
By:

Barmak Baigzadehnoe

b.baigzadeh@uok.ac.ir

Intelligent Control 



B. Baigzadehnoe2

Content

 Takagi-Sugeno-Kang Fuzzy systems

 Parallel Distributed Compensator

 Design Example



B. Baigzadehnoe3

TSK Fuzzy Systems
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The Takagi-Sugeno-Kang fuzzy system is constructed from the

following fuzzy IF-THEN rules:
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Note that this form of fuzzy IF-THEN rule is known as Sugeno fuzzy rules.
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TSK Fuzzy Systems
The final output of the Takagi-Sugeno fuzzy system can be inferred as

the weighted average of the:

in which the weights are calculated as follows:
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TSK Fuzzy Systems
This kind of fuzzy systems can be employed to represent nonlinear

plant by local linear model. Consider a continuous nonlinear system of

the following state space form:

The local linear model of fuzzy IF-THEN rules can be written as

follows:

Where 𝑍1, … , 𝑍𝑘 denote known premise variables that may be

functions of the state variables, and 𝐹1
𝑙 , … , 𝐹𝑘

𝑙 are fuzzy sets

characterized by fuzzy membership functions.
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TSK Fuzzy Systems
The final outputs of the fuzzy systems are inferred as follows:

Where N is the number of rule, 𝑧 = 𝑧1, … , 𝑧𝑘
𝑇 is the vector of fuzzy

inputs and 𝜇𝑙(𝑧) is a fuzzy basis function:
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TSK Fuzzy Systems
Example: Consider the following nonlinear system:

To construct a fuzzy local linear model, It is assumed that

𝑥1, 𝑥2 ∈ −1,+1 . This nonlinear model can be easily rewritten as

follows:
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TSK Fuzzy Systems
----: To obtain the local linear model of the considered nonlinear

system, the following fuzzy IF-THEN rules can be employed:

1 1 2 1 1( ) ( )IF z is F and z is G THEN x t A x t 1
:Ru

1 1 2 2 2( ) ( )IF z is F and z is G THEN x t A x t 2
:Ru

1 2 2 1 3( ) ( )IF z is F and z is G THEN x t A x t 3
:Ru

1 2 2 2 4( ) ( )IF z is F and z is G THEN x t A x t 4
:Ru
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TSK Fuzzy Systems
----: Now, calculate the minimum and maximum of the chosen

premise variables:
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TSK Fuzzy Systems
----: Accordingly, the matrices 𝐴1, 𝐴2, 𝐴3 and 𝐴4 can be given as:
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TSK Fuzzy Systems
----: Consequently, the grades of membership of the premise

variables are obtained as follows:
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TSK Fuzzy Systems
----: Then, by solving the obtained equations, the membership

functions are as follows:
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TSK Fuzzy Systems
----: It can be checked that the designed fuzzy systems exactly

represents the nonlinear system in the interval −1,+1 × −1,+1 :

with
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TSK Fuzzy Systems
Assignment: Consider the following nonlinear system:

assume that 𝑥1, 𝑥2 ∈ −𝛼, 𝛼 .
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To stabilize systems represented by T-S fuzzy systems of the

following form:

the parallel distributed compensator controller is defined as:
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Parallel distributed Compensator
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By applying the parallel distributed compensator control law to

local linear model, the closed loop system is obtained by:

which can be represented as follows:

with
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Parallel distributed Compensator
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Theorem: The equilibrium of closed loop fuzzy system is

asymptotically stable if there exist a symmetric matrix P>0 such that:

For and .
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Parallel distributed Compensator
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According to the theorem, the following linear matrix inequalities

(LMIs) should be solved to design parallel distributed compensator:

Then the controller gains is obtained:
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Parallel distributed Compensator
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Inverted Pendulum System
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The dynamic equations of the nonlinear inverted pendulum system are

as follows:

where 𝑎 =  1 (𝑀+𝑚); 𝑥1(𝑡) and 𝑥2 𝑡 are respectively the angle and

the angular velocity of the pendulum.

.
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Inverted Pendulum System
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Inverted Pendulum System

T-S Fuzzy Model 

Solve LMIs 

Simulate System
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Inverted Pendulum System

It can be shown that this nonlinear system can be approximated by the

following two rules:

with
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Inverted Pendulum System

Membership functions are chosen as:
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Inverted Pendulum System

Accordingly, by solving the following linear matrix inequality:

the controller gains is given by:

2 2 2 2 2 2 0T T TXA A X M B B M    
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   1 2       K and K 

1 1 1 1 1 1 0T T TXA A X M B B M    

0TX X 

LMI Toolbox
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Inverted Pendulum System

Finally, simulation result is as foolows:
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