1}{1 + DK}r$

Feedback performance index $S = \frac{1}{1 + PK}$ (Smaller is better: y = Sd)

Example: Attenuated disturbances in low frequencies less than **0.01**.

$$|S| < \frac{1}{100}$$
 $\forall \omega \leq \omega_0$

 $\mid W_1 \mid \geq 100, \qquad {}^{\forall} \omega \leq \omega_0 \;\; \text{(W1: Weight function)}$

$$|W_1S| < 1, \forall \omega$$

University of Kurdistan

Nominal Performance

Nominal Performance: $|W_1S| < 1$, $\forall \omega$ \Longrightarrow $|W_1| < |1 + L|$, $\forall \omega$

$$W_1S \mid <1, \quad \forall a$$

$$S = \frac{1}{1 + PK} = \frac{1}{1 + L}$$

Nominal performance by vector trajectory

Nominal Performance

The sensitivity function S cannot be reduced in all frequency bands (Water bed

effect).

Bode Sensitivity Integral:

$$\int_0^\infty \log |S(j\omega)| d\omega = 0$$

$$|S| < 1 \qquad (\log |S| < 0)$$

In another frequency band

$$|S| > 1$$
 $(\log |S| > 0)$

This fact makes a limit for more Performance improvement.

$$S+T=1$$

$$\left(S=\frac{1}{1+PK}, T=\frac{PK}{1+PK}\right)$$

H. Bevrani

Nominal Performance

Performance weighting function $W_1(s)$

$$|S| < \frac{1}{|W_1|}, \forall \omega$$

$$|S(j\omega)| < \frac{j\omega}{j\omega/M_s + \omega_s}$$

$$W_1(s) = \frac{s/M_s + \omega_s}{s}$$

Sensitivity function and nominal performance

Nominal Performance

Performance Weighting function $W_1(s)$

$$W_{1} = \frac{\frac{1}{M_{s}} s + \omega_{s}}{s} \qquad W_{1} = \frac{\frac{1}{M_{s}} s + \omega_{s}}{s + \omega_{s} A}$$

 ω_s : Frequency when the size of the sensitivity function becomes 1

 M_s : High frequency performance (a suggestion: $M_s < 2$)

 $20\log_{10}M_s \boxed{\frac{1}{|W_1(j\omega)|}}$

4: Performance in the low frequency band

 $20\log_{10} A$

H. Bevrani

University of Kurdistan

Example

Find W1 and K for approaching a 2-time faster Rice time (Assume: $T_r \approx 2.2T$ [s]).

$$P(s) = \frac{1}{s} \quad K(s) = K \quad G_{yr} = \frac{K}{s+K}$$

Step response of nominal model: $T_r=0.8\,\,\mathrm{s}$

Objective:
$$\longrightarrow T_r \leq 0.4~{
m S}$$
 (Desired Rise time)
 \odot Find W_1 : $W_1 = \frac{1}{M_s} s + \omega_s$

$$T_r \cong 2.2T \le 0.4 \text{ s} \implies \frac{2.2}{0.4} = 5.5 \le \frac{1}{T} \le \omega_s$$

Continue

$$W_1 = \frac{1}{M_s} s + \omega_s$$

$$W_1 = \frac{1}{M_s} s + \omega_s$$

$$W_1 = \frac{1}{M_s} s + \omega_s$$
 To meet the nominal performance:
$$K > 5.5$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.3$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.2$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.4$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

$$0.5$$

Uncertainties and its Cover (MATLAB Program 8)

If for the 4th order plant given in example 6, the uncertainty and performance transfer functions are determined as follows. Plot the both weighting functions in one figure.

$$W_m = \frac{3 s^2}{s^2 + 2 \times 0.2 \times 45s + 45^2}$$
$$W_S = \frac{15}{s + 0.015}$$

MATLAB Program 8

```
%% Plot Uncertainty and Performance Weighting functions
%% Definition of uncertainty weight function Wt (from Program 7)
s = tf('s');
Wm = 3*s^2/(s^2+18*s+45^2);
Wt = Wm; % Wt

%% Determine of performance weight function Ws
s = tf('s');
Ws = 15/(s + 1.5e-2); % Ws

figure(1);
w = logspace(0,3,100); % Definition of frequency vector
bodemag(Ws,Wt,'--',w);
legend('Ws','Wt');
```

H. Bevrani University of Kurdistan 13

Result

Zeros and Poles

When the unstable pole of the plant P(s) is p and its unstable zero is z, T+S=1must be still satisfied. So:

$$S(p) = 0, \quad T(p) = 1$$

 $S(z) = 1, \quad T(z) = 0$

$$S = \frac{1}{1 + PK}, \quad T = \frac{PK}{1 + PK}$$

$$S(s) = \frac{1}{1 + P(s)K(s)}$$

$$S(p) = 0$$

$$P(p) = \infty$$

$$S(p) = \frac{1}{1 + P(p)K(p)} = 0$$

$$S(z) = 1$$

$$P(z) = 0$$
University of Kurdistan

H. Bevrani

Impact of Zeros

Example:

$$G(s) = \frac{as+1}{(s+1)(2s+1)} \quad \to \quad \times \quad \times \quad \xrightarrow{-1} \quad \xrightarrow{-0.5} \quad 0 \quad \xrightarrow{\text{Re}}$$

Poles: -1, -0.5

Zero: $-\frac{1}{}$

 \mathcal{A} : Small \Rightarrow no effect

a : Big ⇒overshoot

a < 0: \Rightarrow non-minimum phase

Robust Performance

Ouncertain Sensitivity Function:

$$\widetilde{S} = \frac{1}{1 + \widetilde{P}K}, \quad \widetilde{P} = (1 + \Delta W_2)P$$

 $\Delta = 0 \Longrightarrow \widetilde{P} = P$, $\widetilde{S} = S$ (Nominal performance)

Robust Performance = Robust Stability + $|W_1\widetilde{S}| < 1$, $\forall \omega$, $\forall \tilde{P} \in \mathcal{P}$

Robust Performance

$$|W_1| + |W_2L| < |1+L|$$
 \Longrightarrow $\left|\frac{W_1}{1+L}\right| + \left|\frac{W_2L}{1+L}\right| < 1$

$$\therefore |W_1S| + |W_2T| < 1, \forall \omega$$

Nominal Stability: $\phi = \overline{D_P D_K + N_P N_K} = 0$ (S, T, KS, PS Stable)

Nominal Performance: $|W_1S| < 1$, $\forall \omega$

Robust Stability: $|W_2T| < 1$, $\forall \omega$

Robust Performance: $|W_1S| + |W_2T| < 1$,

Interpolation Condition: S+T=1, $\forall \omega$

Performance Evaluation

Steady-state characteristics

Transient characteristics

System type	r(t) = 1	r(t) = t	$r(t) = t^2/2$	1.5			
0 Type	$\frac{1}{1+K_p}$	∞	~	1			↓
1 Type	0	$\frac{1}{K_{v}}$	∞	$\mathfrak{S}_{0.5}$			e_{s}
2 Type	0	0	$\frac{1}{K_a}$	' '			
	•	•	•	. 0) 5	δt	10 15

H. Bevrani University of Kurdistan 19

Performance Indices

Steady-state characteristics

Transient characteristics

Time response

Frequency response

Performance Indices

1-order:
$$T_r \cong 2.2T$$
 $T_s \cong 4T$

2-order:
$$T_r\cong \frac{1.8}{\omega_n}$$
 $T_s\cong \frac{4}{\zeta\omega_n}$

Example: $T_r < 0.1$ s

1-order:
$$T_r \cong 2.2T < 0.1$$
s $\frac{1}{T_-} > 22 \text{rad/s}$

2-order:
$$T_r \cong \frac{1.8}{\omega_n} < 0.1 \text{s}$$
 $\omega_n > 18 \text{rad/s}$

Standard 2-order system:

Damping coefficient

H. Bevrani

Natural frequency

University of Kurdistan

Im

21

15

Performance Indices

Steady-state characteristics

Transient characteristics

Time response

Frequency response

Performance Indices

Steady-state characteristics Transient characteristics Frequency response Open-loop

Using transfer function

Complementary sensitivity function gain characteristics (T)

$$\omega_{bw}$$
: -3dB M_r : $M_r = 1.1 \sim 1.5 (M_r = 1.3)$

Sensitivity function gain characteristics (S)

$$\omega_{bwS}$$
: -3dB M_{rS} : $M_{rS} < 2$

H. Bevrani University of Kurdistan 23

Performance Indices

Steady-state characteristics
Transient shorestaristics
Transient shorestaristics

Transient characteristics - Ime response | Close-loop | C

Using transfer function

Stability margins

Fast response: $\omega_{gc} \leq \omega_{bw}$

 $\omega_{gc} \le \omega_{bw}$ $(PM \le 90^{\circ})$

Attenuation characteristic: $PM \ge 2 \sin^{-1} \left(\frac{1}{2M_r} \right)$

Empirical guidelines

Tracking control: $PM = 40 \sim 60^{\circ}, GM = 10dB \sim 20dB$

Fixed value control: $PM \ge 20^{\circ}$, $GM = 3dB \sim 10dB$

2-order system: $PM \approx 100 \times \zeta$

Controller Design

Loop Shaping:

Nominal performance: Reduce the sensitivity function S(s)

Low sensitivity characteristics $\Delta_T = S\Delta_P$ (parameter fluctuation) $S(s) = \frac{1}{1 + P(s)K(s)}$ Disturbance suppression y = Sd Reference tracking $e = Sr \quad |W_1S| < 1$

Robust performance: Reduce complementary sensitivity function T(s)

Robust stability $|W_2T| < 1$ Noise rejection y = -Tn $T(s) = \frac{P(s)K(s)}{1 + P(s)K(s)}$

4. Bevrani University of Kurdistan 25

Controller Design

However, due to the following constrain, both functions cannot be close to zero, simultaneously.

Divide frequency band
$$S(s) + T(s) = 1$$

Low frequency band: Make S small $\omega \leq \omega_s$ using the feedback effect

High frequency band: Make T small $\omega \ge \frac{1}{\tau}$ to cover 100% uncertainty

Controller Design

Considering
$$S = \frac{1}{1+L}$$
, for a small S: $|L| >> 1$

Considering
$$T = \frac{L}{1+L}$$
, for a small T: $|L| << 1$

(From closed-loop transfer function to open-loop transfer function)

Reference tracking control:

$$PM = 40 \sim 60^{\circ}, GM = 10dB \sim 20dB$$

o Fixed value control:

$$PM \ge 20^{\circ}$$
, $GM = 3dB \sim 10dB$

H. Bevrani University of Kurdistan 27

Controller Design

Unstable pole $p: \omega_{gc} > 2p$

Unstable zero z: $\omega_{gc} < \frac{z}{2}$

Dead time θ : $\omega_{gc} < \frac{1}{\theta}$

The unstable zero and the unstable pole are far enough z/p < 1/6 or 6 < z/p

The product of the unstable pole and the dead time is small enough $\ p\,\theta < 0.3$

Continue

$$\omega_{bwS} < \omega_{gc} < \omega_{bw}$$
 $(PM < 90^{\circ})$

- \circ S peek gain: M_{rS} < 2
- \circ T peek gain: $M_r = 1.1 \sim 1.5 \ (M_r = 1.3)$

$$GM \ge rac{M_{rS}}{M_{rS} - 1} \; , \; \; PM \ge 2 \sin^{-1} \left(rac{1}{2M_{rS}}
ight)$$
 $GM \ge 1 + rac{1}{M_r} \; , \; \; PM \ge 2 \sin^{-1} \left(rac{1}{2M_r}
ight)$
 $[rad]$

H. Bevrani University of Kurdistan

Key Points: Review

- □ Steady state characteristics: Larger gain of L(0) (at low frequency)
- ☐ Fast response: Increase gain crossover frequency
- ■Attenuation characteristic: Secure phase margin (PM)

[Review] Phase margin

 $\frac{\omega_{gc}}{|L| > 1}$ PM $\frac{\omega_{gc}}{|L| > 1}$ $\omega \text{ [rad/s]}$

Tracking control: $PM = 40^{\circ} \sim 60^{\circ}$

Fixed value control: $PM \ge 20^{\circ}$

29

Key Points

Project: Report 5

Consider your dynamic system:

- 1) Find T(s) and S(s);
- 2) Discuss on the closed-loop performance characteristics;
- 3) Find a performance weighing function;
- 4) Analyze the nominal and robust performance.

Deadline: The day before next Meeting

Please only use this email address:

bevranih18@gmail.com

H. Bevrani University of Kurdistan 3

Thank You!

