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1.  Supervised learning 

2. Unsupervised learning

3.  Reinforcement learning
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1. Perceptron learning

2. Widrow-Hoff learning

3. Correlation learning

4. Back-propagation learning

5. Generalized learning

6. Specialized learning

Supervised Learning Method
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Perceptron (single layer) learning algorithm
Learning rule: ∆w=ηeX W(k+1)=W(k)+ηeX 

Example

(Rosenblatt, 1958)
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1. Randomly initialize all the networks weights.
2. Apply inputs and find outputs ( feed-forward).
3. Compute the errors.
4. Update each weight as

5. Repeat steps 2 to 4 until the errors reach the satisfactory 
level.  

( 1) ( ) ( ) ( )ij ij i jw k w k x k e kh+ = +

Perceptron (single layer) learning algorithm
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Widrow-Hoff learning

Learning rule: ∆w=ηeX W(k+1)=W(k)+ ηeX 

By Widrow and Hoff (~1960) 

Adaptive linear elements for signal processing (Adaline 

algorithm) The same architecture of perceptrons
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Widrow-Hoff learning algorithm

Example
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o Try to reduce the mean squared error (MSE) between the 
net input and the desired output.

o The MSE is a performance index for evaluation of learning 
algorithms 

J(x) = E[eTe] = E[(d-o)T(d-o)] 

Learning Mechanism

or 
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• Delta rule 
–Let ij = (i0,j, i1,j,…, in,j ) be an input vector with desired output dj
–The squared error

• Its value determined by the weights wl

–Modify weights by gradient descent approach
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Learning Mechanism
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• Change weights in the opposite direction of kwE ¶¶ /
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Learning Mechanism
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Learning Mechanism
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– Weights will be dynamically changed

– E decreases until the system reaches a state with (local) minimum E

(a small change of any wi will cause E to increase)

– At a local minimum E state,                           , but E is not guaranteed 

to be zero (netj = dj)

• This is why Adaline usually uses nonlinear function rather than 

linear function

iwE i "=¶¶   0/

Learning Mechanism
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The error surface

We calculate the direction of 
steepest descent along the error 
surface by computing
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Learning Rate

• The learning rate (η) should be sufficiently small

 Selection of learning rate

• If η is too large: risk of instability

• If η is too small (≈ 0): very slow to converge

• Common choice: η = 1.
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Supervised Learning Modes

1. Perceptron learning

2. Widrow-Hoff learning

3. Correlation learning

4. Back-propagation learning

5. Generalized learning

6. Specialized learning
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Correlation learning algorithm
Learning rule: ∆w=ηdX W(k+1)=W(k)+ ηdX 
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Unsupervised Learning Modes

1. Hebbian learning

2. Crossberg & Corpenter learning

3. Kohonen learning
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Hebbian learning algorithm
Learning rule: ∆w=ηOX W(k+1)=W(k)+ ηOX 

η : constant learning = learning rate, 0< η <1

(1949)
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Hebbian learning algorithm
Example:
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Instar-Outstar Structure
(Grossberg & Carpenter 1974-82)
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Learning rule: ∆w=η1 (X-W) 
∆v=η2 (Y-V) 

Example
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Thank you! 


