Intelligent Control

Multilayer Perceptron and
Backpropagation Learning

Hassan Bevrani

Professor, University of Kurdistan

Fall 2023

Contents

N ouw s wNp

. MLP with BP Learning

BP Learning Mechanism

. Examples

Momentum Method
Gradient Descent and Local Minimum

Practical Considerations

. More ANN Structures

University of Kurdistan




MLP with BP learning
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MLP with BP learning
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BP Learning Mechanism

—Let the squared error is:

1

E==(d, -0,
2(k0k)

—Modify weights between j and k layers by gradient descent approach
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BP Learning Mechanism
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BP Learning Mechanism

Assume §, =e¢, f'(net})

Therefore: AW ’78kH

Class homework: Show that
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BP Learning Mechanism

o Now, update weights between i and j layers by gradient descent approach A w,; =—1 %
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BP Learning Mechanism
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BP Learning Mechanism
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BP learning
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Example 2

Input Layer Hidden Layer Output Layer
i=1~4 ,1‘ k=1
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Momentum Method

Awy =nd.H,;

W (k+1)= Wi (k) +ij =W (k) + nSkH]-

Choice of learning rate: 0<n<1

If n=1: 1. Speed of learning increase
" 2. Degree of stability decrease

Solution: using Momentum term 0<oa<1

Awy =08, H; +ofw, (k+1)—w; (k)]
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BP learning
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BP training flowchart

| Set initial values: w, eta, alfa |

v
>I Apply input vector: x I<
Feed forward ¥
| Compute the layers output: H, O |

| Compute error: E |

| Calculate delta and sigma |

Feedback

| Tune w between output and hidden layers |

| Tune w between hidden and input layers |
Pattern recognition

patterns in
the training
et?
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lllustration of Gradient Descent

o Move in direction of negative derivative

Ew |
Decreasing E(w)
Wy
) >
d E(w)/
dw, W1
) >
/(ﬂ)/dwl >0 m=p w; => w; -1 d E(w)/dw,
i.e., the rule decreases w;
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Illustration of Gradient Descent
Ew |
Decreasing E(w)
W,
O >
d E(w)/ /
dw, W1
. R

d E(w)/dw; <0 =) w, <= w, -1 d E(w)/dw,

i.e., the rule increases w;
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lllustration of Gradient Descent

E(w)
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Illustration of Gradient Descent

E(w)
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lllustration of Gradient Descent

E(w)

Wy
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) Direction of steepest
e descent = direction of
negative gradient

H. Bevrani University of Kurdistan

21

Illustration of Gradient Descent

E(w)

New point in
weight space

%
PR w,

Original point in
weight space
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Local minimum

Gradient descent goes to the

closest local minimum!

T O

A Solution: random restarts from multiple places (initial weights) in weight space
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Convergence to Local/Global minimums

g(p) = 1+ sin(np)

Global minimum local minimum
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Impacts of ANN Architecture

glp) = 1+ Sin(%np)

An example for 3-layer ANN with different number of neurons in hidden layer
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Heuristics to alleviate the problem of local minima

1. Add momentum

2. Use stochastic gradient descent rather than true gradient
descent.

3. Train multiple nets with different initial weights using the
same data (Proper selection of initial weights).

4. Fine tuning of learning rate parameters
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Over training

o The major problem in training a NN is deciding when to stop
training. Since the ability to generalize is fundamental for the
networks which predict future, overtraining is a serious
problem.

o Overtraining occurs when the system memorizes patterns and
thus looses the ability to generalize (decreasing generalization
accuracy over other unseen examples)
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Techniques to overcome over training problem

* Stopping criterion (Termination condition): Until the error E falls
below some predetermined threshold. This is a poor strategy

* Weight decay : Decrease each weight by some small factor during
each iteration. The motivation for this approach is to keep weight
values small.

* Cross-validation: a set of validation data in addition to the training
data. The algorithm monitors the error for this validation data while
using the training set to drive the gradient descent search.

— How many weight-tuning iterations should the algorithm perform?
It should use the number of iterations that produces the lowest error over the validation set.
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Techniques to overcome over training problem

* Generalization is not guaranteed even if the error is reduced to 0.

—Over-fitting/over-training problem: trained net fits the training samples
perfectly (E reduced to 0) but it does not give accurate outputs for inputs not
in the training set Error

Error on test data

Error on training data

Instant when Training Time
error on test data

begins to worsen
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Cross-Validation

—leave some (~¥10%) samples as test data (not used for weight update)
—periodically check error on test data
—Learning stops when error on test data starts to increase

Error - " With validation set
___ (which does not change w‘-J)_J_’__‘/

M\
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—
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e
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Training time
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Strengths of BP Learning

e Great representation power

— Nonlinear function can be represented by a BP net

— Many such functions can be approximated by BP learning (gradient descent
approach)

* Wide applicability of BP learning

— Only requires that a good set of training samples is available

— Does not require substantial prior knowledge or deep understanding of the
domain itself

— Tolerates noise and missing data in training samples (graceful degrading)
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Strengths of BP Learning

* Easy to implement the core of the learning algorithm

* Good generalization power
— Often produce accurate results for inputs outside the training set
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Strengths of BP Learning

* Learning often takes a long time to converge
—Complex functions often need hundreds or thousands of epochs

* The net is essentially a black box

—It may provide a desired mapping between input and output vectors (x,
o) but does not have the information of why a particular x is mapped to

a particular o.
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Strengths of BP Learning

* A way to assess the high quality of learning is unknown

—There is no theoretically well-founded way to assess the quality of BP
learning
oWhat is the confidence level one can have for a trained BP net, with the final E

(which may or may not be close to zero)?
oWhat is the confidence level of o computed from input x using such net?

* Problem with gradient descent approach

—only guarantees to reduce the total error to a local minimum. (E may not be
reduced to zero)
—Cannot escape from the local minimum error state
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Strengths of BP Learning

o Sensitivity to initial conditions

o Instability if learning rate is too large

Despite above disadvantages, it is popularly used in control
community. There are numerous extensions to improve BP algorithm.
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Practical Considerations

For a good BP, many parameters must be carefully selected to ensure a good
performance.

* Proper selection of Initial weights (and biases)

—Random, [-0.05, 0.05], [-0.1, 0.1], [-1, 1]
— Normalize weights for hidden layer (wi- )

* Random assign initial weights for all hidden nodes
* For each hidden node j, normalize its weight by

10) _ g.1,80) /|, (1.0) here 8 = 0.74/m
Wi = Bl ] where =07
m =# of hiddent nodes, n=# of input nodes

 Avoid bias in weight initialization
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Practical Considerations

* Training samples:
— Quality and quantity of training samples often determines the quality of learning results
— Samples must collectively represent well the problem space

* Random sampling

* Proportional sampling (with prior knowledge of the problem space)

— # of training patterns needed: There is no theoretically idea number.

* Adding momentum term (to speedup learning)

— Avoid sudden change of directions of weight update (smoothing the learning process)
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Practical Considerations

* Number of hidden layers and hidden nodes per layer

— Theoretically, one hidden layer (possibly with many hidden nodes) is sufficient for any
nonlinear functions
— There is no theoretical results on minimum necessary # of hidden nodes
— Practical rule :
*n = # of input nodes; m = # of hidden nodes
* For binary/bipolar data: m = 2n
* For real data: m >>2n
— Multiple hidden layers with fewer nodes may be trained faster for similar quality in some

applications
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Practical Considerations

* Proper tuning of learning rate n

— Fixed rate much smaller than 1

— Start with large n, gradually decrease its value

— Start with a small n, steadily double it until MSE start to increase

— Find the maximum safe step size at each stage of learning (to avoid overshoot the minimum E

when increasing n)

H. Bevrani University of Kurdistan
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Dynamic NN: Recurrent NN

* Feed forward networks:
— Information only flows one way
— One input pattern produces one output
— No sense of time (or memory of previous state)

* Recurrency
— Nodes connect back to other nodes or themselves
— Information flow is multidirectional
— Sense of time and memory of previous state(s)

Biological nervous systems show high levels of recurrency

H. Bevrani University of Kurdistan
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Dynamic neural unit

The NN that have been discussed so far contain no time-delay elements or integrators. Such NN are called
non-dynamic as they do not have any memory (Recurrent or Dynamic neural network (DNN): NN with

memory)
Threshold
A model:
Self-feedback
1 o —Q;
xi;i\‘ 1| %
L U s 9i
: ynamics
Lateral Self-recurrence
recurrences
dz;(t)
c;t = —o;zi(t) + fi(wai, Ta)
yi(t) = gi(zi(t))
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Recurrent NN

Recurrent Network with hidden neuron: unit delay operator z1is used

to model a dynamic system

=

v

] input
hidden

@ output
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Hopfield ANN

Y1
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Yn
Inputs Hidden layer Outputs
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The Elman network
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The Elman network

Partial recurrent network with dynamic BP

@ \ Xc(k) Dynamic signal: Xc(k)=Xc(k-1)
5 X (k)
£ . a
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: @ . At
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Input Hidden \ Output
Back-propagation
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The Jordan network
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Jordan Learning

net' =W_X(t)+W,X_(t)

where :

X.(1)=0*(t—1)=y(t-1)

F'(net") = O (net")
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Jordan Learning
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Elman and Jordan

Elman and Jordan Learning

net' =W_X(0)+ W, X.(H)+ W, X _(f)
where :

X, (0)=0'(t-1)=y(t-1)
X,(0)=0%t-1)=y(t-1)

F'(net"y=0'(net")

{@ —W,.0'()

F*(net®) = O*(net®) = y(net®)




Elman and Jordan Learning
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Elman and Jordan Learning
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Elman and Jordan Learning
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Elman and Jordan Learning
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Elman and Jordan Learning
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Thank you!
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