

Axx SMOKC

Fuzzy Systems

We consider only the multi-input-single-output case, because a multi-output system can always be decomposed into a collection of single-output systems:

Fuzzy Rule Base

Axx Smarc

The canonical fuzzy IF-THEN rules include the following as special cases:

Partial Rules

IF
$$
x_1
$$
 is A_1^l and \cdots and x_m is A_m^l THEN y is B^l ($m < n$)

OR Rules

$$
\text{IF } x_1 \text{ is } A_1^l \text{ and } \cdots \text{ and } x_m \text{ is } A_m^l
$$
\n
$$
\text{OR } x_{m+1} \text{ is } A_{m+1}^l \text{ and } \cdots \text{ and } x_n \text{ is } A_n^l \text{ THEN } y \text{ is } B^l
$$

 Single Fuzzy Statements ν *is* B^l

Intelligent Control

Fuzzy Rule Base

A set of fuzzy IF-THEN rules is *complete* if for any linguistic variables in the input space*,* there exists at least one rule in the fuzzy rule base, such that:

$$
\forall i: \mu_{A_i^l}(x_i) \neq 0
$$

Note: The completeness of a set of rules means that at any point in the input space there is at least one rule that "fires"; that is, the membership value of the IF part of the rule at this point is non-zero.

$\frac{1}{2}$ $\frac{1}{2}$

Fuzzy Rules

 $\overleftrightarrow{\chi}$

Fuzzy Inference Engine

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IFTHEN rules in the fuzzy rule base into a mapping from a fuzzy set in input space to a fuzzy set in output space. There are two ways to infer with a set of rules:

- *Composition based inference*
- *Individual-rule based inference*

Note that If the fuzzy rule base consists of only a single rule, then the **generalized modus ponens** specifies the mapping from fuzzy set in input space to a fuzzy set in output space.

Intelligent Control

 $\mathcal{M}_{\mathcal{F}}$ smarc .

15

Smart/Micro Grids Research Center, University of Kurdistan

Union Composite Based Inference

If we accept the rules as independent conditional statements, then the M rules in the canonical form are interpreted as a single fuzzy relation Q_M in $U \times V$ defined by:

$$
Q_M = \bigcup_{l=1}^M R_u^{(l)}
$$

This combination is called the *Mamdani combination.* If we use the symbol + to represent the s-norm, then

$$
\mu_{Q_M}(x_1, x_2, ..., x_n, y) = \mu_{R_u^{(1)}}(x, y) + \mu_{R_u^{(2)}}(x, y) + + \mu_{R_u^{(M)}}(x, y)
$$

Intersection Composite Based Inference

W-SMOKC

If we accept the rules as strongly coupled conditional statements, then the M rules in the canonical form are interpreted as a single fuzzy relation Q_G in $U \times V$ defined by:

$$
Q_G = \bigcap_{l=1}^M R_u^{(l)}
$$

This combination is called the *Godal combination.* If we use the symbol $*$ to represent the t-norm, then

$$
\mu_{Q_G}(x_1, x_2, \ldots, x_n, y) = \mu_{R_u^{(1)}}(x, y)^* \mu_{R_u^{(2)}}(x, y)^* \ldots^* \mu_{R_u^{(M)}}(x, y)
$$

Composite Based Inference

Finally, let A' be an arbitrary fuzzy set in U and be the input to the fuzzy inference engine. Then, by viewing Q_M or Q_G as a single fuzzy IF-THEN rule and using the *generalized modus ponens*, we obtain the output of the *fuzzy inference engine* as

Individual Rule Based Inference

Axx SMOKC

In *individual-rule based inference*, each rule in the fuzzy rule base determines an output fuzzy set and the output of the whole fuzzy inference engine is the combination of the M individual fuzzy sets. For given input fuzzy set A' in U , compute the output fuzzy set B' in V for each individual rule $Ru^{(l)}$ according to the *generalized modus ponens*:

$$
\mu_{B_l'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{R_u^{(1)}}(x, y)] \qquad ; \quad l = 1, 2, ..., M
$$
\n*generalized modus ponens*: $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{A \to B}(x, y)]$ \n*Intelligent Control*\n*Smat/Micro Grids Research Center, University of Kurdistan*

Individual Rule Based Inference

The output of the fuzzy inference engine is the combination of the $$ fuzzy sets ${B'}_1, {B'}_2, ..., {B'}_M$ according to two opposite arguments:

Union Individual Rule Based Inference

 $-$ 14 \sim Smore -

$$
\mu_{B'}(y) = \mu_{B'_1}(y) + \mu_{B'_2}(y) + \dots + \mu_{B'_M}(y)
$$

Intersection Individual Rule Based Inference

$$
\mu_{B'}(y) = \mu_{B'_1}(y) * \mu_{B'_2}(y) * \dots * \mu_{B'_M}(y)
$$

Product Inference Engine

In *product inference engine*, we use:

- Individual rule based inference with union combination
- **Mamdani's product implication**
- Algebraic product for all the t-norm operators and max for all the s-norm operators.

$$
\mu_{B'}(y) = \max_{l=1}^{M} \left[\sup_{x \in U} \left(\mu_{A'}(x) \prod_{i=1}^{n} \mu_{A_i^l}(x_i) \mu_{B'}(y) \right) \right]
$$

Minimum Inference Engine

In *minimum inference engine*, we use:

Axx SMOKC

- Individual rule based inference with union combination
- **•** Mamdani's minimum implication
- min product for all the t-norm operators and max for all the snorm operators.

Lukasiewicz Inference Engine

In *Lukasiewicz inference engine*, we use:

- Individual rule based inference with intersection combination
- **Lukasiewicz implication**
- min product for all the t-norm operators

$$
\mu_{B'}(y) = \min_{l=1}^{M} \left[\sup_{x \in U} \left(\min \left(\mu_{A'}(x), 1 - \min_{i=1}^{n} \left(\mu_{A'_i}(x_i) + \mu_{B'}(y) \right) \right) \right) \right]
$$

Axx SMOKC

Intelligent Control

Fuzzy Inference Engine

Example: Suppose that a fuzzy rule base consists of only one rule:

 IFx_1 is A_1 and x_2 is A_2 and ..., and x_n is A_n , THEN y is B where

$$
\mu_B(y) \begin{cases} 1 - |y| & -1 \le y \le 1 \\ 0 & 0. w. \end{cases}
$$

X

Assume that A' is a fuzzy singleton defined as follows:

$$
\mu_{A'}(x) = \begin{cases}\n1 & x = x^* \\
0 & o.w.\n\end{cases}
$$
\nand let $\mu_{A_p}(x_p^*) = \min\left(\mu_{A_1'}(x_1^*)\mu_{A_2'}(x_2^*)\ldots,\mu_{A_n'}(x_n^*)\right)$ and $\mu_A(x^*) = \prod_{i=1}^n \mu_{A_i'}(x_i^*)$.
\nObtain μ_B , (y) by using the product, minimum, Lukasiewicz, Zadeh and Dienes-Rescher inference engines.

Smart/Micro Grids Research Center, University of Kurdistan

