

Linear Control System

Sensitivity Analysis

Hassan Bevrani

Professor, University of Kurdistan

Spring 2024

Contents

1. Sensitivity

2. Examples

3. Pole Sensitivity

Reference

1. Norman S. Nise, **Control Systems Engineering**, 7th Ed., Wiley, 2015.

Chapter 7, Section 7.7, pp.: 356-359 Chapter 8, Section 8.10, pp.: 415-422

Sensitivity Analysis

o **Sensitivity analysis** aims to investigate how a model component affects another component/function

o **Sensitivity analysis** is an essential issue in mathematical modeling and analysis

Sensitivity

 \circ The degree to which changes in system parameters affect system transfer functions, and hence performance, is called **sensitivity**.

 \circ Sensitivity is the ratio of the fractional change in the function to the fractional change in the parameter as the fractional change of the parameter approaches zero.

Example 1

o Find the sensitivity of the closed-loop transfer function to the parameter a

$$
\begin{array}{c|c|c}\n R(s) & + & E(s) \\
 \hline\n - & & \n\end{array}\n \quad\n \begin{array}{c|c}\n & K & C(s) \\
 \hline\n S(s+a) & & \n\end{array}
$$

Solution
\n
$$
T(s) = \frac{K}{s^2 + as + K}
$$
\n
$$
S_{T:a} = \frac{a}{T} \frac{a}{\delta a} = \frac{a}{\left(\frac{K}{s^2 + as + K}\right)} \left(\frac{-Ks}{\left(s^2 + as + K\right)^2}\right) = \boxed{\frac{-as}{s^2 + as + K}}
$$

An increase in *K* reduces the sensitivity of the closed-loop transfer function to changes in the parameter a .

$$
H. \text{ Bevrani \quad \text{University of Kurdistan} \qquad \qquad 9
$$

Example 2

o Find the sensitivity of the steady-state error to changes in parameter K and parameter $\boldsymbol{\alpha}$ for the system with a step input.

$$
\begin{array}{c|c}\nR(s) & + & E(s) \\
\hline\n\end{array}
$$

Pole Sensitivity

o The sensitivity of a closed-loop pole, *s*, to gain, *K*:

$$
S_{s:K} = \frac{K}{s} \frac{\delta s}{\delta K}
$$

$$
\sum \left| \Delta s = s(S_{s:K}) \frac{\Delta K}{K} \right|
$$

Δ*s* is the change in pole location, and **Δ***K***/***K* is the fractional change in the gain, *K*.

Solution Differentiating the Characteristic $R(s)$ K $C(s)$ $\frac{R}{s^2 + 10s + K}$ equation with respect to K: where $K = K_1 K_2$ $2s\frac{\delta s}{\delta K} + 10\frac{\delta s}{\delta K} + 1 = 0$ \Longrightarrow $\frac{\delta s}{\delta K} = \frac{-1}{2s + 10}$ $S_{s:K} = \frac{K}{s} \frac{\delta s}{\delta K}$ $S_{s:K} = \frac{K}{s} * \frac{-1}{2s+10}$

H. Bevrani University of Kurdistan 15

$$
\Delta s = s(S_{s:K}) \frac{\Delta K}{K} \quad \implies \boxed{\Delta s = 0.056} \quad \text{The pole will move to the right by} \quad \text{0.056 units for a 10\% change in } K.
$$

Continue For $s = -5 + j5$, $K = 50$. \boldsymbol{K} Pole 1 Pole 2 $\overline{0}$ -10 $\overline{0}$ $S_{s:K} = \frac{K}{s} * \frac{-1}{2s + 10}$ 5 -9.47 -0.53 10 -8.87 -1.13 -8.16 15 -1.84 20 -7.24 -2.76 $S_{s:K} = 1/(1+j1) = (1/\sqrt{2}) \angle -45^{\circ}$ 25 -5 -5 30 $-5 + j2.24$ $-5 - j2.24$ 35 $-5 + j3.16$ $-5 - j3.16$ The change in the pole location for a 10% 40 $-5 + j3.87$ $-5 - j3.87$ change in *K*, with: 45 $-5 + j4.47$ $-5 - j4.47$ $s = -5 + j5$, $\Delta K/K = 0.1$, $S_{s:K} = (1/\sqrt{2}) \angle -45^{\circ} \stackrel{50}{=}$ $-5 + j5$ $-5 - j5$ $\Delta s = s(S_{s:K}) \frac{\Delta K}{K}$

The pole will move vertically by **5** units for a 10% change in *K*.

$$
H. Bev\text{rani} \quad \text{16}
$$

Thank You!

H. Bevrani University of Kurdistan 17