





#### Content

- Fuzzy Systems
- Fuzzy Rules
- Fuzzy Inference Engine



### **Fuzzy Systems**

We consider only the multi-input-single-output case, because a multi-output system can always be decomposed into a collection of single-output systems:





#### Content

- Fuzzy Systems
- Fuzzy Rules
- Fuzzy Inference Engine



#### Fuzzy Rule Base

A *fuzzy rule base* is a set of fuzzy IF-THEN rules. It is the heart of the fuzzy system in the sense that all other components are used to implement these rules in a reasonable and efficient manner. The *fuzzy rule base* comprises the following fuzzy IF-THEN rules:



Note that this form of fuzzy IF-THEN rule is known as *canonical* or *Mamdani* fuzzy rules.

5

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan



### Fuzzy Rule Base

The canonical fuzzy IF-THEN rules include the following as special cases:

Partial Rules

IF 
$$x_1$$
 is  $A_1^l$  and  $\cdots$  and  $x_m$  is  $A_m^l$  THEN  $y$  is  $B^l$   $(m < n)$ 

OR Rules

IF 
$$x_1$$
 is  $A_1^l$  and  $\cdots$  and  $x_m$  is  $A_m^l$ 

OR  $x_{m+1}$  is  $A_{m+1}^l$  and  $\cdots$  and  $x_n$  is  $A_n^l$  THEN  $y$  is  $B^l$ 

Single Fuzzy Statements

$$y$$
 is  $B^l$ 



#### Fuzzy Rule Base

#### Gradual Rules

The smaller the x, the bigger the y

#### Non-Fuzzy Rules

If the membership functions of  $A_i^l$  and  $B_l$  can only take values 1 or 0, then the rules become non-fuzzy rules,

7

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





# Fuzzy Rule Base

A set of fuzzy IF-THEN rules is *complete* if for any linguistic variables in the input space, there exists at least one rule in the fuzzy rule base, such that:

$$\forall i: \ \mu_{A_i^l}(x_i) \neq 0$$

**Note:** The completeness of a set of rules means that at any point in the input space there is at least one rule that "fires"; that is, the membership value of the IF part of the rule at this point is non-zero.



#### Fuzzy Rules

**Example:** Consider a two-input-one-output fuzzy system with  $U = U_1 \times U_2 = [0,1] \times [0,1]$  and V = [0,1]. Define three fuzzy sets  $S_1$ ,  $M_1$  and  $L_1$  in  $U_1$ , and two fuzzy sets  $S_2$  and  $L_2$  in  $U_2$ . In order for a fuzzy rule base to be complete, it must contain the following six rules whose IF parts constitute all the possible combinations of  $S_1$ ,  $M_1$  and  $L_1$  with  $S_2$  and  $L_2$ :

IF  $x_1$  is  $S_1$  and  $x_2$  is  $S_2$ , THEN y is  $B^1$ IF  $x_1$  is  $S_1$  and  $x_2$  is  $L_2$ , THEN y is  $B^2$ IF  $x_1$  is  $M_1$  and  $x_2$  is  $S_2$ , THEN y is  $B^3$ IF  $x_1$  is  $M_1$  and  $x_2$  is  $L_2$ , THEN y is  $L_3$ IF  $L_4$  is  $L_4$  and  $L_5$  is  $L_5$ , THEN  $L_7$  is  $L_7$  and  $L_7$  is  $L_7$ .

in which  $B^l$  (l = 1, 2, ..., 6) are fuzzy sets in V.

9 Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan



#### M smgrc

# Fuzzy Rules

#### Example:





#### Content

- Fuzzy Systems
- Fuzzy Rules
- Fuzzy Inference Engine

(X)

1 Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan



## Fuzzy Inference Engine

First consider Let  $Ru^{(l)}$  be a fuzzy relation in  $U \times V$ , which represent the fuzzy IF-THEN rule:

 $R_u^{(l)}$ : IF  $x_1$  is  $A_1^l$  and  $\cdots$  and  $x_n$  is  $A_n^l$  THEN y is  $B^l$ 

$$Ru^{(l)} = A_1^l \times A_2^l \times A_3^l \times \dots \times A_n^l \to B^l$$

where  $A_1^l \times A_2^l \times A_3^l \times .... \times A_n^l$  is a fuzzy relation in  $U = U_1 \times U_2 \times .... \times U_n$  defined by

$$\mu_{A_1^l \times A_2^l \times A_3^l \times ... \times A_n^l} \left( x_1, x_2, ..., x_n \right) = \mu_{A_1^l} * \mu_{A_2^l} * \mu_{A_3^l} * .... * \mu_{A_n^l}$$





$$\mu_{A_1^l \times A_2^l \times A_3^l \times ... \times A_n^l} (x_1, x_2, ..., x_n) = \mu_{A_1^l} * \mu_{A_2^l} * \mu_{A_3^l} * .... * \mu_{A_n^l}$$

where \* is represents any t-norm operator. The implication  $\rightarrow$  in  $Ru^{(l)}$  is defined according to various implications such as Dienes-Rescher Implication, Lukasiewicz Implication,....

**Example:** Determine  $\mu_{A_1^l \times A_2^l \times A_3^l \times ... \times A_n^l \to B^l} (x_1, x_2, ..., x_n, y)$  by employing product t-norm and Dienes-Rescher Implication.

13

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





# Fuzzy Inference Engine

In a fuzzy inference engine, there are two opposite arguments for what a set of rules should mean:

• Views the rules as independent conditional statements:

"Union Combination"

• Views the rules as strongly coupled conditional statements:

"Intersection Combination"





In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy IFTHEN rules in the fuzzy rule base into a mapping from a fuzzy set in input space to a fuzzy set in output space. There are two ways to infer with a set of rules:

- Composition based inference
- Individual-rule based inference

Note that If the fuzzy rule base consists of only a single rule, then the *generalized modus ponens* specifies the mapping from fuzzy set in input space to a fuzzy set in output space.

15

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





### Union Composite Based Inference

If we accept the rules as independent conditional statements, then the M rules in the canonical form are interpreted as a single fuzzy relation  $Q_M$  in  $U \times V$  defined by:

$$Q_M = \bigcup_{l=1}^M R_u^{(l)}$$

This combination is called the *Mamdani combination*. If we use the symbol + to represent the s-norm, then

$$\mu_{Q_M}\left(x_1, x_2, ..., x_n, y\right) = \mu_{R_u^{(1)}}(x, y) + \mu_{R_u^{(2)}}(x, y) + .... + \mu_{R_u^{(M)}}(x, y)$$





#### Intersection Composite Based Inference

If we accept the rules as strongly coupled conditional statements, then the M rules in the canonical form are interpreted as a single fuzzy relation  $Q_G$  in  $U \times V$  defined by:

$$Q_G = \bigcap_{l=1}^M R_u^{(l)}$$

This combination is called the *Godal combination*. If we use the symbol \* to represent the t-norm, then

$$\mu_{Q_G}(x_1, x_2, ..., x_n, y) = \mu_{R_u^{(1)}}(x, y) * \mu_{R_u^{(2)}}(x, y) * .... * \mu_{R_u^{(M)}}(x, y)$$

17

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





# Composite Based Inference

Finally, let A' be an arbitrary fuzzy set in U and be the input to the fuzzy inference engine. Then, by viewing  $Q_M$  or  $Q_G$  as a single fuzzy IF-THEN rule and using the **generalized modus ponens**, we obtain the output of the **fuzzy inference engine** as

Mamdani Combination

$$\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Q_M}(x, y)]$$

Godel Combination

$$\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{Q_G}(x, y)]$$

generalized modus ponens:  $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{A \to B}(x, y)]$ 





#### Individual Rule Based Inference

In *individual-rule based inference*, each rule in the fuzzy rule base determines an output fuzzy set and the output of the whole fuzzy inference engine is the combination of the M individual fuzzy sets. For given input fuzzy set A' in U, compute the output fuzzy set B' in V for each individual rule  $Ru^{(l)}$  according to the *generalized modus ponens*:

$$\mu_{B'_l}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{R_u^{(l)}}(x, y)]$$
;  $l = 1, 2, ..., M$ 

generalized modus ponens:  $\mu_{B'}(y) = \sup_{x \in U} t[\mu_{A'}(x), \mu_{A \to B}(x, y)]$ 

19

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





#### Individual Rule Based Inference

The output of the fuzzy inference engine is the combination of the M fuzzy sets  $\{B'_1, B'_2, ..., B'_M\}$  according to two opposite arguments:

Union Individual Rule Based Inference

$$\mu_{B'}(y) = \mu_{B'_1}(y) + \mu_{B'_2}(y) + \dots + \mu_{B'_M}(y)$$

Intersection Individual Rule Based Inference

$$\mu_{B'}(y) = \mu_{B'_1}(y) * \mu_{B'_2}(y) * \dots * \mu_{B'_M}(y)$$





Some known fuzzy inference engines are as follows:

- > Product Inference Engine
- > Minimum Inference Engine
- > Lukasiewicz Inference Engine
- > Zadeh Inference Engine
- > Dienes-Rescher Inference Engine

21

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





## Product Inference Engine

In *product inference engine*, we use:

- Individual rule based inference with union combination
- Mamdani's product implication
- Algebraic product for all the t-norm operators and max for all the s-norm operators.

$$\mu_{B'}(y) = \max_{l=1}^{M} \left[ \sup_{x \in U} \left( \mu_{A'}(x) \prod_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}) \mu_{B^{l}}(y) \right) \right]$$





### Minimum Inference Engine

In minimum inference engine, we use:

- Individual rule based inference with union combination
- Mamdani's minimum implication
- min product for all the t-norm operators and max for all the snorm operators.

$$\mu_{B'}(y) = \max_{l=1}^{M} \left[ \sup_{x \in U} \left( \min \left( \mu_{A'}(x), \mu_{A_{l}^{l}}(x_{1}) \mu_{A_{2}^{l}}(x_{2}), ..., \mu_{A_{n}^{l}}(x_{n}), \mu_{B^{l}}(y) \right) \right) \right]$$

23

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





## Lukasiewicz Inference Engine

In *Lukasiewicz inference engine*, we use:

- Individual rule based inference with intersection combination
- Lukasiewicz implication
- min product for all the t-norm operators

$$\mu_{B'}(y) = \min_{l=1}^{M} \left[ \sup_{x \in U} \left( \min \left( \mu_{A'}(x), 1 - \min_{i=1}^{n} \left( \mu_{A_{i}^{l}}(x_{i}) \right) + \mu_{B^{l}}(y) \right) \right) \right]$$





### Zadeh Inference Engine

In Zadeh inference engine, we use:

- Individual rule based inference with intersection combination
- Zadeh implication
- min product for all the t-norm operators

$$\mu_{B'}(y) = \min_{l=1}^{M} \left[ \sup_{x \in U} \left( \min \left( \mu_{A'}(x), \mu_{A_{1}^{l}}(x_{1}) \mu_{A_{2}^{l}}(x_{2}), ..., \mu_{A_{n}^{l}}(x_{n}), \mu_{B^{l}}(y) \right), 1 - \min_{i=1}^{n} \left( \mu_{A_{i}^{l}}(x_{i}) \right) \right) \right) \right]$$

25

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





## Dienes-Rescher Inference Engine

In Dienes-Rescher Inference Engine, we use:

- Individual rule based inference with intersection combination
- Dienes-Rescher implication
- min product for all the t-norm operators

$$\mu_{B'}(y) = \min_{l=1}^{M} \left[ \sup_{x \in U} \left( \min \left( \mu_{A'}(x), \max \left( 1 - \min_{i=1}^{n} \left( \mu_{A'_{i}}(x_{i}) \right), \mu_{B'}(y) \right) \right) \right) \right]$$





**Theorem:** If the fuzzy set A' is a fuzzy singleton:

$$\mu_{A'}(x) = \begin{cases} 1 & x = x^* \\ 0 & o.w. \end{cases}$$

then:



> Product Inference Engine:

$$\mu_{B'}(y) = \max_{l=1}^{M} \left[ \prod_{i=1}^{n} \mu_{A_{i}^{l}}(x_{i}^{*}) \mu_{B^{l}}(y) \right]$$

> Minimum Inference Engine

$$\mu_{B'}(y) = \max_{l=1}^{M} \left[ \min \left( \mu_{A_1^l}(x_1^*) \mu_{A_2^l}(x_2^*), ..., \mu_{A_n^l}(x_n^*), \mu_{B^l}(y) \right) \right]$$

27

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan





# Fuzzy Inference Engine

#### Theorem:

> Lukasiewicz Inference Engine

$$\mu_{B'}(y) = \min_{l=1}^{M} \left[ \min \left( 1, 1 - \min_{i=1}^{n} \left( \mu_{A_{i}^{l}}(x_{i}^{*}) \right) + \mu_{B^{l}}(y) \right) \right]$$

> Zadeh Inference Engine

$$\mu_{B'}(y) = \min_{l=1}^{M} \left[ \max \left( \min \left( \mu_{A_{l}^{l}}(x_{1}^{*}) \mu_{A_{2}^{l}}(x_{2}^{*}), ..., \mu_{A_{n}^{l}}(x_{n}^{*}), \mu_{B^{l}}(y) \right), 1 - \min_{l=1}^{n} \left( \mu_{A_{l}^{l}}(x_{i}^{*}) \right) \right) \right]$$

> Dienes-Rescher Inference Engine

$$\mu_{B'}(y) = \min_{l=1}^{M} \left[ \max \left( 1 - \min_{i=1}^{n} \left( \mu_{A_i^l}(x_i^*) \right), \mu_{B^l}(y) \right) \right]$$



**Example:** Suppose that a fuzzy rule base consists of only one rule:

IF  $x_1$  is  $A_1$  and  $x_2$  is  $A_2$  and ..., and  $x_n$  is  $A_n$ , THEN y is B where

$$\mu_B(y) \begin{cases} 1 - |y| & -1 \le y \le 1 \\ 0 & o.w. \end{cases}$$

Assume that A' is a fuzzy singleton defined as follows:

$$\mu_{A'}(x) = \begin{cases} 1 & x = x^* \\ 0 & o.w. \end{cases}$$

and let  $\mu_{A_p}(x_p^*) = \min \left( \mu_{A_1^l}(x_1^*) \mu_{A_2^l}(x_2^*), ..., \mu_{A_n^l}(x_n^*) \right)$  and  $\mu_A(x^*) = \prod_{i=1}^n \mu_{A_i^l}(x_i^*)$ .

Obtain  $\mu_{B'}(y)$  by using the product, minimum, Lukasiewicz, Zadeh and Dienes-Rescher inference engines.

29

Intelligent Control

Smart/Micro Grids Research Center, University of Kurdistan









**Thanks** 

